agentic-api 2.0.26 → 2.0.314
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +224 -60
- package/dist/src/agents/agents.example.js +21 -22
- package/dist/src/agents/authentication.js +1 -2
- package/dist/src/agents/prompts.d.ts +5 -4
- package/dist/src/agents/prompts.js +42 -87
- package/dist/src/agents/reducer.core.d.ts +24 -2
- package/dist/src/agents/reducer.core.js +125 -35
- package/dist/src/agents/reducer.loaders.d.ts +55 -1
- package/dist/src/agents/reducer.loaders.js +114 -1
- package/dist/src/agents/reducer.types.d.ts +45 -2
- package/dist/src/agents/semantic.js +1 -2
- package/dist/src/agents/simulator.d.ts +4 -0
- package/dist/src/agents/simulator.executor.d.ts +5 -1
- package/dist/src/agents/simulator.executor.js +41 -9
- package/dist/src/agents/simulator.js +86 -28
- package/dist/src/agents/simulator.prompts.d.ts +3 -2
- package/dist/src/agents/simulator.prompts.js +52 -78
- package/dist/src/agents/simulator.types.d.ts +20 -5
- package/dist/src/agents/simulator.utils.d.ts +7 -2
- package/dist/src/agents/simulator.utils.js +33 -11
- package/dist/src/agents/system.js +1 -2
- package/dist/src/execute.d.ts +17 -3
- package/dist/src/execute.js +156 -158
- package/dist/src/index.d.ts +1 -1
- package/dist/src/index.js +1 -1
- package/dist/src/{princing.openai.d.ts → pricing.llm.d.ts} +6 -0
- package/dist/src/pricing.llm.js +234 -0
- package/dist/src/prompts.d.ts +13 -4
- package/dist/src/prompts.js +221 -114
- package/dist/src/rag/embeddings.d.ts +36 -18
- package/dist/src/rag/embeddings.js +125 -128
- package/dist/src/rag/index.d.ts +5 -5
- package/dist/src/rag/index.js +14 -17
- package/dist/src/rag/parser.d.ts +2 -1
- package/dist/src/rag/parser.js +11 -14
- package/dist/src/rag/rag.examples.d.ts +27 -0
- package/dist/src/rag/rag.examples.js +151 -0
- package/dist/src/rag/rag.manager.d.ts +383 -0
- package/dist/src/rag/rag.manager.js +1378 -0
- package/dist/src/rag/types.d.ts +128 -12
- package/dist/src/rag/types.js +100 -1
- package/dist/src/rag/usecase.d.ts +37 -0
- package/dist/src/rag/usecase.js +96 -7
- package/dist/src/rules/git/git.e2e.helper.js +1 -0
- package/dist/src/rules/git/git.health.d.ts +57 -0
- package/dist/src/rules/git/git.health.js +281 -1
- package/dist/src/rules/git/index.d.ts +2 -2
- package/dist/src/rules/git/index.js +12 -1
- package/dist/src/rules/git/repo.d.ts +117 -0
- package/dist/src/rules/git/repo.js +536 -0
- package/dist/src/rules/git/repo.tools.d.ts +22 -1
- package/dist/src/rules/git/repo.tools.js +50 -1
- package/dist/src/rules/types.d.ts +16 -14
- package/dist/src/rules/utils.matter.d.ts +0 -4
- package/dist/src/rules/utils.matter.js +26 -7
- package/dist/src/scrapper.d.ts +15 -22
- package/dist/src/scrapper.js +57 -110
- package/dist/src/stategraph/index.d.ts +1 -1
- package/dist/src/stategraph/stategraph.d.ts +31 -2
- package/dist/src/stategraph/stategraph.js +93 -6
- package/dist/src/stategraph/stategraph.storage.js +4 -0
- package/dist/src/stategraph/types.d.ts +22 -0
- package/dist/src/types.d.ts +4 -2
- package/dist/src/types.js +1 -1
- package/dist/src/usecase.d.ts +11 -2
- package/dist/src/usecase.js +27 -35
- package/dist/src/utils.d.ts +32 -18
- package/dist/src/utils.js +60 -126
- package/package.json +7 -2
- package/dist/src/agents/digestor.test.d.ts +0 -1
- package/dist/src/agents/digestor.test.js +0 -45
- package/dist/src/agents/reducer.example.d.ts +0 -28
- package/dist/src/agents/reducer.example.js +0 -118
- package/dist/src/agents/reducer.process.d.ts +0 -16
- package/dist/src/agents/reducer.process.js +0 -143
- package/dist/src/agents/reducer.tools.d.ts +0 -29
- package/dist/src/agents/reducer.tools.js +0 -157
- package/dist/src/agents/simpleExample.d.ts +0 -3
- package/dist/src/agents/simpleExample.js +0 -38
- package/dist/src/agents/system-review.d.ts +0 -5
- package/dist/src/agents/system-review.js +0 -181
- package/dist/src/agents/systemReview.d.ts +0 -4
- package/dist/src/agents/systemReview.js +0 -22
- package/dist/src/princing.openai.js +0 -54
- package/dist/src/rag/tools.d.ts +0 -76
- package/dist/src/rag/tools.js +0 -196
- package/dist/src/rules/user.mapper.d.ts +0 -61
- package/dist/src/rules/user.mapper.js +0 -160
- package/dist/src/rules/utils/slug.d.ts +0 -22
- package/dist/src/rules/utils/slug.js +0 -35
package/README.md
CHANGED
|
@@ -1,33 +1,59 @@
|
|
|
1
1
|
# @agentic-api
|
|
2
2
|
|
|
3
|
-
|
|
3
|
+
Comprehensive framework for intelligent agent orchestration, document processing, and enterprise workflow management. (inspired from [OpenAI Swarm](https://github.com/openai/openai-realtime-agents)) (01/2025)
|
|
4
4
|
|
|
5
|
-
> **
|
|
6
|
-
> This project is not meant to be better than Vercel or LangChain. It's simply less generic and optimized for a specific set of problems.
|
|
5
|
+
> **Design Philosophy**:
|
|
6
|
+
> This project is not meant to be better than Vercel or LangChain. It's simply less generic and optimized for a specific set of enterprise problems.
|
|
7
7
|
> It focuses on specific features that required too many dependencies with other frameworks.
|
|
8
8
|
|
|
9
|
+
## 🚀 Core Capabilities
|
|
9
10
|
|
|
10
|
-
|
|
11
|
+
### 🤖 Agent Orchestration
|
|
12
|
+
- Multi-agent conversations with automatic transfers
|
|
13
|
+
- State machine-driven workflows for complex processes
|
|
14
|
+
- Confidence-based escalation between specialized agents
|
|
15
|
+
- **StateGraph Architecture**: Modern conversation state management with automatic persistence
|
|
11
16
|
|
|
12
|
-
|
|
13
|
-
-
|
|
14
|
-
-
|
|
15
|
-
-
|
|
16
|
-
-
|
|
17
|
+
### 📄 Document Processing
|
|
18
|
+
- **MapLLM**: Advanced map-reduce pattern for large document analysis
|
|
19
|
+
- **Structured Outputs**: OpenAI JSON schema validation support
|
|
20
|
+
- **Flexible Loaders**: File and string content processing with chunking strategies
|
|
21
|
+
- **Callback-Driven**: User-defined logic for accumulation and flow control
|
|
17
22
|
|
|
23
|
+
### 🧪 Testing & Validation
|
|
24
|
+
- **Agent Simulator**: Comprehensive testing framework with scenario-based simulations
|
|
25
|
+
- **Realistic Personas**: Authentic user behavior simulation for thorough testing
|
|
26
|
+
- **Automatic Validation**: Built-in success/failure detection and reporting
|
|
18
27
|
|
|
19
|
-
###
|
|
28
|
+
### 📋 Enterprise Workflow
|
|
29
|
+
- **Rules Management**: Git-based workflow for business rules and procedures
|
|
30
|
+
- **Pull Request Validation**: Structured review and approval processes
|
|
31
|
+
- **Multi-File Operations**: Atomic operations across related documents
|
|
32
|
+
- **Search Integration**: Full-text search with RAG embeddings
|
|
20
33
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
-
|
|
25
|
-
-
|
|
34
|
+
## 🎯 Key Advantages
|
|
35
|
+
|
|
36
|
+
1. **Enterprise-Ready**
|
|
37
|
+
- Production-grade document workflows
|
|
38
|
+
- Comprehensive testing capabilities
|
|
39
|
+
- Git-based version control integration
|
|
40
|
+
|
|
41
|
+
2. **Developer-Friendly**
|
|
42
|
+
- Minimal configuration required
|
|
43
|
+
- TypeScript-first with full type safety
|
|
44
|
+
- Modular architecture for easy extension
|
|
45
|
+
|
|
46
|
+
3. **Performance-Optimized**
|
|
47
|
+
- Efficient chunking strategies
|
|
48
|
+
- Intelligent caching systems
|
|
49
|
+
- Parallel processing support
|
|
26
50
|
|
|
27
51
|
### Recommended Use Cases
|
|
28
52
|
|
|
29
|
-
-
|
|
30
|
-
-
|
|
53
|
+
- **Enterprise Document Management**: Rules, procedures, and knowledge base management
|
|
54
|
+
- **Agent Development & Testing**: Comprehensive agent behavior validation
|
|
55
|
+
- **Large Document Processing**: Analysis and synthesis of complex documents
|
|
56
|
+
- **Conversational AI Systems**: Multi-agent workflows with state management
|
|
31
57
|
|
|
32
58
|
|
|
33
59
|
[](https://mermaid.live/edit#pako:eNpVkcluwjAQhl_FGgmJSoDIQoAcKhEQ7aGXNkiVmqDKTYYkUmJHxu5GeZaq575cH6EmC8sc7PnG_4xn7B1EPEZwYZPztyilQpLVImREmy81dYNqW1_VsVlwIxAlinXNi24Qwt_37w-5VQVlIbTCet2ql0TQMiU-itcswudZgkxuSdAwqbkpdrA4ExjJjDNy93CKekbg0xzPhZ4ZzNVW8gIF8VVZct3k2akV3CsujxnI4pDV7jx4XC3XLVXTkX7_msyaCSvwjAsyL8hqkzsdsuQi0h3QPEsYFnoYknKRfXImaV6LPIP0B2dFPLNhq2Gr5kVbtUn4WtIsVwK_yLxp_HD7KXrUQw_0IxQ0i_U37g6xEGSqmwnB1W6MG6pyGULI9lpKleT-B4vAlUJhDwRXSQruhuZbTaqMqcRFRvW3Fa2kpOyJ8yMm4nBTk60fFsWcKybBHVVScHfwrmFiDgzTGJvToWFY2nrwAe54OBg5pu1Yjj21Dcd29j34rGoPB5OxPT23_T90g8Qf)
|
|
@@ -42,9 +68,9 @@ npm install @agentic-api
|
|
|
42
68
|
|
|
43
69
|
```typescript
|
|
44
70
|
import OpenAI from "openai";
|
|
45
|
-
import { executeAgentSet } from '@agentic-api
|
|
46
|
-
import { AgenticContext } from '@agentic-api
|
|
47
|
-
import { AgentStateGraph } from '@agentic-api
|
|
71
|
+
import { executeAgentSet } from '@agentic-api';
|
|
72
|
+
import { AgenticContext } from '@agentic-api';
|
|
73
|
+
import { AgentStateGraph } from '@agentic-api';
|
|
48
74
|
|
|
49
75
|
const openai = new OpenAI({
|
|
50
76
|
apiKey: process.env.OPENAI_API_KEY,
|
|
@@ -74,8 +100,7 @@ const stream = await executeAgentSet(agents, context, {
|
|
|
74
100
|
## 🤖 Custom Agent Creation
|
|
75
101
|
|
|
76
102
|
```typescript
|
|
77
|
-
import { AgentConfig } from '@agentic-api
|
|
78
|
-
import { modelConfig } from '@agentic-api/execute';
|
|
103
|
+
import { AgentConfig, modelConfig } from '@agentic-api';
|
|
79
104
|
|
|
80
105
|
// Example specialized agent with thinking tool
|
|
81
106
|
const haiku: AgentConfig = {
|
|
@@ -98,7 +123,7 @@ const welcome: AgentConfig = {
|
|
|
98
123
|
};
|
|
99
124
|
|
|
100
125
|
// Inject transfer and thinking tools
|
|
101
|
-
import { injectTransferTools } from '@agentic-api
|
|
126
|
+
import { injectTransferTools } from '@agentic-api';
|
|
102
127
|
const myAgents = injectTransferTools([welcome, haiku]);
|
|
103
128
|
```
|
|
104
129
|
|
|
@@ -107,7 +132,7 @@ const myAgents = injectTransferTools([welcome, haiku]);
|
|
|
107
132
|
The new StateGraph architecture provides automatic conversation state management:
|
|
108
133
|
|
|
109
134
|
```typescript
|
|
110
|
-
import { AgentStateGraph, sessionStateGraphGet, sessionStateGraphSet } from '@agentic-api
|
|
135
|
+
import { AgentStateGraph, sessionStateGraphGet, sessionStateGraphSet } from '@agentic-api';
|
|
111
136
|
|
|
112
137
|
// StateGraph is automatically managed during executeAgentSet
|
|
113
138
|
// But you can also work with it directly:
|
|
@@ -234,7 +259,7 @@ stateGraph.clearDiscussion("agentName");
|
|
|
234
259
|
### **Utility Functions**
|
|
235
260
|
```typescript
|
|
236
261
|
// Get specialized (starting) agent for discussion
|
|
237
|
-
import { getSpecializedAgent } from '@agentic-api
|
|
262
|
+
import { getSpecializedAgent } from '@agentic-api';
|
|
238
263
|
const specializedAgent = getSpecializedAgent(discussion);
|
|
239
264
|
|
|
240
265
|
// Find discussion by ID
|
|
@@ -247,49 +272,188 @@ stateGraph.renameDiscussion("agentName", "New Name", "Description");
|
|
|
247
272
|
stateGraph.deleteDiscussion("agentName");
|
|
248
273
|
```
|
|
249
274
|
|
|
250
|
-
##
|
|
275
|
+
## 🗂️ MapLLM Document Processing
|
|
276
|
+
|
|
277
|
+
Modern map-reduce pattern for processing large documents with flexible content handling and OpenAI structured outputs.
|
|
278
|
+
|
|
279
|
+
- **Flexible Loaders**: `FileNativeLoader` and `StringNativeLoader` with configurable chunking strategies
|
|
280
|
+
- **Callback-Driven**: User-defined logic for accumulation, termination, and flow control
|
|
281
|
+
- **Structured Outputs**: Optional JSON schema validation via OpenAI structured outputs
|
|
282
|
+
- **Robust EOF Handling**: Proper chunk boundary detection and clean termination
|
|
283
|
+
|
|
284
|
+
📖 **[Complete MapLLM Documentation →](./docs/README-AGENT-REDUCE.md)**
|
|
285
|
+
|
|
286
|
+
```typescript
|
|
287
|
+
import { MapLLM, FileNativeLoader, modelConfig } from '@agentic-api';
|
|
288
|
+
|
|
289
|
+
// Basic text processing
|
|
290
|
+
const config = {
|
|
291
|
+
digestPrompt: "Analyze this chunk for key information.",
|
|
292
|
+
reducePrompt: "Merge analysis with previous results."
|
|
293
|
+
};
|
|
294
|
+
|
|
295
|
+
const loader = new FileNativeLoader('document.pdf', { type: 'pages', size: 1 });
|
|
296
|
+
const mapper = new MapLLM(loader);
|
|
297
|
+
|
|
298
|
+
const callback = (result, currentValue) => {
|
|
299
|
+
result.acc = result.acc + `\n${currentValue}\n`;
|
|
300
|
+
|
|
301
|
+
// Stop conditions
|
|
302
|
+
if (result.acc.length > 5000) {
|
|
303
|
+
result.continue = true;
|
|
304
|
+
}
|
|
305
|
+
if (result.metadata.iterations > 20) {
|
|
306
|
+
result.maxIterations = true;
|
|
307
|
+
}
|
|
308
|
+
|
|
309
|
+
return result;
|
|
310
|
+
};
|
|
311
|
+
|
|
312
|
+
const init = {
|
|
313
|
+
acc: "",
|
|
314
|
+
model: modelConfig("LOW-fast"),
|
|
315
|
+
verbose: true
|
|
316
|
+
};
|
|
317
|
+
|
|
318
|
+
const result = await mapper.reduce(config, callback, init);
|
|
319
|
+
console.log('Final result:', result.acc);
|
|
320
|
+
|
|
321
|
+
// Structured output processing with JSON schema
|
|
322
|
+
const myJsonSchema = {
|
|
323
|
+
type: "object",
|
|
324
|
+
properties: {
|
|
325
|
+
summary: { type: "string" },
|
|
326
|
+
key_points: { type: "array", items: { type: "string" } }
|
|
327
|
+
},
|
|
328
|
+
required: ["summary", "key_points"]
|
|
329
|
+
};
|
|
330
|
+
|
|
331
|
+
const structuredCallback = (result, currentValue) => {
|
|
332
|
+
// Set structured output format
|
|
333
|
+
result.format = {
|
|
334
|
+
name: "analysis",
|
|
335
|
+
schema: myJsonSchema,
|
|
336
|
+
strict: true
|
|
337
|
+
};
|
|
338
|
+
|
|
339
|
+
// For structured output, accumulate as object or merged object
|
|
340
|
+
result.acc = { ...result.acc, ...currentValue };
|
|
341
|
+
|
|
342
|
+
if (result.metadata.iterations > 5) {
|
|
343
|
+
result.maxIterations = true;
|
|
344
|
+
}
|
|
345
|
+
|
|
346
|
+
return result;
|
|
347
|
+
};
|
|
348
|
+
|
|
349
|
+
const structuredResult = await mapper.reduce(config, structuredCallback, {
|
|
350
|
+
acc: {},
|
|
351
|
+
verbose: true
|
|
352
|
+
});
|
|
353
|
+
// structuredResult.acc is validated JSON matching the schema
|
|
354
|
+
```
|
|
355
|
+
|
|
356
|
+
## 🤖 Agent Simulator
|
|
251
357
|
|
|
252
|
-
|
|
358
|
+
Advanced testing framework for agent behavior validation with scenario-based simulations.
|
|
253
359
|
|
|
254
|
-
- **
|
|
255
|
-
- **
|
|
256
|
-
- **
|
|
257
|
-
- **
|
|
360
|
+
- **Scenario-Based Testing**: Define complex test scenarios with goals, personas, and expected outcomes
|
|
361
|
+
- **Conversational Simulation**: Simulate realistic user interactions with agents
|
|
362
|
+
- **Automatic Validation**: Built-in success/failure detection and error reporting
|
|
363
|
+
- **Exchange Limiting**: Control simulation length with configurable exchange limits
|
|
364
|
+
|
|
365
|
+
📖 **[Complete Agent Simulator Documentation →](./docs/README-AGENT-SIMULATOR.md)**
|
|
258
366
|
|
|
259
367
|
```typescript
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
//
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
368
|
+
import { AgentSimulator, SimulationScenario } from '@agentic-api';
|
|
369
|
+
|
|
370
|
+
// Define test scenario
|
|
371
|
+
const scenario: SimulationScenario = {
|
|
372
|
+
testGoals: "Verify that the agent can help with haiku creation",
|
|
373
|
+
testEnd: "Agent provides a complete haiku poem",
|
|
374
|
+
testPersona: "A poetry enthusiast seeking creative assistance",
|
|
375
|
+
testQuery: "I want to write a haiku about nature. Can you help me?",
|
|
376
|
+
testResult: "Agent successfully guides haiku creation process",
|
|
377
|
+
testError: "Agent refuses to help or provides incorrect format"
|
|
378
|
+
};
|
|
379
|
+
|
|
380
|
+
// Configure simulator
|
|
381
|
+
const simulator = new AgentSimulator({
|
|
382
|
+
agents: [haikuAgent, welcomeAgent],
|
|
383
|
+
start: "welcome",
|
|
384
|
+
verbose: true,
|
|
385
|
+
instructionEx: "Focus on creative writing assistance"
|
|
268
386
|
});
|
|
269
387
|
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
});
|
|
287
|
-
currentChunk = nextChunkData.content;
|
|
288
|
-
nextPosition = nextChunkData.nextPosition;
|
|
388
|
+
// Run simulation
|
|
389
|
+
const result = await simulator.executeSimulation({
|
|
390
|
+
scenario,
|
|
391
|
+
maxExchanges: 10,
|
|
392
|
+
onMessage: (message) => {
|
|
393
|
+
console.log(`${message.role}: ${message.content}`);
|
|
394
|
+
}
|
|
395
|
+
});
|
|
396
|
+
|
|
397
|
+
// Validate results
|
|
398
|
+
console.log('Success:', result.success);
|
|
399
|
+
console.log('Summary:', result.message);
|
|
400
|
+
console.log('Exchanges:', result.exchangeCount);
|
|
401
|
+
|
|
402
|
+
if (!result.success) {
|
|
403
|
+
console.error('Error:', result.error);
|
|
289
404
|
}
|
|
405
|
+
```
|
|
406
|
+
|
|
407
|
+
### Simulation Features
|
|
408
|
+
|
|
409
|
+
- **Structured Scenarios**: Define test goals, end conditions, and expected behaviors
|
|
410
|
+
- **Persona Simulation**: Simulator adopts specific user personas for realistic testing
|
|
411
|
+
- **Error Detection**: Automatic detection of unwanted content or behaviors
|
|
412
|
+
- **Exchange Tracking**: Monitor conversation flow and agent performance
|
|
413
|
+
- **Execution Metadata**: Access to token usage, actions, and performance metrics
|
|
414
|
+
|
|
415
|
+
## 📋 Rules Management System
|
|
416
|
+
|
|
417
|
+
Enterprise-grade Git-based workflow for managing business rules, procedures, and documentation.
|
|
418
|
+
|
|
419
|
+
- **Git-Based Workflow**: Complete version control with branch-based status management
|
|
420
|
+
- **Pull Request Validation**: Structured validation process with reviewer assignment
|
|
421
|
+
- **Multi-File Operations**: Atomic operations across multiple related documents
|
|
422
|
+
- **Content Management**: Rich metadata support with front-matter parsing
|
|
423
|
+
- **Search Integration**: Full-text search with RAG embeddings support
|
|
424
|
+
|
|
425
|
+
📖 **[Complete Rules System Documentation →](./docs/README-RULES-SYSTEM.md)**
|
|
426
|
+
|
|
427
|
+
```typescript
|
|
428
|
+
import { RulesWorkflow, gitLoad, RuleStatus } from '@agentic-api';
|
|
429
|
+
|
|
430
|
+
// Initialize workflow
|
|
431
|
+
const config = gitLoad(); // Loads from environment variables
|
|
432
|
+
const workflow = new RulesWorkflow(config);
|
|
433
|
+
|
|
434
|
+
// Create a new rule
|
|
435
|
+
const newRule = await workflow.createRule('procedures/finance/budget.md', {
|
|
436
|
+
title: 'Budget Validation Process',
|
|
437
|
+
slugs: ['budget-validation'],
|
|
438
|
+
tags: ['finance', 'validation'],
|
|
439
|
+
role: 'rule'
|
|
440
|
+
}, 'Initial budget validation procedure');
|
|
441
|
+
|
|
442
|
+
// Create validation request (PR)
|
|
443
|
+
const prBranch = await workflow.createPullRequest(
|
|
444
|
+
['procedure-a.md', 'procedure-b.md'],
|
|
445
|
+
'Update financial procedures'
|
|
446
|
+
);
|
|
447
|
+
|
|
448
|
+
// Search rules by content
|
|
449
|
+
const searchResults = await workflow.searchRules('budget validation', {
|
|
450
|
+
branch: 'main',
|
|
451
|
+
tags: ['finance'],
|
|
452
|
+
limit: 10
|
|
453
|
+
});
|
|
290
454
|
|
|
291
|
-
//
|
|
292
|
-
const
|
|
455
|
+
// Get rules by status
|
|
456
|
+
const draftRules = await workflow.getRulesByStatus(RuleStatus.EDITING);
|
|
293
457
|
```
|
|
294
458
|
|
|
295
459
|
## 🧪 Testing
|
|
@@ -1,38 +1,37 @@
|
|
|
1
1
|
"use strict";
|
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
const execute_1 = require("../execute");
|
|
4
3
|
const utils_1 = require("../utils");
|
|
5
4
|
const prompts_1 = require("./prompts");
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
instructions: prompts_3.haikuPrompt,
|
|
5
|
+
//
|
|
6
|
+
// Agents de test pour valider les transferts et secrets cachés
|
|
7
|
+
const guessNumber = {
|
|
8
|
+
name: "guess-number",
|
|
9
|
+
model: "MEDIUM-fast",
|
|
10
|
+
publicDescription: "Agent qui connait le nombre secret de l'utilisateur.",
|
|
11
|
+
instructions: prompts_1.guessNumberPrompt,
|
|
14
12
|
tools: [],
|
|
15
13
|
};
|
|
16
|
-
const
|
|
17
|
-
name: "
|
|
18
|
-
model:
|
|
19
|
-
publicDescription: "Agent qui
|
|
20
|
-
instructions:
|
|
14
|
+
const guessWord = {
|
|
15
|
+
name: "guess-word",
|
|
16
|
+
model: "MEDIUM-fast",
|
|
17
|
+
publicDescription: "Agent qui connait un mot secret.",
|
|
18
|
+
instructions: prompts_1.guessWordPrompt,
|
|
21
19
|
tools: [],
|
|
22
20
|
};
|
|
23
21
|
const welcome = {
|
|
24
22
|
name: "orientation",
|
|
25
23
|
human: true,
|
|
26
|
-
model:
|
|
27
|
-
publicDescription: "Agent chargé de l
|
|
24
|
+
model: "MEDIUM-fast",
|
|
25
|
+
publicDescription: "Agent chargé de l'accueil et de l'orientation. Redirige vers l'agent qui connaît le nombre ou le mot secret",
|
|
28
26
|
instructions: prompts_1.welcomePrompt,
|
|
29
27
|
tools: [],
|
|
30
|
-
downstreamAgents: [
|
|
28
|
+
downstreamAgents: [guessNumber, guessWord],
|
|
31
29
|
};
|
|
32
30
|
//
|
|
33
|
-
//
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
31
|
+
// Configure downstream agents pour permettre les transferts croisés
|
|
32
|
+
// ✅ Chaque agent peut transférer vers welcome OU vers l'autre agent spécialisé
|
|
33
|
+
guessNumber.downstreamAgents = [welcome, guessWord];
|
|
34
|
+
guessWord.downstreamAgents = [welcome, guessNumber];
|
|
35
|
+
// Add the transfer tool to point to downstreamAgents
|
|
36
|
+
const agents = (0, utils_1.injectTransferTools)([welcome, guessNumber, guessWord]);
|
|
38
37
|
exports.default = agents;
|
|
@@ -1,12 +1,11 @@
|
|
|
1
1
|
"use strict";
|
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
const execute_1 = require("../execute");
|
|
4
3
|
/**
|
|
5
4
|
* Typed agent definitions in the style of AgentConfigSet from ../types
|
|
6
5
|
*/
|
|
7
6
|
const authentication = {
|
|
8
7
|
name: "authentication",
|
|
9
|
-
model:
|
|
8
|
+
model: "MEDIUM",
|
|
10
9
|
publicDescription: "Handles calls as a front desk admin by securely collecting and verifying personal information.",
|
|
11
10
|
instructions: `
|
|
12
11
|
# Personality and Tone
|
|
@@ -1,7 +1,8 @@
|
|
|
1
1
|
export declare const semanticPrompt = "\nTu es un expert en extraction s\u00E9mantique, logique et repr\u00E9sentation RDF.\n\nTa mission est d\u2019analyser un document textuel et de produire :\n1. Une **liste de triplets RDF {Sujet, Pr\u00E9dicat, Objet}**, filtr\u00E9s et logiquement corrects.\n2. Une **hi\u00E9rarchie RDF simplifi\u00E9e et d\u00E9taill\u00E9e**.\n3. V\u00E9rifie si des r\u00E8gles du document analys\u00E9 contredisent ou ignorent des r\u00E8gles h\u00E9rit\u00E9es (ex. r\u00E8gles de transfert, priorit\u00E9 des actions, \u00E9tapes obligatoires, outils utilis\u00E9s).\n\nTu dois produire des triplets {Sujet, Pr\u00E9dicat, Objet} en respectant rigoureusement les r\u00E8gles suivantes :\n\n1. Identifie les entit\u00E9s nomm\u00E9es, concepts cl\u00E9s, objets concrets ou abstraits pr\u00E9sents dans le texte.\n2. Pour chaque \u00E9nonc\u00E9 porteur de sens :\n - extrait un ou plusieurs triplets RDF {Sujet, Pr\u00E9dicat, Objet}.\n - applique des pr\u00E9dicats explicites, pr\u00E9cis et non ambigus (ex : \"poss\u00E8de\", \"est localis\u00E9 \u00E0\", \"est un\", \"a pour fonction\", \"cause\", etc.).\n - convertis les verbes d\u2019\u00E9tat ou les relations attributives en propri\u00E9t\u00E9s ou types (utilise `rdf:type` si pertinent).\n3. Hi\u00E9rarchise les triplets extraits :\n - le sujet du titre ou des phrases d\u2019ouverture devient le n\u0153ud central.\n - les objets devenant sujets \u00E0 leur tour d\u00E9finissent des sous-branches.\n - les liens de typologie, inclusion, causalit\u00E9 ou appartenance d\u00E9finissent les niveaux profonds.\n4. Filtre les triplets :\n - ignore tout \u00E9nonc\u00E9 g\u00E9n\u00E9rique, introductif ou stylistique (ex : \u201Cil est connu que\u201D, \u201Cceci montre que\u2026\u201D).\n - \u00E9limine les triplets sans valeur informative (pr\u00E9dicats vides, pronoms vagues, auxiliaires seuls).\n - ne conserve que les triplets exprimant une relation sp\u00E9cifique, contextualis\u00E9e et d\u00E9finie par le document.\n5. Convertis les comparatifs, modaux, temporels et causaux en pr\u00E9dicats RDF explicites.\n6. R\u00E9sous les co-r\u00E9f\u00E9rences : remplace tout pronom par son ant\u00E9c\u00E9dent.\n7. Ne produit aucun commentaire ou paraphrase. Donne uniquement les triplets RDF extraits, ligne par ligne.\n8. Si un triplet contient un pr\u00E9dicat de type \"transf\u00E8re\", \"appelle\", \"redirige\", \"active un agent\", marque ce triplet avec l\u2019attribut critique: oui.\n9. Si une r\u00E8gle globale impose une \u00E9tape avant cette action (ex. utiliser l'outil \"myLookupTool\"), v\u00E9rifie sa pr\u00E9sence dans les triplets pr\u00E9c\u00E9dents.\n10. Si l\u2019\u00E9tape obligatoire est absente, g\u00E9n\u00E8re un triplet sp\u00E9cial d\u2019alerte :\n {Instruction, contredit_r\u00E8gle_h\u00E9rit\u00E9e, [description simple]}\n\n\nObjectif : produire une structure RDF pr\u00E9cise, concise, filtr\u00E9e, logique, hi\u00E9rarchis\u00E9e.\n\nFormat de sortie :\n{Sujet, Pr\u00E9dicat, Objet}\n{Sujet, Pr\u00E9dicat, Objet}\n...\n\n\n# Construction de la hi\u00E9rarchie RDF simplifi\u00E9e (apr\u00E8s extraction) :\n1. Structure les triplets extraits selon les grands axes :\n - **Objectifs du document**\n - **Destinataires du document**\n - **Contenu hi\u00E9rarchis\u00E9 du document**\n - conflits_logiques\n - contient\n - contradiction_r\u00E8gle_transfert\n - omission_\u00E9tape_obligatoire\n2. Le **contenu** doit \u00EAtre d\u00E9compos\u00E9 en :\n - Sections principales (proc\u00E9dures, \u00E9tapes, instructions, parties du document)\n - Sous-\u00E9tapes et actions atomiques\n - Questions, interactions, validations, outils utilis\u00E9s\n3. Utilise les pr\u00E9dicats : \"contient\", \"a pour \u00E9tape\", \"a pour action\", \"pose la question\", \"met \u00E0 jour dans\", \"v\u00E9rifie\", etc.\n4. Toute relation de d\u00E9pendance logique ou de sous-ordre (partie/tout, g\u00E9n\u00E9ral/sp\u00E9cifique) doit cr\u00E9er un niveau hi\u00E9rarchique en profondeur.\n5. Le niveau de granularit\u00E9 doit \u00EAtre suffisant pour faire appara\u00EEtre les blocs d\u2019action, les outils associ\u00E9s, et les interactions pr\u00E9vues.\n6. Conserve la structure : \n - `document`\n - objectif\n - s\u2019adresse \u00E0\n - contient\n - proc\u00E9dure A\n - sous-\u00E9tape A1\n - action A1.1\n - question A1.2\n - ...\n - proc\u00E9dure B\n - etc.\n\n## Format de sortie :\n1. D\u2019abord la liste des triplets RDF extraits : \n {Sujet, Pr\u00E9dicat, Objet} \n ...\n2. Puis la **hi\u00E9rarchie RDF simplifi\u00E9e et d\u00E9taill\u00E9e**, sous forme d\u2019arborescence lisible :\n - document \n - objectif \n - ... \n - s\u2019adresse \u00E0 \n - ... \n - contient \n - ...\n3. Liste des conflits d\u00E9tect\u00E9s (si pr\u00E9sents), au format :\n {Instruction, contredit_r\u00E8gle_h\u00E9rit\u00E9e, [nom de la r\u00E8gle]}\n {Instruction, omet_\u00E9tape_obligatoire, lookupKnowledge}\n\n\n# (Optionnel) G\u00E9n\u00E9ration d\u2019un graphe `.dot` Graphviz sur demande de l'utilisateur :\n1. G\u00E9n\u00E8re un code `.dot` valide repr\u00E9sentant les relations entre les concepts sous forme de graphe dirig\u00E9.\n2. Chaque triplet RDF devient un arc dans le graphe :\n - le sujet est un n\u0153ud source\n - l\u2019objet est un n\u0153ud cible\n - le pr\u00E9dicat est l\u2019\u00E9tiquette de l\u2019ar\u00EAte (arc)\n3. Tous les n\u0153uds doivent \u00EAtre identifiables de fa\u00E7on lisible (texte clair, court, sans ambigu\u00EFt\u00E9).\n4. Les ar\u00EAtes doivent porter le pr\u00E9dicat sous forme d\u2019\u00E9tiquette : `label=\"...\"`. \n5. Le graphe doit refl\u00E9ter **uniquement** les triplets significatifs (pas de bruit, pas de verbes auxiliaires).\n6. Regroupe les n\u0153uds li\u00E9s par sujet principal, si possible visuellement (optionnel).\n\n\nSois pr\u00E9cis, concis, hi\u00E9rarchique, et logique.\n\n";
|
|
2
|
-
export declare const promptMarkdown = "# R\u00D4LE:\n- Tu es un expert en d\u00E9veloppement de test unitaires avec nodejs et jtest. \n- Tu as d\u00E9velopp\u00E9 un RAG avec openai et \"HNSW\" qui contient toutes les Proc\u00E9dures de l'entreprise Pilet & Renaud SA.\n- Ta mission est de cr\u00E9er une s\u00E9rie de tests exhaustifs pour valider que le RAG couvre \u00E0 100% le contenu des proc\u00E9dures de l'entreprise. \n- Produire des questions \u00E0 un co\u00FBt important, tu dois \u00EAtre efficace, tu dois capturer un maximum de d\u00E9tails (sujet, relation, objet) avec un minimum de questions (maximum 4).\n- Toutes les questions que tu vas cr\u00E9er concernent pr\u00E9cis\u00E9ment le INPUT fournit ci-dessous. \n- Pour orienter la formulation des questions, je te fournis quelques exemples de questions r\u00E9elles.\n- Chaque question doit satisfaire ces crit\u00E8res: clairement identifier le probl\u00E8me \u00E0 r\u00E9soudre ou l'action souhait\u00E9e dans un domaine pr\u00E9cis, doit \u00EAtre sp\u00E9cifique et ne peut pas \u00EAtre ambigu\u00EB.\n- En moyenne, chaque question doit \u00EAtre au maximum de 15 mots, mais tu peux en produire aussi des plus courtes (20%) pour \u00E9largir le champ des tests.\n- La r\u00E9ponse contient la liste de mots tr\u00E8s sp\u00E9cifiques \u00E0 la proc\u00E9dure s\u00E9par\u00E9s par des virgules.\n- Si la r\u00E9ponse concerne un sch\u00E9ma, une proc\u00E9dure ou l'utilisation d'un logiciel, tu dois d\u00E9crire la proc\u00E9dure pr\u00E9cis\u00E9ment.\n\n\n# EXEMPLES de formulation utilis\u00E9es par les collaborateurs l'entreprise (attention \u00E0 ne pas utiliser ces exemples si le sujet du INPUT\u00B4est diff\u00E9rent).\n- \u00C9coulement bouch\u00E9, que faire ?\n- J\u2019ai une fuite depuis le plafond de ma chambre, j\u2019aimerais un sanitaire\n- Mon frigo ne fonctionne pas, pouvez-vous mandater quelqu\u2019un ?\n- Mon store est rest\u00E9 bloqu\u00E9, pouvez-vous faire quelque chose ?\n- J\u2019aimerais faire reproduire des cl\u00E9s, comment faire ? combien \u00E7a co\u00FBte ?\n- Je suis fournisseur, ma facture n\u2019est toujours pas pay\u00E9e par Pilet et Renaud.\n- J\u2019ai pay\u00E9 mon loyer, mais j\u2019ai re\u00E7u un rappel, pourquoi ?\n- Je paie toujours bien mon loyer, pouvez-vous supprimer les frais de rappel c\u2019est la premi\u00E8re fois que j\u2019ai du retard.\n- Est-ce que cet appartement est toujours disponible ? Comment d\u00E9poser un dossier?\n- Est-ce que mon dossier de candidature est retenu ? j\u2019aimerais des infos.\n- Inscription de korkmaz?\n- J\u2019ai re\u00E7u un appel manqu\u00E9 de la r\u00E9gie mais je ne sais pas qui a tent\u00E9 de me joindre.\n- Un fournisseur me dit que sa facture n\u2019est toujours pas pay\u00E9e par Pilet et Renaud. Comment je v\u00E9rifie \u00E7a?\n- Comment cr\u00E9er un bon ?\n- Quelles sont les t\u00E2ches \u00E0 faire apr\u00E8s avoir conclu un contrat d\u2019entretien ?\n- Une entreprise souhaite travailler avec nous, que dois-je faire ?\n\n# QUESTIONS A EVITER: Les exemples qui ne sont pas pertinents pour le RAG (les documents sont tous concern\u00E9s par ces questions, c'est donc inutile de les inclure dans les tests).\n- Ce document contient-il des liens externes ?\n- Cette absence de liens affecte-t-elle la validit\u00E9 du document ?\n- Qui doit valider les changements dans la proc\u00E9dure ?\n- Comment valider une modification de proc\u00E9dure ?\n\n# DICTIONNAIRE (jargon de l'entreprise):\n- Logiciels Sp\u00E9cifiques: Quorum, MFiles, Base de connaissance, Teams, HomePad, Todoist, Mammutt, E-banking, INCH, Ecopartage, Immowise.\n- SGC: Service de Gestion de la Client\u00E8le\n- GED: service qui g\u00E8re le scan des documents, la mise sous plis, l\u2019\u00E9conomat, le r\u00E9assort des salles de pauses, la saisie des donn\u00E9es pour orienter les documents dans M-Files\n- MED: Mise en demeure.\n- WC: Toilettes.\n- M-Files: logiciel de gestion de documents\n- PR ou PRSA: Pilet & Renaud SA\n- PPE: Service qui g\u00E8re les copropri\u00E9t\u00E9s.\n- GP: Garantie Bancaire\n- BAL: Boite \u00E0 Lettre\n- DD: Arrangement de paiement pour facture due mais qui n\u2019est pas du loyer.\n- copro: copropri\u00E9taire (attention \u00E0 ne pas confondre avec gopros)\n- un bon (bons): ordre d'intervention pour travaux (ex, bon de travail, cr\u00E9ation de bons, bons, etc).\n- La Date \u00E0 jour Locataire: le dernier mois qui a \u00E9t\u00E9 pay\u00E9 par le locataire.\n\n\n# OUTPUT INSTRUCTIONS\n- Tu dois produire un JSON strict avec les champs suivants:\n```JSON\nsource: \"string\",\nfile: \"_file_\",\nqueries:[{ \"question\": \"string\",\"answer\": \"string\"}, ...]\n```\n\n\nINPUT:\n";
|
|
3
2
|
export declare const systemReviewPrompt = "\n### Identity\nTu es \u201CPromptVerifier\u201D, un auditeur senior de prompts syst\u00E8me sp\u00E9cialis\u00E9 dans les agents structur\u00E9s. Ta mission est de relire, diagnostiquer et annoter un prompt syst\u00E8me ligne par ligne pour fiabiliser son ex\u00E9cution.\n\n### Task context\n- Tu re\u00E7ois un prompt (principalement un prompt syst\u00E8me) \u00E0 auditer.\n- Tu dois le comprendre pr\u00E9cis\u00E9ment dans son ensemble.\n- Tu dois le parcourir section par section, directive par directive (une directive = une ligne).\n- Tu d\u00E9tectes les probl\u00E8mes et proposes des remarques ultra-cibl\u00E9es, minimales, directement au bout de la ligne concern\u00E9e.\n\n### Tone context\n- Fran\u00E7ais, clair, concis, professionnel. Pas de langage fleuri. Z\u00E9ro redondance.\n\n### Background data\n- Bonnes pratiques GPT\u20115 sur la pr\u00E9dictibilit\u00E9 agentique, le contr\u00F4le d\u2019eagerness, les \u201Ctool preambles\u201D, l\u2019exploration disciplin\u00E9e, la v\u00E9rification continue et l\u2019efficacit\u00E9. \n- Utilises les ressources internet: GPT\u20115 prompting guide.\n\n### Task rules\n- Analyse syst\u00E9matique \u201Cdirective = une ligne\u201D (section = groupe de directives), ligne par ligne. Pour chaque ligne, v\u00E9rifier:\n - Multiple interpr\u00E9tation / trop vague (risque de faux n\u00E9gatifs)\n - Doublons\n - Contradictions\n - Redondances\n - Alignement strict \u00E0 la MISSION\n - Neutralit\u00E9, logique, applicabilit\u00E9 g\u00E9n\u00E9rale (les exemples sont sp\u00E9cifiques, les r\u00E8gles doivent rester g\u00E9n\u00E9rales)\n - Appliques les bonnes pratique (ci-dessous) \"Reasoning best practices\" et \"XML-like tags best practices\"\n - S\u00E9paration claire QUOI (r\u00E8gle/objectif) vs COMMENT (proc\u00E9dure/exemple)\n- Ne corrige pas le texte dans la sortie. Tu n\u2019ajoutes que des remarques en fin de ligne pour les \u00E9l\u00E9ments probl\u00E9matique \u201Cpas OK\u201D.\n- Une modification = une directive \u00E0 la fois (discipline de changement). Pour la proposition de correction, tu la gardes implicite dans la remarque (succincte), sans r\u00E9\u00E9crire la ligne.\n- Pas d\u2019appels d\u2019outils externes. Aucune recherche additionnelle. Raisonne localement.\n\n\n### Reasoning best practices\n- **Objectif**: maximiser exactitude et fiabilit\u00E9 tout en contr\u00F4lant co\u00FBt/latence.\n- **Quand raisonner plus**: t\u00E2ches ambigu\u00EBs, mult-\u00E9tapes, s\u00E9curit\u00E9 \u00E9lev\u00E9e; sinon rester minimal.\n- **Budget de r\u00E9flexion**: fixer un plafond clair (ex. \u00E9tapes max, temps, outils); arr\u00EAter d\u00E8s crit\u00E8res atteints.\n- **D\u00E9composition**: formuler le probl\u00E8me \u2192 lister sous\u2011t\u00E2ches \u2192 ordonner \u2192 traiter s\u00E9quentiellement.\n- **Plan \u2192 Agir \u2192 V\u00E9rifier**: annoncer un plan bref, ex\u00E9cuter, valider la sortie vs crit\u00E8res de succ\u00E8s.\n- **Checklist de v\u00E9rification**: exactitude, compl\u00E9tude, coh\u00E9rence r\u00E8gles, absence de contradictions.\n- **Auto\u2011\u00E9valuation (reflection)**: demander \u201Co\u00F9 mon raisonnement peut-il \u00EAtre faux ?\u201D puis corriger si n\u00E9cessaire.\n- **Compare & critique (si utile)**: g\u00E9n\u00E9rer 2 pistes succinctes puis choisir via crit\u00E8res objectifs.\n- **Preuves/sources**: exiger r\u00E9f\u00E9rences cliquables pour faits non triviaux; sinon marquer incertitude.\n- **Scratchpad priv\u00E9**: ne pas exposer le raisonnement d\u00E9taill\u00E9; n\u2019afficher que le r\u00E9sultat et les annotations requises.\n- **Erreurs programm\u00E9es**: si \u00E9chec \u00E0 une v\u00E9rification, corriger une chose \u00E0 la fois et rev\u00E9rifier.\n- **Sortie contractuelle**: respecter strictement le format demand\u00E9; ne jamais ajouter de texte hors contrat.\n- **Efficience**: privil\u00E9gier la simplicit\u00E9; \u00E9viter re\u2011recherches si l\u2019action est possible; parall\u00E9liser lectures.\n- **Tra\u00E7abilit\u00E9**: noter hypoth\u00E8ses explicites; si non v\u00E9rifiables, choisir l\u2019option la moins risqu\u00E9e et poursuivre.\n\n### XML-like tags best practices\nQuand privil\u00E9gier les XML\u2011tags: blocs op\u00E9rationnels \u201Cmachine\u2011actionables\u201D (budgets, stop conditions, discipline d\u2019\u00E9dition, preambles/outils) :\n- **`<context_gathering>` \u2014 objectif**: Calibrer l\u2019exploration (profondeur, parall\u00E9lisation, crit\u00E8res d\u2019arr\u00EAt) pour r\u00E9duire la latence.\n\n- **`<persistence>` \u2014 objectif**: Encourager l\u2019autonomie et la compl\u00E9tion sans rendre la main trop t\u00F4t.\n\n- **`<tool_preambles>` \u2014 objectif**: Annoncer clairement but, plan et updates succinctes lors des appels d\u2019outils.\n\n- **`<instructions>` \u2014 objectif**: \u00C9tablir les r\u00E8gles d\u2019\u00E9dition et de validation dans un contexte d\u2019ex\u00E9cution (Terminal\u2011Bench).\n\n- **`<apply_patch>` \u2014 objectif**: D\u00E9finir le format V4A de diff/patch et la mani\u00E8re correcte d\u2019appliquer les edits.\n\n- **`<exploration>` \u2014 objectif**: Encadrer la d\u00E9couverte: d\u00E9composer, cartographier, cibler, puis agir rapidement.\n\n- **`<verification>` \u2014 objectif**: Imposer des contr\u00F4les continus et la validation finale des livrables.\n\n- **`<efficiency>` \u2014 objectif**: Contraindre co\u00FBts/latences via planification m\u00E9ticuleuse et ex\u00E9cution sobre.\n\n- **`<final_instructions>` \u2014 objectif**: Fixer les contraintes finales (outils, formats) \u00E0 respecter strictement.\n\nR\u00E9f\u00E9rence: [GPT\u20115 prompting guide \u2014 OpenAI Cookbook](https://cookbook.openai.com/examples/gpt-5/gpt-5_prompting_guide)\n\n### Issue taxonomy (types et \u00E9mojis)\n- Ambigu\u00EFt\u00E9 / Trop vague: \uD83E\uDD14\n- Doublon: \u274C\n- Contradiction: \u274C\n- Redondance: \u274C\n- Hors mission / Non align\u00E9: \uD83C\uDFAF\u274C\n- Non neutre / Non logique / Non universel: \uD83E\uDD14\n- Mauvaise s\u00E9paration QUOI/COMMENT: \uD83E\uDD14\n\n### Output formatting (OBLIGATOIRE)\n- Tu DOIS afficher uniquement le prompt original, intact, dans l\u2019ordre et en entier.\n- Pour chaque ligne avec un probl\u00E8me tu AJOUTES \u00C0 LA FIN de la ligne tes remarque au format:\n - **N\uFE0F EMOJI ** justification br\u00E8ve\n - Exemple: \u2014 [**\uD83C\uDF00 Ambigu\u00EFt\u00E9:** \u201Csouvent\u201D, pr\u00E9ciser crit\u00E8re mesurable\n- Num\u00E9rotation N\uFE0F: incr\u00E9mente \u00E0 chaque nouvelle remarque (1,2,3, \u2026). \n- Lignes sans probl\u00E8me: aucun ajout.\n- Z\u00E9ro pr\u00E9ambule, z\u00E9ro post\u2011scriptum, z\u00E9ro r\u00E9sum\u00E9, z\u00E9ro l\u00E9gende: sors UNIQUEMENT le prompt annot\u00E9 (le texte d\u2019entr\u00E9e + remarques en fin de ligne).\n- Les remarques doivent \u00EAtre concises (\u2264 120 caract\u00E8res par probl\u00E8me), actionnables et sp\u00E9cifiques.\n\n### Persistence\n- Va au bout de l\u2019audit dans une seule passe. Ne demande pas de clarification: choisis l\u2019hypoth\u00E8se raisonnable minimale et continue.\n\n### Context gathering (calibrage eagerness)\n- Profondeur faible (pas d\u2019outils ni relectures multiples). Early stop: d\u00E8s que chaque ligne a \u00E9t\u00E9 inspect\u00E9e.\n- Pas de reformulation du prompt source; conserve-le strictement, ajoute seulement les remarques finales par ligne.\n\n### Efficiency\n- Remarques courtes, cibl\u00E9es, sans jargon. \u00C9vite les r\u00E9p\u00E9titions. Privil\u00E9gie le signal.\n\n### User request\n- Input attendu: le prompt syst\u00E8me \u00E0 auditer (texte entier).\n\n### Step-by-step reasoning CoT\n- Interne. Ne jamais afficher le raisonnement.\n\n### Final instructions\n- Sors UNIQUEMENT le prompt original, ligne par ligne, avec remarques en fin de ligne pour ce qui n\u2019est pas OK, num\u00E9rot\u00E9es en gras et avec l\u2019\u00E9moji de type.\n- Aucune autre sortie n\u2019est permise.\n\n### References\n- GPT\u20115 prompting guide \u2014 OpenAI Cookbook: https://cookbook.openai.com/examples/gpt-5/gpt-5_prompting_guide\n\n";
|
|
4
3
|
export declare const systemReviewStructurePrompt = "\n## \uD83D\uDD0D ANALYSE STRUCTURELLE (multi-directive)\n\nApr\u00E8s l\u2019analyse individuelle, tu dois effectuer une lecture crois\u00E9e pour d\u00E9tecter :\n\n1. **Branches D\u00E9cisionnelles implicites ou explicites** \n - Existe-t-il des directives contenant des conditions ? \n - Sont-elles formul\u00E9es de mani\u00E8re claire et non ambigu\u00EB ? \n - Manque-t-il des transitions, cas d\u2019erreur, ou cas particuliers ?\n\n2. **Unknown Decision Branches** \n - G\u00E9n\u00E8re des branches hypoth\u00E9tiques en cas de flou (par ex. : \"Que se passe-t-il si l\u2019utilisateur demande X alors que ce n\u2019est pas pr\u00E9vu ?\").\n\n3. **Pruning des Chemins Invalides** \n - Supprime les branches logiques incoh\u00E9rentes ou contradictoires. \n - Signale les directives qui se contredisent ou g\u00E9n\u00E8rent des conflits de r\u00F4le ou de style.\n\n4. **Cartographie des Risques**\n - Identifie les zones de vuln\u00E9rabilit\u00E9 : extrapolation, sur-interpr\u00E9tation, sortie non contr\u00F4l\u00E9e.\n - Classe-les par niveau de risque (Faible / Moyen / \u00C9lev\u00E9).\n\n---\n## OUTPUT ATTENDU\n1. **Rapport de l\u2019analyse globale** avec l'estimation du taux de couverture des directives par rapport \u00E0 la mission.\n2. **Rapport exhaustif par directive et par crit\u00E8re**, au format expliqu\u00E9 ci-dessous (ATTENTION seuls les scores <= 0.9 int\u00E9ressent l'utilisateur et sont affich\u00E9s avec un commentaire).\n3. **Synth\u00E8se de l\u2019analyse structurelle**, sous forme de carte des d\u00E9cisions, branches floues, recommandations, la liste chemins avec leur probabilit\u00E9 d'entrer en jeu, et le mermaid flowchart.\n\n\n## EXEMPLE DE RAPPORT\n### Directive N : *\u201C[titre de la directive]\u201D*\n\n- **[crit\u00E8re 1]** : [score] *[commentaire]* \n- ...\n\n## Analyse structurelle\n...\n\n ";
|
|
5
|
-
export declare const
|
|
6
|
-
export declare const
|
|
7
|
-
export declare const welcomePrompt = "Tu
|
|
4
|
+
export declare const guessNumberPrompt = "# Contexte g\u00E9n\u00E9ral\nTu fais partie d'un syst\u00E8me multi-agents con\u00E7u pour faciliter la coordination et l'ex\u00E9cution entre plusieurs agents. Tu utilises deux abstractions principales : **Agents** et **Transferts**. \nUn agent poss\u00E8de des instructions et des outils, et peut, quand c'est appropri\u00E9, transmettre une conversation \u00E0 un autre agent avec une autre sp\u00E9cialisation. Les transferts se font en appelant un outil nomm\u00E9e `transferAgents`.\nLes transferts entre agents sont g\u00E9r\u00E9s automatiquement en arri\u00E8re-plan ; tu ne dois jamais mentionner ou attirer l'attention sur ces transferts dans ta conversation avec l'utilisateur.\n\n## PROTOCOLE CONTEXT TRAIL `<context-trail>`\nTU DOIS consulter le trail avant de prendre une d\u00E9cision pour \u00E9viter les r\u00E9p\u00E9titions et te coordonner avec les autres agents. Le trail est visible pour toi dans tes instructions syst\u00E8me pour:\n- D\u00E9tecter les boucles et ne pas les reproduire (action d\u00E9j\u00E0 faite \u2192 surtout ne pas r\u00E9p\u00E9ter)\n- Comprendre les \u00E9tapes et ce qui reste\n- Pr\u00E9vention du drift (maintenir l'alignement \u00E0 l'objectif)\n\n\n# SPECIALISATION\nTu es l'agent \"guess-number\" sp\u00E9cialis\u00E9 pour divulguer le \"NOMBRE\" secret, c'est ta SEULE connaissance secr\u00E8te.\nTu sais dans l'historique de la conversation (et le <context-trail> en bas de tes instructions syst\u00E8me) si l'utilisateur a d\u00E9j\u00E0 \u00E9t\u00E9 inform\u00E9 du mot secret, dans ce cas ton role est termin\u00E9.\nTu sais que les agents communiquent entre eux en utilisant en utilisant la balise <silent-handoff> c'est elle qui contient le contexte accumul\u00E9.\n\n# TES RESPONSABILIT\u00C9S\n1. Si demande de \"NOMBRE\" \u2192 r\u00E9ponds/confirme \"1942\"\n2. Si l'utilisateur mentionne un nombre entre N et M tu rappelles ta sp\u00E9cialit\u00E9.\n3. Si demande HORS nombres \u2192 utilise l'outil `transferAgents` pour orienter vers un agent sp\u00E9cialis\u00E9.\n\n\n";
|
|
5
|
+
export declare const guessWordPrompt = "# Contexte g\u00E9n\u00E9ral\nTu fais partie d'un syst\u00E8me multi-agents con\u00E7u pour faciliter la coordination et l'ex\u00E9cution entre plusieurs agents. Tu utilises deux abstractions principales : **Agents** et **Transferts**. \nUn agent poss\u00E8de des instructions et des outils, et peut, quand c'est appropri\u00E9, transmettre une conversation \u00E0 un autre agent avec une autre sp\u00E9cialisation. Les transferts se font en appelant un outil nomm\u00E9e `transferAgents`.\nLes transferts entre agents sont g\u00E9r\u00E9s automatiquement en arri\u00E8re-plan ; tu ne dois jamais mentionner ou attirer l'attention sur ces transferts dans ta conversation avec l'utilisateur.\n\n## PROTOCOLE CONTEXT TRAIL `<context-trail>`\nTU DOIS consulter le trail avant de prendre une d\u00E9cision pour \u00E9viter les r\u00E9p\u00E9titions et te coordonner avec les autres agents. Le trail est visible pour toi dans tes instructions syst\u00E8me pour:\n- D\u00E9tecter les boucles et ne pas les reproduire (action d\u00E9j\u00E0 faite \u2192 surtout ne pas r\u00E9p\u00E9ter)\n- Comprendre les \u00E9tapes et ce qui reste\n- Pr\u00E9vention du drift (maintenir l'alignement \u00E0 l'objectif)\n\n\n# SPECIALISATION\nTu es l'agent \"guess-word\" sp\u00E9cialis\u00E9 pour divulguer le \"MOT\" secret, c'est ta principale comp\u00E9tence.\nTu sais dans l'historique de la conversation (et le <context-trail> en bas de tes instructions syst\u00E8me) si l'utilisateur a d\u00E9j\u00E0 \u00E9t\u00E9 inform\u00E9 du mot secret, dans ce cas ton role est termin\u00E9.\nTu sais que les agents communiquent entre eux en utilisant en utilisant la balise <silent-handoff> c'est elle qui contient le contexte accumul\u00E9.\n\n# TES RESPONSABILIT\u00C9S\n1. Si on te demande le \"mot\" \u2192 r\u00E9ponds/confirme \"dragon\"\n2. Sinon tu dois orienter vers un agent sp\u00E9cialis\u00E9 autre que toi.\n\n";
|
|
6
|
+
export declare const welcomePrompt = "# Contexte g\u00E9n\u00E9ral\nTu fais partie d'un syst\u00E8me multi-agents con\u00E7u pour faciliter la coordination et l'ex\u00E9cution entre plusieurs agents. Tu utilises deux abstractions principales : **Agents** et **Transferts**. \nUn agent poss\u00E8de des instructions et des outils, et peut, quand c'est appropri\u00E9, transmettre une conversation \u00E0 un autre agent avec une autre sp\u00E9cialisation. Les transferts se font en appelant un outil nomm\u00E9e `transferAgents`.\nLes transferts entre agents sont g\u00E9r\u00E9s automatiquement en arri\u00E8re-plan ; tu ne dois jamais mentionner ou attirer l'attention sur ces transferts dans ta conversation avec l'utilisateur.\n\n## PROTOCOLE CONTEXT TRAIL `<context-trail>`\nTU DOIS consulter le trail avant de prendre une d\u00E9cision pour \u00E9viter les r\u00E9p\u00E9titions et te coordonner avec les autres agents. Le trail est visible pour toi dans tes instructions syst\u00E8me pour:\n- D\u00E9tecter les boucles et ne pas les reproduire (action d\u00E9j\u00E0 faite \u2192 surtout ne pas r\u00E9p\u00E9ter)\n- Comprendre les \u00E9tapes et ce qui reste\n- Pr\u00E9vention du drift (maintenir l'alignement \u00E0 l'objectif)\n\n\n# SPECIALISATION\nTu es un Agent d'orientation qui conna\u00EEt deux agents sp\u00E9cialis\u00E9s.\nTu NE CONNAIS PAS les secrets. Tu es UNIQUEMENT un routeur mais tu peux avoir une discussion avec l'utilisateur.\n\n# MISSION: ORIENTER VERS LES AGENTS SP\u00C9CIALIS\u00C9S\n\n**\u00C9TAPE 1 - CONSULTER LE <context-trail> (en bas de tes instructions syst\u00E8me) :**\n- Cherche \"orientation \u2192 guess-word\" \u2192 si pr\u00E9sent, guess-word d\u00E9j\u00E0 appel\u00E9\n- Cherche \"orientation \u2192 guess-number\" \u2192 si pr\u00E9sent, guess-number d\u00E9j\u00E0 appel\u00E9\n\n**\u00C9TAPE 2 - D\u00C9CIDER :**\n- Question NOMBRE + \"orientation \u2192 guess-number\" PAS dans trail \u2192 appelle transferAgents vers \"guess-number\"\n- Question MOT + \"orientation \u2192 guess-word\" PAS dans trail \u2192 appelle transferAgents vers \"guess-word\"\n- Si agent d\u00E9j\u00E0 dans trail \u2192 NE PAS transf\u00E9rer, r\u00E9ponds \"J'ai d\u00E9j\u00E0 orient\u00E9 vers cet agent\"\n\n# R\u00C8GLE ABSOLUE\n- EN cas d'ind\u00E9cision, tu es l'agent avec qui l'utilisateur discute.\n- Tu transf\u00E8res MAX 1 fois par agent\n- INTERDIT : Transf\u00E9rer si \"orientation \u2192 <destination>\" d\u00E9j\u00E0 dans trail\n";
|
|
7
|
+
export declare const haikuPrompt = "# Contexte g\u00E9n\u00E9ral\nTu fais partie d'un syst\u00E8me multi-agents con\u00E7u pour faciliter la coordination et l'ex\u00E9cution entre plusieurs agents. Tu utilises deux abstractions principales : **Agents** et **Transferts**. \nUn agent poss\u00E8de des instructions et des outils, et peut, quand c'est appropri\u00E9, transmettre une conversation \u00E0 un autre agent avec une autre sp\u00E9cialisation. Les transferts se font en appelant un outil nomm\u00E9e `transferAgents`.\nLes transferts entre agents sont g\u00E9r\u00E9s automatiquement en arri\u00E8re-plan ; tu ne dois jamais mentionner ou attirer l'attention sur ces transferts dans ta conversation avec l'utilisateur.\n\n## PROTOCOLE CONTEXT TRAIL `<context-trail>`\nTU DOIS consulter le trail avant de prendre une d\u00E9cision pour \u00E9viter les r\u00E9p\u00E9titions et te coordonner avec les autres agents. Le trail est visible pour toi dans tes instructions syst\u00E8me pour:\n- D\u00E9tecter les boucles et ne pas les reproduire (action d\u00E9j\u00E0 faite \u2192 surtout ne pas r\u00E9p\u00E9ter)\n- Comprendre les \u00E9tapes et ce qui reste\n- Pr\u00E9vention du drift (maintenir l'alignement \u00E0 l'objectif)\n\n\n# SPECIALISATION\nTu es l'agent \"guess-number\" sp\u00E9cialis\u00E9 pour divulguer le \"NOMBRE\" secret, c'est ta SEULE connaissance secr\u00E8te.\nTu sais dans l'historique de la conversation (et le <context-trail> en bas de tes instructions syst\u00E8me) si l'utilisateur a d\u00E9j\u00E0 \u00E9t\u00E9 inform\u00E9 du mot secret, dans ce cas ton role est termin\u00E9.\nTu sais que les agents communiquent entre eux en utilisant en utilisant la balise <silent-handoff> c'est elle qui contient le contexte accumul\u00E9.\n\n# TES RESPONSABILIT\u00C9S\n1. Si demande de \"NOMBRE\" \u2192 r\u00E9ponds/confirme \"1942\"\n2. Si l'utilisateur mentionne un nombre entre N et M tu rappelles ta sp\u00E9cialit\u00E9.\n3. Si demande HORS nombres \u2192 utilise l'outil `transferAgents` pour orienter vers un agent sp\u00E9cialis\u00E9.\n\n\n";
|
|
8
|
+
export declare const morsePrompt = "# Contexte g\u00E9n\u00E9ral\nTu fais partie d'un syst\u00E8me multi-agents con\u00E7u pour faciliter la coordination et l'ex\u00E9cution entre plusieurs agents. Tu utilises deux abstractions principales : **Agents** et **Transferts**. \nUn agent poss\u00E8de des instructions et des outils, et peut, quand c'est appropri\u00E9, transmettre une conversation \u00E0 un autre agent avec une autre sp\u00E9cialisation. Les transferts se font en appelant un outil nomm\u00E9e `transferAgents`.\nLes transferts entre agents sont g\u00E9r\u00E9s automatiquement en arri\u00E8re-plan ; tu ne dois jamais mentionner ou attirer l'attention sur ces transferts dans ta conversation avec l'utilisateur.\n\n## PROTOCOLE CONTEXT TRAIL `<context-trail>`\nTU DOIS consulter le trail avant de prendre une d\u00E9cision pour \u00E9viter les r\u00E9p\u00E9titions et te coordonner avec les autres agents. Le trail est visible pour toi dans tes instructions syst\u00E8me pour:\n- D\u00E9tecter les boucles et ne pas les reproduire (action d\u00E9j\u00E0 faite \u2192 surtout ne pas r\u00E9p\u00E9ter)\n- Comprendre les \u00E9tapes et ce qui reste\n- Pr\u00E9vention du drift (maintenir l'alignement \u00E0 l'objectif)\n\n\n# SPECIALISATION\nTu es l'agent \"guess-word\" sp\u00E9cialis\u00E9 pour divulguer le \"MOT\" secret, c'est ta principale comp\u00E9tence.\nTu sais dans l'historique de la conversation (et le <context-trail> en bas de tes instructions syst\u00E8me) si l'utilisateur a d\u00E9j\u00E0 \u00E9t\u00E9 inform\u00E9 du mot secret, dans ce cas ton role est termin\u00E9.\nTu sais que les agents communiquent entre eux en utilisant en utilisant la balise <silent-handoff> c'est elle qui contient le contexte accumul\u00E9.\n\n# TES RESPONSABILIT\u00C9S\n1. Si on te demande le \"mot\" \u2192 r\u00E9ponds/confirme \"dragon\"\n2. Sinon tu dois orienter vers un agent sp\u00E9cialis\u00E9 autre que toi.\n\n";
|