@tldraw/editor 3.14.0-canary.36a37ef097fb → 3.14.0-canary.403af9c5d8f2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/index.d.ts +46 -46
- package/dist-cjs/index.js +1 -1
- package/dist-cjs/lib/primitives/Vec.js +13 -8
- package/dist-cjs/lib/primitives/Vec.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Arc2d.js +41 -21
- package/dist-cjs/lib/primitives/geometry/Arc2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Circle2d.js +11 -11
- package/dist-cjs/lib/primitives/geometry/Circle2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js +13 -16
- package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js +4 -4
- package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Edge2d.js +14 -17
- package/dist-cjs/lib/primitives/geometry/Edge2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Ellipse2d.js +10 -10
- package/dist-cjs/lib/primitives/geometry/Ellipse2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Point2d.js +6 -6
- package/dist-cjs/lib/primitives/geometry/Point2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Polygon2d.js +3 -0
- package/dist-cjs/lib/primitives/geometry/Polygon2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Polyline2d.js +8 -5
- package/dist-cjs/lib/primitives/geometry/Polyline2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Rectangle2d.js +22 -11
- package/dist-cjs/lib/primitives/geometry/Rectangle2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Stadium2d.js +22 -22
- package/dist-cjs/lib/primitives/geometry/Stadium2d.js.map +2 -2
- package/dist-cjs/version.js +3 -3
- package/dist-cjs/version.js.map +1 -1
- package/dist-esm/index.d.mts +46 -46
- package/dist-esm/index.mjs +1 -1
- package/dist-esm/lib/primitives/Vec.mjs +13 -8
- package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Arc2d.mjs +41 -21
- package/dist-esm/lib/primitives/geometry/Arc2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Circle2d.mjs +11 -11
- package/dist-esm/lib/primitives/geometry/Circle2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs +13 -16
- package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs +4 -4
- package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Edge2d.mjs +14 -17
- package/dist-esm/lib/primitives/geometry/Edge2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs +11 -11
- package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Point2d.mjs +6 -6
- package/dist-esm/lib/primitives/geometry/Point2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Polygon2d.mjs +3 -0
- package/dist-esm/lib/primitives/geometry/Polygon2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Polyline2d.mjs +8 -5
- package/dist-esm/lib/primitives/geometry/Polyline2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Rectangle2d.mjs +22 -11
- package/dist-esm/lib/primitives/geometry/Rectangle2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Stadium2d.mjs +22 -22
- package/dist-esm/lib/primitives/geometry/Stadium2d.mjs.map +2 -2
- package/dist-esm/version.mjs +3 -3
- package/dist-esm/version.mjs.map +1 -1
- package/package.json +7 -7
- package/src/lib/primitives/Vec.test.ts +2 -2
- package/src/lib/primitives/Vec.ts +13 -8
- package/src/lib/primitives/geometry/Arc2d.ts +42 -23
- package/src/lib/primitives/geometry/Circle2d.ts +12 -12
- package/src/lib/primitives/geometry/CubicBezier2d.test.ts +5 -0
- package/src/lib/primitives/geometry/CubicBezier2d.ts +13 -17
- package/src/lib/primitives/geometry/CubicSpline2d.ts +5 -5
- package/src/lib/primitives/geometry/Edge2d.ts +14 -18
- package/src/lib/primitives/geometry/Ellipse2d.ts +12 -13
- package/src/lib/primitives/geometry/Point2d.ts +6 -6
- package/src/lib/primitives/geometry/Polygon2d.ts +4 -0
- package/src/lib/primitives/geometry/Polyline2d.ts +10 -7
- package/src/lib/primitives/geometry/Rectangle2d.ts +24 -11
- package/src/lib/primitives/geometry/Stadium2d.ts +22 -23
- package/src/version.ts +3 -3
|
@@ -32,58 +32,58 @@ class Stadium2d extends import_Geometry2d.Geometry2d {
|
|
|
32
32
|
super({ ...config, isClosed: true });
|
|
33
33
|
this.config = config;
|
|
34
34
|
const { width: w, height: h } = config;
|
|
35
|
-
this.
|
|
36
|
-
this.
|
|
35
|
+
this._w = w;
|
|
36
|
+
this._h = h;
|
|
37
37
|
if (h > w) {
|
|
38
38
|
const r = w / 2;
|
|
39
|
-
this.
|
|
39
|
+
this._a = new import_Arc2d.Arc2d({
|
|
40
40
|
start: new import_Vec.Vec(0, r),
|
|
41
41
|
end: new import_Vec.Vec(w, r),
|
|
42
42
|
center: new import_Vec.Vec(w / 2, r),
|
|
43
43
|
sweepFlag: 1,
|
|
44
44
|
largeArcFlag: 1
|
|
45
45
|
});
|
|
46
|
-
this.
|
|
47
|
-
this.
|
|
46
|
+
this._b = new import_Edge2d.Edge2d({ start: new import_Vec.Vec(w, r), end: new import_Vec.Vec(w, h - r) });
|
|
47
|
+
this._c = new import_Arc2d.Arc2d({
|
|
48
48
|
start: new import_Vec.Vec(w, h - r),
|
|
49
49
|
end: new import_Vec.Vec(0, h - r),
|
|
50
50
|
center: new import_Vec.Vec(w / 2, h - r),
|
|
51
51
|
sweepFlag: 1,
|
|
52
52
|
largeArcFlag: 1
|
|
53
53
|
});
|
|
54
|
-
this.
|
|
54
|
+
this._d = new import_Edge2d.Edge2d({ start: new import_Vec.Vec(0, h - r), end: new import_Vec.Vec(0, r) });
|
|
55
55
|
} else {
|
|
56
56
|
const r = h / 2;
|
|
57
|
-
this.
|
|
57
|
+
this._a = new import_Arc2d.Arc2d({
|
|
58
58
|
start: new import_Vec.Vec(r, h),
|
|
59
59
|
end: new import_Vec.Vec(r, 0),
|
|
60
60
|
center: new import_Vec.Vec(r, r),
|
|
61
61
|
sweepFlag: 1,
|
|
62
62
|
largeArcFlag: 1
|
|
63
63
|
});
|
|
64
|
-
this.
|
|
65
|
-
this.
|
|
64
|
+
this._b = new import_Edge2d.Edge2d({ start: new import_Vec.Vec(r, 0), end: new import_Vec.Vec(w - r, 0) });
|
|
65
|
+
this._c = new import_Arc2d.Arc2d({
|
|
66
66
|
start: new import_Vec.Vec(w - r, 0),
|
|
67
67
|
end: new import_Vec.Vec(w - r, h),
|
|
68
68
|
center: new import_Vec.Vec(w - r, r),
|
|
69
69
|
sweepFlag: 1,
|
|
70
70
|
largeArcFlag: 1
|
|
71
71
|
});
|
|
72
|
-
this.
|
|
72
|
+
this._d = new import_Edge2d.Edge2d({ start: new import_Vec.Vec(w - r, h), end: new import_Vec.Vec(r, h) });
|
|
73
73
|
}
|
|
74
74
|
}
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
75
|
+
_w;
|
|
76
|
+
_h;
|
|
77
|
+
_a;
|
|
78
|
+
_b;
|
|
79
|
+
_c;
|
|
80
|
+
_d;
|
|
81
81
|
nearestPoint(A) {
|
|
82
82
|
let nearest;
|
|
83
83
|
let dist = Infinity;
|
|
84
84
|
let _d;
|
|
85
85
|
let p;
|
|
86
|
-
const { a, b, c, d } = this;
|
|
86
|
+
const { _a: a, _b: b, _c: c, _d: d } = this;
|
|
87
87
|
for (const part of [a, b, c, d]) {
|
|
88
88
|
p = part.nearestPoint(A);
|
|
89
89
|
_d = import_Vec.Vec.Dist2(p, A);
|
|
@@ -96,26 +96,26 @@ class Stadium2d extends import_Geometry2d.Geometry2d {
|
|
|
96
96
|
return nearest;
|
|
97
97
|
}
|
|
98
98
|
hitTestLineSegment(A, B) {
|
|
99
|
-
const { a, b, c, d } = this;
|
|
99
|
+
const { _a: a, _b: b, _c: c, _d: d } = this;
|
|
100
100
|
return [a, b, c, d].some((edge) => edge.hitTestLineSegment(A, B));
|
|
101
101
|
}
|
|
102
102
|
getVertices() {
|
|
103
|
-
const { a, b, c, d } = this;
|
|
103
|
+
const { _a: a, _b: b, _c: c, _d: d } = this;
|
|
104
104
|
return [a, b, c, d].reduce((a2, p) => {
|
|
105
105
|
a2.push(...p.vertices);
|
|
106
106
|
return a2;
|
|
107
107
|
}, []);
|
|
108
108
|
}
|
|
109
109
|
getBounds() {
|
|
110
|
-
return new import_Box.Box(0, 0, this.
|
|
110
|
+
return new import_Box.Box(0, 0, this._w, this._h);
|
|
111
111
|
}
|
|
112
112
|
getLength() {
|
|
113
|
-
const { h, w } = this;
|
|
113
|
+
const { _h: h, _w: w } = this;
|
|
114
114
|
if (h > w) return (import_utils.PI * (w / 2) + (h - w)) * 2;
|
|
115
115
|
else return (import_utils.PI * (h / 2) + (w - h)) * 2;
|
|
116
116
|
}
|
|
117
117
|
getSvgPathData() {
|
|
118
|
-
const { a, b, c, d } = this;
|
|
118
|
+
const { _a: a, _b: b, _c: c, _d: d } = this;
|
|
119
119
|
return [a, b, c, d].map((p, i) => p.getSvgPathData(i === 0)).join(" ") + " Z";
|
|
120
120
|
}
|
|
121
121
|
}
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Stadium2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec, VecLike } from '../Vec'\nimport { PI } from '../utils'\nimport { Arc2d } from './Arc2d'\nimport { Edge2d } from './Edge2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class Stadium2d extends Geometry2d {\n\
|
|
5
|
-
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAAoB;AACpB,iBAA6B;AAC7B,mBAAmB;AACnB,mBAAsB;AACtB,oBAAuB;AACvB,wBAA8C;AAGvC,MAAM,kBAAkB,6BAAW;AAAA,
|
|
4
|
+
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec, VecLike } from '../Vec'\nimport { PI } from '../utils'\nimport { Arc2d } from './Arc2d'\nimport { Edge2d } from './Edge2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class Stadium2d extends Geometry2d {\n\tprivate _w: number\n\tprivate _h: number\n\tprivate _a: Arc2d\n\tprivate _b: Edge2d\n\tprivate _c: Arc2d\n\tprivate _d: Edge2d\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\twidth: number\n\t\t\theight: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isClosed: true })\n\t\tconst { width: w, height: h } = config\n\t\tthis._w = w\n\t\tthis._h = h\n\n\t\tif (h > w) {\n\t\t\tconst r = w / 2\n\t\t\tthis._a = new Arc2d({\n\t\t\t\tstart: new Vec(0, r),\n\t\t\t\tend: new Vec(w, r),\n\t\t\t\tcenter: new Vec(w / 2, r),\n\t\t\t\tsweepFlag: 1,\n\t\t\t\tlargeArcFlag: 1,\n\t\t\t})\n\t\t\tthis._b = new Edge2d({ start: new Vec(w, r), end: new Vec(w, h - r) })\n\t\t\tthis._c = new Arc2d({\n\t\t\t\tstart: new Vec(w, h - r),\n\t\t\t\tend: new Vec(0, h - r),\n\t\t\t\tcenter: new Vec(w / 2, h - r),\n\t\t\t\tsweepFlag: 1,\n\t\t\t\tlargeArcFlag: 1,\n\t\t\t})\n\t\t\tthis._d = new Edge2d({ start: new Vec(0, h - r), end: new Vec(0, r) })\n\t\t} else {\n\t\t\tconst r = h / 2\n\t\t\tthis._a = new Arc2d({\n\t\t\t\tstart: new Vec(r, h),\n\t\t\t\tend: new Vec(r, 0),\n\t\t\t\tcenter: new Vec(r, r),\n\t\t\t\tsweepFlag: 1,\n\t\t\t\tlargeArcFlag: 1,\n\t\t\t})\n\t\t\tthis._b = new Edge2d({ start: new Vec(r, 0), end: new Vec(w - r, 0) })\n\t\t\tthis._c = new Arc2d({\n\t\t\t\tstart: new Vec(w - r, 0),\n\t\t\t\tend: new Vec(w - r, h),\n\t\t\t\tcenter: new Vec(w - r, r),\n\t\t\t\tsweepFlag: 1,\n\t\t\t\tlargeArcFlag: 1,\n\t\t\t})\n\t\t\tthis._d = new Edge2d({ start: new Vec(w - r, h), end: new Vec(r, h) })\n\t\t}\n\t}\n\n\tnearestPoint(A: VecLike): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet _d: number\n\t\tlet p: Vec\n\n\t\tconst { _a: a, _b: b, _c: c, _d: d } = this\n\t\tfor (const part of [a, b, c, d]) {\n\t\t\tp = part.nearestPoint(A)\n\t\t\t_d = Vec.Dist2(p, A)\n\t\t\tif (_d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = _d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike): boolean {\n\t\tconst { _a: a, _b: b, _c: c, _d: d } = this\n\t\treturn [a, b, c, d].some((edge) => edge.hitTestLineSegment(A, B))\n\t}\n\n\tgetVertices() {\n\t\tconst { _a: a, _b: b, _c: c, _d: d } = this\n\t\treturn [a, b, c, d].reduce<Vec[]>((a, p) => {\n\t\t\ta.push(...p.vertices)\n\t\t\treturn a\n\t\t}, [])\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(0, 0, this._w, this._h)\n\t}\n\n\tgetLength() {\n\t\tconst { _h: h, _w: w } = this\n\t\tif (h > w) return (PI * (w / 2) + (h - w)) * 2\n\t\telse return (PI * (h / 2) + (w - h)) * 2\n\t}\n\n\tgetSvgPathData() {\n\t\tconst { _a: a, _b: b, _c: c, _d: d } = this\n\t\treturn [a, b, c, d].map((p, i) => p.getSvgPathData(i === 0)).join(' ') + ' Z'\n\t}\n}\n"],
|
|
5
|
+
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAAoB;AACpB,iBAA6B;AAC7B,mBAAmB;AACnB,mBAAsB;AACtB,oBAAuB;AACvB,wBAA8C;AAGvC,MAAM,kBAAkB,6BAAW;AAAA,EAQzC,YACQ,QAIN;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,KAAK,CAAC;AAL5B;AAMP,UAAM,EAAE,OAAO,GAAG,QAAQ,EAAE,IAAI;AAChC,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,QAAI,IAAI,GAAG;AACV,YAAM,IAAI,IAAI;AACd,WAAK,KAAK,IAAI,mBAAM;AAAA,QACnB,OAAO,IAAI,eAAI,GAAG,CAAC;AAAA,QACnB,KAAK,IAAI,eAAI,GAAG,CAAC;AAAA,QACjB,QAAQ,IAAI,eAAI,IAAI,GAAG,CAAC;AAAA,QACxB,WAAW;AAAA,QACX,cAAc;AAAA,MACf,CAAC;AACD,WAAK,KAAK,IAAI,qBAAO,EAAE,OAAO,IAAI,eAAI,GAAG,CAAC,GAAG,KAAK,IAAI,eAAI,GAAG,IAAI,CAAC,EAAE,CAAC;AACrE,WAAK,KAAK,IAAI,mBAAM;AAAA,QACnB,OAAO,IAAI,eAAI,GAAG,IAAI,CAAC;AAAA,QACvB,KAAK,IAAI,eAAI,GAAG,IAAI,CAAC;AAAA,QACrB,QAAQ,IAAI,eAAI,IAAI,GAAG,IAAI,CAAC;AAAA,QAC5B,WAAW;AAAA,QACX,cAAc;AAAA,MACf,CAAC;AACD,WAAK,KAAK,IAAI,qBAAO,EAAE,OAAO,IAAI,eAAI,GAAG,IAAI,CAAC,GAAG,KAAK,IAAI,eAAI,GAAG,CAAC,EAAE,CAAC;AAAA,IACtE,OAAO;AACN,YAAM,IAAI,IAAI;AACd,WAAK,KAAK,IAAI,mBAAM;AAAA,QACnB,OAAO,IAAI,eAAI,GAAG,CAAC;AAAA,QACnB,KAAK,IAAI,eAAI,GAAG,CAAC;AAAA,QACjB,QAAQ,IAAI,eAAI,GAAG,CAAC;AAAA,QACpB,WAAW;AAAA,QACX,cAAc;AAAA,MACf,CAAC;AACD,WAAK,KAAK,IAAI,qBAAO,EAAE,OAAO,IAAI,eAAI,GAAG,CAAC,GAAG,KAAK,IAAI,eAAI,IAAI,GAAG,CAAC,EAAE,CAAC;AACrE,WAAK,KAAK,IAAI,mBAAM;AAAA,QACnB,OAAO,IAAI,eAAI,IAAI,GAAG,CAAC;AAAA,QACvB,KAAK,IAAI,eAAI,IAAI,GAAG,CAAC;AAAA,QACrB,QAAQ,IAAI,eAAI,IAAI,GAAG,CAAC;AAAA,QACxB,WAAW;AAAA,QACX,cAAc;AAAA,MACf,CAAC;AACD,WAAK,KAAK,IAAI,qBAAO,EAAE,OAAO,IAAI,eAAI,IAAI,GAAG,CAAC,GAAG,KAAK,IAAI,eAAI,GAAG,CAAC,EAAE,CAAC;AAAA,IACtE;AAAA,EACD;AAAA,EAvDQ;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAoDR,aAAa,GAAiB;AAC7B,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AAEJ,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,IAAI;AACvC,eAAW,QAAQ,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG;AAChC,UAAI,KAAK,aAAa,CAAC;AACvB,WAAK,eAAI,MAAM,GAAG,CAAC;AACnB,UAAI,KAAK,MAAM;AACd,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAY,GAAqB;AACnD,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,IAAI;AACvC,WAAO,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,KAAK,CAAC,SAAS,KAAK,mBAAmB,GAAG,CAAC,CAAC;AAAA,EACjE;AAAA,EAEA,cAAc;AACb,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,IAAI;AACvC,WAAO,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,OAAc,CAACA,IAAG,MAAM;AAC3C,MAAAA,GAAE,KAAK,GAAG,EAAE,QAAQ;AACpB,aAAOA;AAAA,IACR,GAAG,CAAC,CAAC;AAAA,EACN;AAAA,EAEA,YAAY;AACX,WAAO,IAAI,eAAI,GAAG,GAAG,KAAK,IAAI,KAAK,EAAE;AAAA,EACtC;AAAA,EAEA,YAAY;AACX,UAAM,EAAE,IAAI,GAAG,IAAI,EAAE,IAAI;AACzB,QAAI,IAAI,EAAG,SAAQ,mBAAM,IAAI,MAAM,IAAI,MAAM;AAAA,QACxC,SAAQ,mBAAM,IAAI,MAAM,IAAI,MAAM;AAAA,EACxC;AAAA,EAEA,iBAAiB;AAChB,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,IAAI;AACvC,WAAO,CAAC,GAAG,GAAG,GAAG,CAAC,EAAE,IAAI,CAAC,GAAG,MAAM,EAAE,eAAe,MAAM,CAAC,CAAC,EAAE,KAAK,GAAG,IAAI;AAAA,EAC1E;AACD;",
|
|
6
6
|
"names": ["a"]
|
|
7
7
|
}
|
package/dist-cjs/version.js
CHANGED
|
@@ -22,10 +22,10 @@ __export(version_exports, {
|
|
|
22
22
|
version: () => version
|
|
23
23
|
});
|
|
24
24
|
module.exports = __toCommonJS(version_exports);
|
|
25
|
-
const version = "3.14.0-canary.
|
|
25
|
+
const version = "3.14.0-canary.403af9c5d8f2";
|
|
26
26
|
const publishDates = {
|
|
27
27
|
major: "2024-09-13T14:36:29.063Z",
|
|
28
|
-
minor: "2025-
|
|
29
|
-
patch: "2025-
|
|
28
|
+
minor: "2025-06-01T07:14:58.245Z",
|
|
29
|
+
patch: "2025-06-01T07:14:58.245Z"
|
|
30
30
|
};
|
|
31
31
|
//# sourceMappingURL=version.js.map
|
package/dist-cjs/version.js.map
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../src/version.ts"],
|
|
4
|
-
"sourcesContent": ["// This file is automatically generated by internal/scripts/refresh-assets.ts.\n// Do not edit manually. Or do, I'm a comment, not a cop.\n\nexport const version = '3.14.0-canary.
|
|
4
|
+
"sourcesContent": ["// This file is automatically generated by internal/scripts/refresh-assets.ts.\n// Do not edit manually. Or do, I'm a comment, not a cop.\n\nexport const version = '3.14.0-canary.403af9c5d8f2'\nexport const publishDates = {\n\tmajor: '2024-09-13T14:36:29.063Z',\n\tminor: '2025-06-01T07:14:58.245Z',\n\tpatch: '2025-06-01T07:14:58.245Z',\n}\n"],
|
|
5
5
|
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAGO,MAAM,UAAU;AAChB,MAAM,eAAe;AAAA,EAC3B,OAAO;AAAA,EACP,OAAO;AAAA,EACP,OAAO;AACR;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
package/dist-esm/index.d.mts
CHANGED
|
@@ -105,15 +105,15 @@ export declare function approximately(a: number, b: number, precision?: number):
|
|
|
105
105
|
|
|
106
106
|
/** @public */
|
|
107
107
|
export declare class Arc2d extends Geometry2d {
|
|
108
|
-
_center
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
108
|
+
private _center;
|
|
109
|
+
private _radius;
|
|
110
|
+
private _start;
|
|
111
|
+
private _end;
|
|
112
|
+
private _largeArcFlag;
|
|
113
|
+
private _sweepFlag;
|
|
114
|
+
private _measure;
|
|
115
|
+
private _angleStart;
|
|
116
|
+
private _angleEnd;
|
|
117
117
|
constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
|
|
118
118
|
center: Vec;
|
|
119
119
|
end: Vec;
|
|
@@ -551,10 +551,10 @@ export declare class Circle2d extends Geometry2d {
|
|
|
551
551
|
x?: number;
|
|
552
552
|
y?: number;
|
|
553
553
|
};
|
|
554
|
-
_center
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
554
|
+
private _center;
|
|
555
|
+
private _radius;
|
|
556
|
+
private _x;
|
|
557
|
+
private _y;
|
|
558
558
|
constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
|
|
559
559
|
isFilled: boolean;
|
|
560
560
|
radius: number;
|
|
@@ -716,10 +716,10 @@ export declare function createTLUser(opts?: {
|
|
|
716
716
|
|
|
717
717
|
/** @public */
|
|
718
718
|
export declare class CubicBezier2d extends Polyline2d {
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
|
|
719
|
+
private _a;
|
|
720
|
+
private _b;
|
|
721
|
+
private _c;
|
|
722
|
+
private _d;
|
|
723
723
|
constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
|
|
724
724
|
cp1: Vec;
|
|
725
725
|
cp2: Vec;
|
|
@@ -727,20 +727,19 @@ export declare class CubicBezier2d extends Polyline2d {
|
|
|
727
727
|
start: Vec;
|
|
728
728
|
});
|
|
729
729
|
getVertices(): Vec[];
|
|
730
|
-
midPoint(): Vec;
|
|
731
730
|
nearestPoint(A: VecLike): Vec;
|
|
732
731
|
getSvgPathData(first?: boolean): string;
|
|
733
732
|
static GetAtT(segment: CubicBezier2d, t: number): Vec;
|
|
734
|
-
getLength(
|
|
733
|
+
getLength(_filters?: Geometry2dFilters, precision?: number): number;
|
|
735
734
|
}
|
|
736
735
|
|
|
737
736
|
/** @public */
|
|
738
737
|
export declare class CubicSpline2d extends Geometry2d {
|
|
739
|
-
|
|
738
|
+
private _points;
|
|
740
739
|
constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
|
|
741
740
|
points: Vec[];
|
|
742
741
|
});
|
|
743
|
-
_segments
|
|
742
|
+
private _segments?;
|
|
744
743
|
get segments(): CubicBezier2d[];
|
|
745
744
|
getLength(): number;
|
|
746
745
|
getVertices(): Vec[];
|
|
@@ -927,17 +926,16 @@ export declare const EASINGS: {
|
|
|
927
926
|
|
|
928
927
|
/** @public */
|
|
929
928
|
export declare class Edge2d extends Geometry2d {
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
929
|
+
private _start;
|
|
930
|
+
private _end;
|
|
931
|
+
private _d;
|
|
932
|
+
private _u;
|
|
933
|
+
private _ul;
|
|
935
934
|
constructor(config: {
|
|
936
935
|
end: Vec;
|
|
937
936
|
start: Vec;
|
|
938
937
|
});
|
|
939
938
|
getLength(): number;
|
|
940
|
-
midPoint(): Vec;
|
|
941
939
|
getVertices(): Vec[];
|
|
942
940
|
nearestPoint(point: VecLike): Vec;
|
|
943
941
|
getSvgPathData(first?: boolean): string;
|
|
@@ -3996,13 +3994,13 @@ export declare class Ellipse2d extends Geometry2d {
|
|
|
3996
3994
|
height: number;
|
|
3997
3995
|
width: number;
|
|
3998
3996
|
};
|
|
3999
|
-
|
|
4000
|
-
|
|
3997
|
+
private _w;
|
|
3998
|
+
private _h;
|
|
3999
|
+
private _edges?;
|
|
4001
4000
|
constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
|
|
4002
4001
|
height: number;
|
|
4003
4002
|
width: number;
|
|
4004
4003
|
});
|
|
4005
|
-
_edges?: Edge2d[];
|
|
4006
4004
|
get edges(): Edge2d[];
|
|
4007
4005
|
getVertices(): any[];
|
|
4008
4006
|
nearestPoint(A: VecLike): Vec;
|
|
@@ -4687,7 +4685,7 @@ export declare const PI2: number;
|
|
|
4687
4685
|
|
|
4688
4686
|
/** @public */
|
|
4689
4687
|
export declare class Point2d extends Geometry2d {
|
|
4690
|
-
|
|
4688
|
+
private _point;
|
|
4691
4689
|
constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
|
|
4692
4690
|
margin: number;
|
|
4693
4691
|
point: Vec;
|
|
@@ -4731,12 +4729,12 @@ export declare function polygonsIntersect(a: VecLike[], b: VecLike[]): boolean;
|
|
|
4731
4729
|
|
|
4732
4730
|
/** @public */
|
|
4733
4731
|
export declare class Polyline2d extends Geometry2d {
|
|
4734
|
-
|
|
4732
|
+
private _points;
|
|
4733
|
+
private _segments?;
|
|
4735
4734
|
constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
|
|
4736
4735
|
points: Vec[];
|
|
4737
4736
|
});
|
|
4738
|
-
|
|
4739
|
-
get segments(): Edge2d[];
|
|
4737
|
+
protected get segments(): Edge2d[];
|
|
4740
4738
|
getLength(): number;
|
|
4741
4739
|
getVertices(): Vec[];
|
|
4742
4740
|
nearestPoint(A: VecLike): Vec;
|
|
@@ -4802,10 +4800,10 @@ export declare class ReadonlySharedStyleMap {
|
|
|
4802
4800
|
|
|
4803
4801
|
/** @public */
|
|
4804
4802
|
export declare class Rectangle2d extends Polygon2d {
|
|
4805
|
-
|
|
4806
|
-
|
|
4807
|
-
|
|
4808
|
-
|
|
4803
|
+
private _x;
|
|
4804
|
+
private _y;
|
|
4805
|
+
private _w;
|
|
4806
|
+
private _h;
|
|
4809
4807
|
constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
|
|
4810
4808
|
height: number;
|
|
4811
4809
|
width: number;
|
|
@@ -4814,6 +4812,7 @@ export declare class Rectangle2d extends Polygon2d {
|
|
|
4814
4812
|
});
|
|
4815
4813
|
getBounds(): Box;
|
|
4816
4814
|
getSvgPathData(): string;
|
|
4815
|
+
private negativeZeroFix;
|
|
4817
4816
|
}
|
|
4818
4817
|
|
|
4819
4818
|
/** @public */
|
|
@@ -5548,12 +5547,12 @@ export declare class Stadium2d extends Geometry2d {
|
|
|
5548
5547
|
height: number;
|
|
5549
5548
|
width: number;
|
|
5550
5549
|
};
|
|
5551
|
-
|
|
5552
|
-
|
|
5553
|
-
|
|
5554
|
-
|
|
5555
|
-
|
|
5556
|
-
|
|
5550
|
+
private _w;
|
|
5551
|
+
private _h;
|
|
5552
|
+
private _a;
|
|
5553
|
+
private _b;
|
|
5554
|
+
private _c;
|
|
5555
|
+
private _d;
|
|
5557
5556
|
constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
|
|
5558
5557
|
height: number;
|
|
5559
5558
|
width: number;
|
|
@@ -7686,7 +7685,7 @@ export declare class Vec {
|
|
|
7686
7685
|
len(): number;
|
|
7687
7686
|
pry(V: VecLike): number;
|
|
7688
7687
|
per(): this;
|
|
7689
|
-
uni():
|
|
7688
|
+
uni(): this;
|
|
7690
7689
|
tan(V: VecLike): Vec;
|
|
7691
7690
|
dist(V: VecLike): number;
|
|
7692
7691
|
distanceToLineSegment(A: VecLike, B: VecLike): number;
|
|
@@ -7697,8 +7696,9 @@ export declare class Vec {
|
|
|
7697
7696
|
lrp(B: VecLike, t: number): Vec;
|
|
7698
7697
|
equals(B: VecLike): boolean;
|
|
7699
7698
|
equalsXY(x: number, y: number): boolean;
|
|
7699
|
+
/** @deprecated use `uni` instead */
|
|
7700
7700
|
norm(): this;
|
|
7701
|
-
toFixed():
|
|
7701
|
+
toFixed(): this;
|
|
7702
7702
|
toString(): string;
|
|
7703
7703
|
toJson(): VecModel;
|
|
7704
7704
|
toArray(): number[];
|
package/dist-esm/index.mjs
CHANGED
|
@@ -145,10 +145,14 @@ class Vec {
|
|
|
145
145
|
return this;
|
|
146
146
|
}
|
|
147
147
|
uni() {
|
|
148
|
-
|
|
148
|
+
const l = this.len();
|
|
149
|
+
if (l === 0) return this;
|
|
150
|
+
this.x /= l;
|
|
151
|
+
this.y /= l;
|
|
152
|
+
return this;
|
|
149
153
|
}
|
|
150
154
|
tan(V) {
|
|
151
|
-
return
|
|
155
|
+
return this.sub(V).uni();
|
|
152
156
|
}
|
|
153
157
|
dist(V) {
|
|
154
158
|
return Vec.Dist(this, V);
|
|
@@ -181,14 +185,14 @@ class Vec {
|
|
|
181
185
|
equalsXY(x, y) {
|
|
182
186
|
return Vec.EqualsXY(this, x, y);
|
|
183
187
|
}
|
|
188
|
+
/** @deprecated use `uni` instead */
|
|
184
189
|
norm() {
|
|
185
|
-
|
|
186
|
-
this.x = l === 0 ? 0 : this.x / l;
|
|
187
|
-
this.y = l === 0 ? 0 : this.y / l;
|
|
188
|
-
return this;
|
|
190
|
+
return this.uni();
|
|
189
191
|
}
|
|
190
192
|
toFixed() {
|
|
191
|
-
|
|
193
|
+
this.x = toFixed(this.x);
|
|
194
|
+
this.y = toFixed(this.y);
|
|
195
|
+
return this;
|
|
192
196
|
}
|
|
193
197
|
toString() {
|
|
194
198
|
return Vec.ToString(Vec.ToFixed(this));
|
|
@@ -292,7 +296,8 @@ class Vec {
|
|
|
292
296
|
* Get the unit vector of A.
|
|
293
297
|
*/
|
|
294
298
|
static Uni(A) {
|
|
295
|
-
|
|
299
|
+
const l = Vec.Len(A);
|
|
300
|
+
return new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l);
|
|
296
301
|
}
|
|
297
302
|
static Tan(A, B) {
|
|
298
303
|
return Vec.Uni(Vec.Sub(A, B));
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../src/lib/primitives/Vec.ts"],
|
|
4
|
-
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
-
"mappings": "AACA,SAAS,eAAe;AACxB,SAAS,OAAO,eAAe;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
4
|
+
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\t/** @deprecated use `uni` instead */\n\tnorm() {\n\t\treturn this.uni()\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
+
"mappings": "AACA,SAAS,eAAe;AACxB,SAAS,OAAO,eAAe;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA;AAAA,EAGA,OAAO;AACN,WAAO,KAAK,IAAI;AAAA,EACjB;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,QAAQ,KAAK,CAAC;AACvB,SAAK,IAAI,QAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,KAAK,MAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
6
6
|
"names": ["clamp"]
|
|
7
7
|
}
|