@tldraw/editor 3.14.0-canary.36a37ef097fb → 3.14.0-canary.403af9c5d8f2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. package/dist-cjs/index.d.ts +46 -46
  2. package/dist-cjs/index.js +1 -1
  3. package/dist-cjs/lib/primitives/Vec.js +13 -8
  4. package/dist-cjs/lib/primitives/Vec.js.map +2 -2
  5. package/dist-cjs/lib/primitives/geometry/Arc2d.js +41 -21
  6. package/dist-cjs/lib/primitives/geometry/Arc2d.js.map +2 -2
  7. package/dist-cjs/lib/primitives/geometry/Circle2d.js +11 -11
  8. package/dist-cjs/lib/primitives/geometry/Circle2d.js.map +2 -2
  9. package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js +13 -16
  10. package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js.map +2 -2
  11. package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js +4 -4
  12. package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js.map +2 -2
  13. package/dist-cjs/lib/primitives/geometry/Edge2d.js +14 -17
  14. package/dist-cjs/lib/primitives/geometry/Edge2d.js.map +2 -2
  15. package/dist-cjs/lib/primitives/geometry/Ellipse2d.js +10 -10
  16. package/dist-cjs/lib/primitives/geometry/Ellipse2d.js.map +2 -2
  17. package/dist-cjs/lib/primitives/geometry/Point2d.js +6 -6
  18. package/dist-cjs/lib/primitives/geometry/Point2d.js.map +2 -2
  19. package/dist-cjs/lib/primitives/geometry/Polygon2d.js +3 -0
  20. package/dist-cjs/lib/primitives/geometry/Polygon2d.js.map +2 -2
  21. package/dist-cjs/lib/primitives/geometry/Polyline2d.js +8 -5
  22. package/dist-cjs/lib/primitives/geometry/Polyline2d.js.map +2 -2
  23. package/dist-cjs/lib/primitives/geometry/Rectangle2d.js +22 -11
  24. package/dist-cjs/lib/primitives/geometry/Rectangle2d.js.map +2 -2
  25. package/dist-cjs/lib/primitives/geometry/Stadium2d.js +22 -22
  26. package/dist-cjs/lib/primitives/geometry/Stadium2d.js.map +2 -2
  27. package/dist-cjs/version.js +3 -3
  28. package/dist-cjs/version.js.map +1 -1
  29. package/dist-esm/index.d.mts +46 -46
  30. package/dist-esm/index.mjs +1 -1
  31. package/dist-esm/lib/primitives/Vec.mjs +13 -8
  32. package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
  33. package/dist-esm/lib/primitives/geometry/Arc2d.mjs +41 -21
  34. package/dist-esm/lib/primitives/geometry/Arc2d.mjs.map +2 -2
  35. package/dist-esm/lib/primitives/geometry/Circle2d.mjs +11 -11
  36. package/dist-esm/lib/primitives/geometry/Circle2d.mjs.map +2 -2
  37. package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs +13 -16
  38. package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs.map +2 -2
  39. package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs +4 -4
  40. package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs.map +2 -2
  41. package/dist-esm/lib/primitives/geometry/Edge2d.mjs +14 -17
  42. package/dist-esm/lib/primitives/geometry/Edge2d.mjs.map +2 -2
  43. package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs +11 -11
  44. package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs.map +2 -2
  45. package/dist-esm/lib/primitives/geometry/Point2d.mjs +6 -6
  46. package/dist-esm/lib/primitives/geometry/Point2d.mjs.map +2 -2
  47. package/dist-esm/lib/primitives/geometry/Polygon2d.mjs +3 -0
  48. package/dist-esm/lib/primitives/geometry/Polygon2d.mjs.map +2 -2
  49. package/dist-esm/lib/primitives/geometry/Polyline2d.mjs +8 -5
  50. package/dist-esm/lib/primitives/geometry/Polyline2d.mjs.map +2 -2
  51. package/dist-esm/lib/primitives/geometry/Rectangle2d.mjs +22 -11
  52. package/dist-esm/lib/primitives/geometry/Rectangle2d.mjs.map +2 -2
  53. package/dist-esm/lib/primitives/geometry/Stadium2d.mjs +22 -22
  54. package/dist-esm/lib/primitives/geometry/Stadium2d.mjs.map +2 -2
  55. package/dist-esm/version.mjs +3 -3
  56. package/dist-esm/version.mjs.map +1 -1
  57. package/package.json +7 -7
  58. package/src/lib/primitives/Vec.test.ts +2 -2
  59. package/src/lib/primitives/Vec.ts +13 -8
  60. package/src/lib/primitives/geometry/Arc2d.ts +42 -23
  61. package/src/lib/primitives/geometry/Circle2d.ts +12 -12
  62. package/src/lib/primitives/geometry/CubicBezier2d.test.ts +5 -0
  63. package/src/lib/primitives/geometry/CubicBezier2d.ts +13 -17
  64. package/src/lib/primitives/geometry/CubicSpline2d.ts +5 -5
  65. package/src/lib/primitives/geometry/Edge2d.ts +14 -18
  66. package/src/lib/primitives/geometry/Ellipse2d.ts +12 -13
  67. package/src/lib/primitives/geometry/Point2d.ts +6 -6
  68. package/src/lib/primitives/geometry/Polygon2d.ts +4 -0
  69. package/src/lib/primitives/geometry/Polyline2d.ts +10 -7
  70. package/src/lib/primitives/geometry/Rectangle2d.ts +24 -11
  71. package/src/lib/primitives/geometry/Stadium2d.ts +22 -23
  72. package/src/version.ts +3 -3
@@ -105,15 +105,15 @@ export declare function approximately(a: number, b: number, precision?: number):
105
105
 
106
106
  /** @public */
107
107
  export declare class Arc2d extends Geometry2d {
108
- _center: Vec;
109
- radius: number;
110
- start: Vec;
111
- end: Vec;
112
- largeArcFlag: number;
113
- sweepFlag: number;
114
- measure: number;
115
- angleStart: number;
116
- angleEnd: number;
108
+ private _center;
109
+ private _radius;
110
+ private _start;
111
+ private _end;
112
+ private _largeArcFlag;
113
+ private _sweepFlag;
114
+ private _measure;
115
+ private _angleStart;
116
+ private _angleEnd;
117
117
  constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
118
118
  center: Vec;
119
119
  end: Vec;
@@ -551,10 +551,10 @@ export declare class Circle2d extends Geometry2d {
551
551
  x?: number;
552
552
  y?: number;
553
553
  };
554
- _center: Vec;
555
- radius: number;
556
- x: number;
557
- y: number;
554
+ private _center;
555
+ private _radius;
556
+ private _x;
557
+ private _y;
558
558
  constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
559
559
  isFilled: boolean;
560
560
  radius: number;
@@ -716,10 +716,10 @@ export declare function createTLUser(opts?: {
716
716
 
717
717
  /** @public */
718
718
  export declare class CubicBezier2d extends Polyline2d {
719
- a: Vec;
720
- b: Vec;
721
- c: Vec;
722
- d: Vec;
719
+ private _a;
720
+ private _b;
721
+ private _c;
722
+ private _d;
723
723
  constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
724
724
  cp1: Vec;
725
725
  cp2: Vec;
@@ -727,20 +727,19 @@ export declare class CubicBezier2d extends Polyline2d {
727
727
  start: Vec;
728
728
  });
729
729
  getVertices(): Vec[];
730
- midPoint(): Vec;
731
730
  nearestPoint(A: VecLike): Vec;
732
731
  getSvgPathData(first?: boolean): string;
733
732
  static GetAtT(segment: CubicBezier2d, t: number): Vec;
734
- getLength(filters?: Geometry2dFilters, precision?: number): number;
733
+ getLength(_filters?: Geometry2dFilters, precision?: number): number;
735
734
  }
736
735
 
737
736
  /** @public */
738
737
  export declare class CubicSpline2d extends Geometry2d {
739
- points: Vec[];
738
+ private _points;
740
739
  constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
741
740
  points: Vec[];
742
741
  });
743
- _segments?: CubicBezier2d[];
742
+ private _segments?;
744
743
  get segments(): CubicBezier2d[];
745
744
  getLength(): number;
746
745
  getVertices(): Vec[];
@@ -927,17 +926,16 @@ export declare const EASINGS: {
927
926
 
928
927
  /** @public */
929
928
  export declare class Edge2d extends Geometry2d {
930
- start: Vec;
931
- end: Vec;
932
- d: Vec;
933
- u: Vec;
934
- ul: number;
929
+ private _start;
930
+ private _end;
931
+ private _d;
932
+ private _u;
933
+ private _ul;
935
934
  constructor(config: {
936
935
  end: Vec;
937
936
  start: Vec;
938
937
  });
939
938
  getLength(): number;
940
- midPoint(): Vec;
941
939
  getVertices(): Vec[];
942
940
  nearestPoint(point: VecLike): Vec;
943
941
  getSvgPathData(first?: boolean): string;
@@ -3996,13 +3994,13 @@ export declare class Ellipse2d extends Geometry2d {
3996
3994
  height: number;
3997
3995
  width: number;
3998
3996
  };
3999
- w: number;
4000
- h: number;
3997
+ private _w;
3998
+ private _h;
3999
+ private _edges?;
4001
4000
  constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
4002
4001
  height: number;
4003
4002
  width: number;
4004
4003
  });
4005
- _edges?: Edge2d[];
4006
4004
  get edges(): Edge2d[];
4007
4005
  getVertices(): any[];
4008
4006
  nearestPoint(A: VecLike): Vec;
@@ -4687,7 +4685,7 @@ export declare const PI2: number;
4687
4685
 
4688
4686
  /** @public */
4689
4687
  export declare class Point2d extends Geometry2d {
4690
- point: Vec;
4688
+ private _point;
4691
4689
  constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
4692
4690
  margin: number;
4693
4691
  point: Vec;
@@ -4731,12 +4729,12 @@ export declare function polygonsIntersect(a: VecLike[], b: VecLike[]): boolean;
4731
4729
 
4732
4730
  /** @public */
4733
4731
  export declare class Polyline2d extends Geometry2d {
4734
- points: Vec[];
4732
+ private _points;
4733
+ private _segments?;
4735
4734
  constructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {
4736
4735
  points: Vec[];
4737
4736
  });
4738
- _segments?: Edge2d[];
4739
- get segments(): Edge2d[];
4737
+ protected get segments(): Edge2d[];
4740
4738
  getLength(): number;
4741
4739
  getVertices(): Vec[];
4742
4740
  nearestPoint(A: VecLike): Vec;
@@ -4802,10 +4800,10 @@ export declare class ReadonlySharedStyleMap {
4802
4800
 
4803
4801
  /** @public */
4804
4802
  export declare class Rectangle2d extends Polygon2d {
4805
- x: number;
4806
- y: number;
4807
- w: number;
4808
- h: number;
4803
+ private _x;
4804
+ private _y;
4805
+ private _w;
4806
+ private _h;
4809
4807
  constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
4810
4808
  height: number;
4811
4809
  width: number;
@@ -4814,6 +4812,7 @@ export declare class Rectangle2d extends Polygon2d {
4814
4812
  });
4815
4813
  getBounds(): Box;
4816
4814
  getSvgPathData(): string;
4815
+ private negativeZeroFix;
4817
4816
  }
4818
4817
 
4819
4818
  /** @public */
@@ -5548,12 +5547,12 @@ export declare class Stadium2d extends Geometry2d {
5548
5547
  height: number;
5549
5548
  width: number;
5550
5549
  };
5551
- w: number;
5552
- h: number;
5553
- a: Arc2d;
5554
- b: Edge2d;
5555
- c: Arc2d;
5556
- d: Edge2d;
5550
+ private _w;
5551
+ private _h;
5552
+ private _a;
5553
+ private _b;
5554
+ private _c;
5555
+ private _d;
5557
5556
  constructor(config: Omit<Geometry2dOptions, 'isClosed'> & {
5558
5557
  height: number;
5559
5558
  width: number;
@@ -7686,7 +7685,7 @@ export declare class Vec {
7686
7685
  len(): number;
7687
7686
  pry(V: VecLike): number;
7688
7687
  per(): this;
7689
- uni(): Vec;
7688
+ uni(): this;
7690
7689
  tan(V: VecLike): Vec;
7691
7690
  dist(V: VecLike): number;
7692
7691
  distanceToLineSegment(A: VecLike, B: VecLike): number;
@@ -7697,8 +7696,9 @@ export declare class Vec {
7697
7696
  lrp(B: VecLike, t: number): Vec;
7698
7697
  equals(B: VecLike): boolean;
7699
7698
  equalsXY(x: number, y: number): boolean;
7699
+ /** @deprecated use `uni` instead */
7700
7700
  norm(): this;
7701
- toFixed(): Vec;
7701
+ toFixed(): this;
7702
7702
  toString(): string;
7703
7703
  toJson(): VecModel;
7704
7704
  toArray(): number[];
package/dist-cjs/index.js CHANGED
@@ -361,7 +361,7 @@ function debugEnableLicensing() {
361
361
  }
362
362
  (0, import_utils.registerTldrawLibraryVersion)(
363
363
  "@tldraw/editor",
364
- "3.14.0-canary.36a37ef097fb",
364
+ "3.14.0-canary.403af9c5d8f2",
365
365
  "cjs"
366
366
  );
367
367
  //# sourceMappingURL=index.js.map
@@ -168,10 +168,14 @@ class Vec {
168
168
  return this;
169
169
  }
170
170
  uni() {
171
- return Vec.Uni(this);
171
+ const l = this.len();
172
+ if (l === 0) return this;
173
+ this.x /= l;
174
+ this.y /= l;
175
+ return this;
172
176
  }
173
177
  tan(V) {
174
- return Vec.Tan(this, V);
178
+ return this.sub(V).uni();
175
179
  }
176
180
  dist(V) {
177
181
  return Vec.Dist(this, V);
@@ -204,14 +208,14 @@ class Vec {
204
208
  equalsXY(x, y) {
205
209
  return Vec.EqualsXY(this, x, y);
206
210
  }
211
+ /** @deprecated use `uni` instead */
207
212
  norm() {
208
- const l = this.len();
209
- this.x = l === 0 ? 0 : this.x / l;
210
- this.y = l === 0 ? 0 : this.y / l;
211
- return this;
213
+ return this.uni();
212
214
  }
213
215
  toFixed() {
214
- return Vec.ToFixed(this);
216
+ this.x = (0, import_utils.toFixed)(this.x);
217
+ this.y = (0, import_utils.toFixed)(this.y);
218
+ return this;
215
219
  }
216
220
  toString() {
217
221
  return Vec.ToString(Vec.ToFixed(this));
@@ -315,7 +319,8 @@ class Vec {
315
319
  * Get the unit vector of A.
316
320
  */
317
321
  static Uni(A) {
318
- return Vec.Div(A, Vec.Len(A));
322
+ const l = Vec.Len(A);
323
+ return new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l);
319
324
  }
320
325
  static Tan(A, B) {
321
326
  return Vec.Uni(Vec.Sub(A, B));
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../src/lib/primitives/Vec.ts"],
4
- "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
4
+ "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\t/** @deprecated use `uni` instead */\n\tnorm() {\n\t\treturn this.uni()\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA;AAAA,EAGA,OAAO;AACN,WAAO,KAAK,IAAI;AAAA,EACjB;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
6
6
  "names": ["clamp"]
7
7
  }
@@ -28,30 +28,38 @@ var import_Geometry2d = require("./Geometry2d");
28
28
  var import_geometry_constants = require("./geometry-constants");
29
29
  class Arc2d extends import_Geometry2d.Geometry2d {
30
30
  _center;
31
- radius;
32
- start;
33
- end;
34
- largeArcFlag;
35
- sweepFlag;
36
- measure;
37
- angleStart;
38
- angleEnd;
31
+ _radius;
32
+ _start;
33
+ _end;
34
+ _largeArcFlag;
35
+ _sweepFlag;
36
+ _measure;
37
+ _angleStart;
38
+ _angleEnd;
39
39
  constructor(config) {
40
40
  super({ ...config, isFilled: false, isClosed: false });
41
41
  const { center, sweepFlag, largeArcFlag, start, end } = config;
42
42
  if (start.equals(end)) throw Error(`Arc must have different start and end points.`);
43
- this.angleStart = import_Vec.Vec.Angle(center, start);
44
- this.angleEnd = import_Vec.Vec.Angle(center, end);
45
- this.radius = import_Vec.Vec.Dist(center, start);
46
- this.measure = (0, import_utils.getArcMeasure)(this.angleStart, this.angleEnd, sweepFlag, largeArcFlag);
47
- this.start = start;
48
- this.end = end;
49
- this.sweepFlag = sweepFlag;
50
- this.largeArcFlag = largeArcFlag;
43
+ this._angleStart = import_Vec.Vec.Angle(center, start);
44
+ this._angleEnd = import_Vec.Vec.Angle(center, end);
45
+ this._radius = import_Vec.Vec.Dist(center, start);
46
+ this._measure = (0, import_utils.getArcMeasure)(this._angleStart, this._angleEnd, sweepFlag, largeArcFlag);
47
+ this._start = start;
48
+ this._end = end;
49
+ this._sweepFlag = sweepFlag;
50
+ this._largeArcFlag = largeArcFlag;
51
51
  this._center = center;
52
52
  }
53
53
  nearestPoint(point) {
54
- const { _center, measure, radius, angleEnd, angleStart, start: A, end: B } = this;
54
+ const {
55
+ _center,
56
+ _measure: measure,
57
+ _radius: radius,
58
+ _angleEnd: angleEnd,
59
+ _angleStart: angleStart,
60
+ _start: A,
61
+ _end: B
62
+ } = this;
55
63
  const t = (0, import_utils.getPointInArcT)(measure, angleStart, angleEnd, _center.angle(point));
56
64
  if (t <= 0) return A;
57
65
  if (t >= 1) return B;
@@ -70,7 +78,13 @@ class Arc2d extends import_Geometry2d.Geometry2d {
70
78
  return nearest;
71
79
  }
72
80
  hitTestLineSegment(A, B) {
73
- const { _center, radius, measure, angleStart, angleEnd } = this;
81
+ const {
82
+ _center,
83
+ _radius: radius,
84
+ _measure: measure,
85
+ _angleStart: angleStart,
86
+ _angleEnd: angleEnd
87
+ } = this;
74
88
  const intersection = (0, import_intersect.intersectLineSegmentCircle)(A, B, _center, radius);
75
89
  if (intersection === null) return false;
76
90
  return intersection.some((p) => {
@@ -79,7 +93,7 @@ class Arc2d extends import_Geometry2d.Geometry2d {
79
93
  });
80
94
  }
81
95
  getVertices() {
82
- const { _center, measure, length, radius, angleStart } = this;
96
+ const { _center, _measure: measure, length, _radius: radius, _angleStart: angleStart } = this;
83
97
  const vertices = [];
84
98
  for (let i = 0, n = (0, import_geometry_constants.getVerticesCountForLength)(Math.abs(length)); i < n + 1; i++) {
85
99
  const t = i / n * measure;
@@ -89,11 +103,17 @@ class Arc2d extends import_Geometry2d.Geometry2d {
89
103
  return vertices;
90
104
  }
91
105
  getSvgPathData(first = true) {
92
- const { start, end, radius, largeArcFlag, sweepFlag } = this;
106
+ const {
107
+ _start: start,
108
+ _end: end,
109
+ _radius: radius,
110
+ _largeArcFlag: largeArcFlag,
111
+ _sweepFlag: sweepFlag
112
+ } = this;
93
113
  return `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`;
94
114
  }
95
115
  getLength() {
96
- return Math.abs(this.measure * this.radius);
116
+ return Math.abs(this._measure * this._radius);
97
117
  }
98
118
  }
99
119
  //# sourceMappingURL=Arc2d.js.map
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Arc2d.ts"],
4
- "sourcesContent": ["import { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { getArcMeasure, getPointInArcT, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Arc2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tstart: Vec\n\tend: Vec\n\tlargeArcFlag: number\n\tsweepFlag: number\n\n\tmeasure: number\n\tangleStart: number\n\tangleEnd: number\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tcenter: Vec\n\t\t\tstart: Vec\n\t\t\tend: Vec\n\t\t\tsweepFlag: number\n\t\t\tlargeArcFlag: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isFilled: false, isClosed: false })\n\t\tconst { center, sweepFlag, largeArcFlag, start, end } = config\n\t\tif (start.equals(end)) throw Error(`Arc must have different start and end points.`)\n\n\t\t// ensure that the start and end are clockwise\n\t\tthis.angleStart = Vec.Angle(center, start)\n\t\tthis.angleEnd = Vec.Angle(center, end)\n\t\tthis.radius = Vec.Dist(center, start)\n\t\tthis.measure = getArcMeasure(this.angleStart, this.angleEnd, sweepFlag, largeArcFlag)\n\n\t\tthis.start = start\n\t\tthis.end = end\n\n\t\tthis.sweepFlag = sweepFlag\n\t\tthis.largeArcFlag = largeArcFlag\n\t\tthis._center = center\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst { _center, measure, radius, angleEnd, angleStart, start: A, end: B } = this\n\t\tconst t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point))\n\t\tif (t <= 0) return A\n\t\tif (t >= 1) return B\n\n\t\t// Get the point (P) on the arc, then pick the nearest of A, B, and P\n\t\tconst P = Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tfor (const p of [A, B, P]) {\n\t\t\td = Vec.Dist2(point, p)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike): boolean {\n\t\tconst { _center, radius, measure, angleStart, angleEnd } = this\n\t\tconst intersection = intersectLineSegmentCircle(A, B, _center, radius)\n\t\tif (intersection === null) return false\n\n\t\treturn intersection.some((p) => {\n\t\t\tconst result = getPointInArcT(measure, angleStart, angleEnd, _center.angle(p))\n\t\t\treturn result >= 0 && result <= 1\n\t\t})\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, measure, length, radius, angleStart } = this\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(Math.abs(length)); i < n + 1; i++) {\n\t\t\tconst t = (i / n) * measure\n\t\t\tconst angle = angleStart + t\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { start, end, radius, largeArcFlag, sweepFlag } = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`\n\t}\n\n\toverride getLength() {\n\t\treturn Math.abs(this.measure * this.radius)\n\t}\n}\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAA6B;AAC7B,uBAA2C;AAC3C,mBAAgE;AAChE,wBAA8C;AAC9C,gCAA0C;AAGnC,MAAM,cAAc,6BAAW;AAAA,EACrC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAOC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,QAAQ,WAAW,cAAc,OAAO,IAAI,IAAI;AACxD,QAAI,MAAM,OAAO,GAAG,EAAG,OAAM,MAAM,+CAA+C;AAGlF,SAAK,aAAa,eAAI,MAAM,QAAQ,KAAK;AACzC,SAAK,WAAW,eAAI,MAAM,QAAQ,GAAG;AACrC,SAAK,SAAS,eAAI,KAAK,QAAQ,KAAK;AACpC,SAAK,cAAU,4BAAc,KAAK,YAAY,KAAK,UAAU,WAAW,YAAY;AAEpF,SAAK,QAAQ;AACb,SAAK,MAAM;AAEX,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,UAAU;AAAA,EAChB;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM,EAAE,SAAS,SAAS,QAAQ,UAAU,YAAY,OAAO,GAAG,KAAK,EAAE,IAAI;AAC7E,UAAM,QAAI,6BAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,KAAK,CAAC;AAC5E,QAAI,KAAK,EAAG,QAAO;AACnB,QAAI,KAAK,EAAG,QAAO;AAGnB,UAAM,IAAI,eAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAE/D,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,eAAW,KAAK,CAAC,GAAG,GAAG,CAAC,GAAG;AAC1B,UAAI,eAAI,MAAM,OAAO,CAAC;AACtB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAY,GAAqB;AACnD,UAAM,EAAE,SAAS,QAAQ,SAAS,YAAY,SAAS,IAAI;AAC3D,UAAM,mBAAe,6CAA2B,GAAG,GAAG,SAAS,MAAM;AACrE,QAAI,iBAAiB,KAAM,QAAO;AAElC,WAAO,aAAa,KAAK,CAAC,MAAM;AAC/B,YAAM,aAAS,6BAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,CAAC,CAAC;AAC7E,aAAO,UAAU,KAAK,UAAU;AAAA,IACjC,CAAC;AAAA,EACF;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,SAAS,QAAQ,QAAQ,WAAW,IAAI;AACzD,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,QAAI,qDAA0B,KAAK,IAAI,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,KAAK;AAChF,YAAM,IAAK,IAAI,IAAK;AACpB,YAAM,QAAQ,aAAa;AAC3B,eAAS,SAAK,+BAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,OAAO,KAAK,QAAQ,cAAc,UAAU,IAAI;AACxD,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,MAAM,IAAI,MAAM,MAAM,YAAY,IAAI,SAAS,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClH;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,IAAI,KAAK,UAAU,KAAK,MAAM;AAAA,EAC3C;AACD;",
4
+ "sourcesContent": ["import { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { getArcMeasure, getPointInArcT, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Arc2d extends Geometry2d {\n\tprivate _center: Vec\n\tprivate _radius: number\n\tprivate _start: Vec\n\tprivate _end: Vec\n\tprivate _largeArcFlag: number\n\tprivate _sweepFlag: number\n\tprivate _measure: number\n\tprivate _angleStart: number\n\tprivate _angleEnd: number\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tcenter: Vec\n\t\t\tstart: Vec\n\t\t\tend: Vec\n\t\t\tsweepFlag: number\n\t\t\tlargeArcFlag: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isFilled: false, isClosed: false })\n\t\tconst { center, sweepFlag, largeArcFlag, start, end } = config\n\t\tif (start.equals(end)) throw Error(`Arc must have different start and end points.`)\n\n\t\t// ensure that the start and end are clockwise\n\t\tthis._angleStart = Vec.Angle(center, start)\n\t\tthis._angleEnd = Vec.Angle(center, end)\n\t\tthis._radius = Vec.Dist(center, start)\n\t\tthis._measure = getArcMeasure(this._angleStart, this._angleEnd, sweepFlag, largeArcFlag)\n\n\t\tthis._start = start\n\t\tthis._end = end\n\n\t\tthis._sweepFlag = sweepFlag\n\t\tthis._largeArcFlag = largeArcFlag\n\t\tthis._center = center\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst {\n\t\t\t_center,\n\t\t\t_measure: measure,\n\t\t\t_radius: radius,\n\t\t\t_angleEnd: angleEnd,\n\t\t\t_angleStart: angleStart,\n\t\t\t_start: A,\n\t\t\t_end: B,\n\t\t} = this\n\t\tconst t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point))\n\t\tif (t <= 0) return A\n\t\tif (t >= 1) return B\n\n\t\t// Get the point (P) on the arc, then pick the nearest of A, B, and P\n\t\tconst P = Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tfor (const p of [A, B, P]) {\n\t\t\td = Vec.Dist2(point, p)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike): boolean {\n\t\tconst {\n\t\t\t_center,\n\t\t\t_radius: radius,\n\t\t\t_measure: measure,\n\t\t\t_angleStart: angleStart,\n\t\t\t_angleEnd: angleEnd,\n\t\t} = this\n\t\tconst intersection = intersectLineSegmentCircle(A, B, _center, radius)\n\t\tif (intersection === null) return false\n\n\t\treturn intersection.some((p) => {\n\t\t\tconst result = getPointInArcT(measure, angleStart, angleEnd, _center.angle(p))\n\t\t\treturn result >= 0 && result <= 1\n\t\t})\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, _measure: measure, length, _radius: radius, _angleStart: angleStart } = this\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(Math.abs(length)); i < n + 1; i++) {\n\t\t\tconst t = (i / n) * measure\n\t\t\tconst angle = angleStart + t\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst {\n\t\t\t_start: start,\n\t\t\t_end: end,\n\t\t\t_radius: radius,\n\t\t\t_largeArcFlag: largeArcFlag,\n\t\t\t_sweepFlag: sweepFlag,\n\t\t} = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`\n\t}\n\n\toverride getLength() {\n\t\treturn Math.abs(this._measure * this._radius)\n\t}\n}\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAA6B;AAC7B,uBAA2C;AAC3C,mBAAgE;AAChE,wBAA8C;AAC9C,gCAA0C;AAGnC,MAAM,cAAc,6BAAW;AAAA,EAC7B;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAER,YACC,QAOC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,QAAQ,WAAW,cAAc,OAAO,IAAI,IAAI;AACxD,QAAI,MAAM,OAAO,GAAG,EAAG,OAAM,MAAM,+CAA+C;AAGlF,SAAK,cAAc,eAAI,MAAM,QAAQ,KAAK;AAC1C,SAAK,YAAY,eAAI,MAAM,QAAQ,GAAG;AACtC,SAAK,UAAU,eAAI,KAAK,QAAQ,KAAK;AACrC,SAAK,eAAW,4BAAc,KAAK,aAAa,KAAK,WAAW,WAAW,YAAY;AAEvF,SAAK,SAAS;AACd,SAAK,OAAO;AAEZ,SAAK,aAAa;AAClB,SAAK,gBAAgB;AACrB,SAAK,UAAU;AAAA,EAChB;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM;AAAA,MACL;AAAA,MACA,UAAU;AAAA,MACV,SAAS;AAAA,MACT,WAAW;AAAA,MACX,aAAa;AAAA,MACb,QAAQ;AAAA,MACR,MAAM;AAAA,IACP,IAAI;AACJ,UAAM,QAAI,6BAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,KAAK,CAAC;AAC5E,QAAI,KAAK,EAAG,QAAO;AACnB,QAAI,KAAK,EAAG,QAAO;AAGnB,UAAM,IAAI,eAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAE/D,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,eAAW,KAAK,CAAC,GAAG,GAAG,CAAC,GAAG;AAC1B,UAAI,eAAI,MAAM,OAAO,CAAC;AACtB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAY,GAAqB;AACnD,UAAM;AAAA,MACL;AAAA,MACA,SAAS;AAAA,MACT,UAAU;AAAA,MACV,aAAa;AAAA,MACb,WAAW;AAAA,IACZ,IAAI;AACJ,UAAM,mBAAe,6CAA2B,GAAG,GAAG,SAAS,MAAM;AACrE,QAAI,iBAAiB,KAAM,QAAO;AAElC,WAAO,aAAa,KAAK,CAAC,MAAM;AAC/B,YAAM,aAAS,6BAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,CAAC,CAAC;AAC7E,aAAO,UAAU,KAAK,UAAU;AAAA,IACjC,CAAC;AAAA,EACF;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,UAAU,SAAS,QAAQ,SAAS,QAAQ,aAAa,WAAW,IAAI;AACzF,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,QAAI,qDAA0B,KAAK,IAAI,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,KAAK;AAChF,YAAM,IAAK,IAAI,IAAK;AACpB,YAAM,QAAQ,aAAa;AAC3B,eAAS,SAAK,+BAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM;AAAA,MACL,QAAQ;AAAA,MACR,MAAM;AAAA,MACN,SAAS;AAAA,MACT,eAAe;AAAA,MACf,YAAY;AAAA,IACb,IAAI;AACJ,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,MAAM,IAAI,MAAM,MAAM,YAAY,IAAI,SAAS,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClH;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,IAAI,KAAK,WAAW,KAAK,OAAO;AAAA,EAC7C;AACD;",
6
6
  "names": []
7
7
  }
@@ -32,20 +32,20 @@ class Circle2d extends import_Geometry2d.Geometry2d {
32
32
  super({ isClosed: true, ...config });
33
33
  this.config = config;
34
34
  const { x = 0, y = 0, radius } = config;
35
- this.x = x;
36
- this.y = y;
35
+ this._x = x;
36
+ this._y = y;
37
37
  this._center = new import_Vec.Vec(radius + x, radius + y);
38
- this.radius = radius;
38
+ this._radius = radius;
39
39
  }
40
40
  _center;
41
- radius;
42
- x;
43
- y;
41
+ _radius;
42
+ _x;
43
+ _y;
44
44
  getBounds() {
45
- return new import_Box.Box(this.x, this.y, this.radius * 2, this.radius * 2);
45
+ return new import_Box.Box(this._x, this._y, this._radius * 2, this._radius * 2);
46
46
  }
47
47
  getVertices() {
48
- const { _center, radius } = this;
48
+ const { _center, _radius: radius } = this;
49
49
  const perimeter = import_utils.PI2 * radius;
50
50
  const vertices = [];
51
51
  for (let i = 0, n = (0, import_geometry_constants.getVerticesCountForLength)(perimeter); i < n; i++) {
@@ -55,16 +55,16 @@ class Circle2d extends import_Geometry2d.Geometry2d {
55
55
  return vertices;
56
56
  }
57
57
  nearestPoint(point) {
58
- const { _center, radius } = this;
58
+ const { _center, _radius: radius } = this;
59
59
  if (_center.equals(point)) return import_Vec.Vec.AddXY(_center, radius, 0);
60
60
  return import_Vec.Vec.Sub(point, _center).uni().mul(radius).add(_center);
61
61
  }
62
62
  hitTestLineSegment(A, B, distance = 0) {
63
- const { _center, radius } = this;
63
+ const { _center, _radius: radius } = this;
64
64
  return (0, import_intersect.intersectLineSegmentCircle)(A, B, _center, radius + distance) !== null;
65
65
  }
66
66
  getSvgPathData() {
67
- const { _center, radius } = this;
67
+ const { _center, _radius: radius } = this;
68
68
  return `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`;
69
69
  }
70
70
  }
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Circle2d.ts"],
4
- "sourcesContent": ["import { Box } from '../Box'\nimport { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { PI2, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Circle2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tx: number\n\ty: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\tx?: number\n\t\t\ty?: number\n\t\t\tradius: number\n\t\t\tisFilled: boolean\n\t\t}\n\t) {\n\t\tsuper({ isClosed: true, ...config })\n\t\tconst { x = 0, y = 0, radius } = config\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis._center = new Vec(radius + x, radius + y)\n\t\tthis.radius = radius\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(this.x, this.y, this.radius * 2, this.radius * 2)\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, radius } = this\n\t\tconst perimeter = PI2 * radius\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(perimeter); i < n; i++) {\n\t\t\tconst angle = (i / n) * PI2\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst { _center, radius } = this\n\t\tif (_center.equals(point)) return Vec.AddXY(_center, radius, 0)\n\t\treturn Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0): boolean {\n\t\tconst { _center, radius } = this\n\t\treturn intersectLineSegmentCircle(A, B, _center, radius + distance) !== null\n\t}\n\n\tgetSvgPathData(): string {\n\t\tconst { _center, radius } = this\n\t\treturn `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`\n\t}\n}\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAAoB;AACpB,iBAA6B;AAC7B,uBAA2C;AAC3C,mBAAsC;AACtC,wBAA8C;AAC9C,gCAA0C;AAGnC,MAAM,iBAAiB,6BAAW;AAAA,EAMxC,YACQ,QAMN;AACD,UAAM,EAAE,UAAU,MAAM,GAAG,OAAO,CAAC;AAP5B;AAQP,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,OAAO,IAAI;AACjC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,UAAU,IAAI,eAAI,SAAS,GAAG,SAAS,CAAC;AAC7C,SAAK,SAAS;AAAA,EACf;AAAA,EAnBA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAkBA,YAAY;AACX,WAAO,IAAI,eAAI,KAAK,GAAG,KAAK,GAAG,KAAK,SAAS,GAAG,KAAK,SAAS,CAAC;AAAA,EAChE;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,UAAM,YAAY,mBAAM;AACxB,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,QAAI,qDAA0B,SAAS,GAAG,IAAI,GAAG,KAAK;AACrE,YAAM,QAAS,IAAI,IAAK;AACxB,eAAS,SAAK,+BAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,QAAI,QAAQ,OAAO,KAAK,EAAG,QAAO,eAAI,MAAM,SAAS,QAAQ,CAAC;AAC9D,WAAO,eAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAAA,EAC7D;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAY;AACjE,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,eAAO,6CAA2B,GAAG,GAAG,SAAS,SAAS,QAAQ,MAAM;AAAA,EACzE;AAAA,EAEA,iBAAyB;AACxB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,IAAI,QAAQ,IAAI,MAAM,IAAI,QAAQ,CAAC,KAAK,MAAM,IAAI,MAAM,UAAU,SAAS,CAAC,MAAM,MAAM,IAAI,MAAM,WAAW,SAAS,CAAC;AAAA,EAC/H;AACD;",
4
+ "sourcesContent": ["import { Box } from '../Box'\nimport { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { PI2, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Circle2d extends Geometry2d {\n\tprivate _center: Vec\n\tprivate _radius: number\n\tprivate _x: number\n\tprivate _y: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\tx?: number\n\t\t\ty?: number\n\t\t\tradius: number\n\t\t\tisFilled: boolean\n\t\t}\n\t) {\n\t\tsuper({ isClosed: true, ...config })\n\t\tconst { x = 0, y = 0, radius } = config\n\t\tthis._x = x\n\t\tthis._y = y\n\t\tthis._center = new Vec(radius + x, radius + y)\n\t\tthis._radius = radius\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(this._x, this._y, this._radius * 2, this._radius * 2)\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, _radius: radius } = this\n\t\tconst perimeter = PI2 * radius\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(perimeter); i < n; i++) {\n\t\t\tconst angle = (i / n) * PI2\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst { _center, _radius: radius } = this\n\t\tif (_center.equals(point)) return Vec.AddXY(_center, radius, 0)\n\t\treturn Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0): boolean {\n\t\tconst { _center, _radius: radius } = this\n\t\treturn intersectLineSegmentCircle(A, B, _center, radius + distance) !== null\n\t}\n\n\tgetSvgPathData(): string {\n\t\tconst { _center, _radius: radius } = this\n\t\treturn `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`\n\t}\n}\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iBAAoB;AACpB,iBAA6B;AAC7B,uBAA2C;AAC3C,mBAAsC;AACtC,wBAA8C;AAC9C,gCAA0C;AAGnC,MAAM,iBAAiB,6BAAW;AAAA,EAMxC,YACQ,QAMN;AACD,UAAM,EAAE,UAAU,MAAM,GAAG,OAAO,CAAC;AAP5B;AAQP,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,OAAO,IAAI;AACjC,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,UAAU,IAAI,eAAI,SAAS,GAAG,SAAS,CAAC;AAC7C,SAAK,UAAU;AAAA,EAChB;AAAA,EAnBQ;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAkBR,YAAY;AACX,WAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,KAAK,UAAU,GAAG,KAAK,UAAU,CAAC;AAAA,EACpE;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,SAAS,OAAO,IAAI;AACrC,UAAM,YAAY,mBAAM;AACxB,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,QAAI,qDAA0B,SAAS,GAAG,IAAI,GAAG,KAAK;AACrE,YAAM,QAAS,IAAI,IAAK;AACxB,eAAS,SAAK,+BAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM,EAAE,SAAS,SAAS,OAAO,IAAI;AACrC,QAAI,QAAQ,OAAO,KAAK,EAAG,QAAO,eAAI,MAAM,SAAS,QAAQ,CAAC;AAC9D,WAAO,eAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAAA,EAC7D;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAY;AACjE,UAAM,EAAE,SAAS,SAAS,OAAO,IAAI;AACrC,eAAO,6CAA2B,GAAG,GAAG,SAAS,SAAS,QAAQ,MAAM;AAAA,EACzE;AAAA,EAEA,iBAAyB;AACxB,UAAM,EAAE,SAAS,SAAS,OAAO,IAAI;AACrC,WAAO,IAAI,QAAQ,IAAI,MAAM,IAAI,QAAQ,CAAC,KAAK,MAAM,IAAI,MAAM,UAAU,SAAS,CAAC,MAAM,MAAM,IAAI,MAAM,WAAW,SAAS,CAAC;AAAA,EAC/H;AACD;",
6
6
  "names": []
7
7
  }