@tldraw/editor 3.13.0-canary.fd867adaa211 → 3.14.0-canary.50ad892ef195

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. package/CHANGELOG.md +180 -0
  2. package/dist-cjs/index.d.ts +99 -99
  3. package/dist-cjs/index.js +7 -22
  4. package/dist-cjs/index.js.map +2 -2
  5. package/dist-cjs/lib/components/Shape.js +12 -8
  6. package/dist-cjs/lib/components/Shape.js.map +2 -2
  7. package/dist-cjs/lib/components/default-components/DefaultCanvas.js +31 -8
  8. package/dist-cjs/lib/components/default-components/DefaultCanvas.js.map +2 -2
  9. package/dist-cjs/lib/components/default-components/DefaultShapeIndicator.js +17 -11
  10. package/dist-cjs/lib/components/default-components/DefaultShapeIndicator.js.map +2 -2
  11. package/dist-cjs/lib/editor/Editor.js +85 -24
  12. package/dist-cjs/lib/editor/Editor.js.map +2 -2
  13. package/dist-cjs/lib/editor/managers/SnapManager/HandleSnaps.js.map +2 -2
  14. package/dist-cjs/lib/editor/managers/TextManager.js +10 -0
  15. package/dist-cjs/lib/editor/managers/TextManager.js.map +2 -2
  16. package/dist-cjs/lib/editor/shapes/ShapeUtil.js +1 -1
  17. package/dist-cjs/lib/editor/shapes/ShapeUtil.js.map +2 -2
  18. package/dist-cjs/lib/editor/shapes/group/GroupShapeUtil.js +0 -3
  19. package/dist-cjs/lib/editor/shapes/group/GroupShapeUtil.js.map +2 -2
  20. package/dist-cjs/lib/editor/shapes/shared/getPerfectDashProps.js.map +2 -2
  21. package/dist-cjs/lib/exports/getSvgJsx.js +12 -3
  22. package/dist-cjs/lib/exports/getSvgJsx.js.map +2 -2
  23. package/dist-cjs/lib/hooks/useEditorComponents.js +1 -2
  24. package/dist-cjs/lib/hooks/useEditorComponents.js.map +2 -2
  25. package/dist-cjs/lib/primitives/Box.js +16 -0
  26. package/dist-cjs/lib/primitives/Box.js.map +2 -2
  27. package/dist-cjs/lib/primitives/Mat.js +1 -1
  28. package/dist-cjs/lib/primitives/Mat.js.map +2 -2
  29. package/dist-cjs/lib/primitives/Vec.js +20 -0
  30. package/dist-cjs/lib/primitives/Vec.js.map +2 -2
  31. package/dist-cjs/lib/primitives/geometry/Arc2d.js +2 -2
  32. package/dist-cjs/lib/primitives/geometry/Arc2d.js.map +2 -2
  33. package/dist-cjs/lib/primitives/geometry/Circle2d.js +1 -1
  34. package/dist-cjs/lib/primitives/geometry/Circle2d.js.map +2 -2
  35. package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js +1 -1
  36. package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js.map +2 -2
  37. package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js.map +2 -2
  38. package/dist-cjs/lib/primitives/geometry/Edge2d.js +1 -1
  39. package/dist-cjs/lib/primitives/geometry/Edge2d.js.map +2 -2
  40. package/dist-cjs/lib/primitives/geometry/Ellipse2d.js.map +2 -2
  41. package/dist-cjs/lib/primitives/geometry/Geometry2d.js +91 -20
  42. package/dist-cjs/lib/primitives/geometry/Geometry2d.js.map +2 -2
  43. package/dist-cjs/lib/primitives/geometry/Group2d.js +55 -2
  44. package/dist-cjs/lib/primitives/geometry/Group2d.js.map +2 -2
  45. package/dist-cjs/lib/primitives/geometry/Point2d.js.map +2 -2
  46. package/dist-cjs/lib/primitives/geometry/Polyline2d.js.map +2 -2
  47. package/dist-cjs/lib/primitives/geometry/Stadium2d.js.map +2 -2
  48. package/dist-cjs/lib/utils/areShapesContentEqual.js +25 -0
  49. package/dist-cjs/lib/utils/areShapesContentEqual.js.map +7 -0
  50. package/dist-cjs/lib/utils/debug-flags.js +5 -2
  51. package/dist-cjs/lib/utils/debug-flags.js.map +2 -2
  52. package/dist-cjs/lib/utils/nearestMultiple.js +34 -0
  53. package/dist-cjs/lib/utils/nearestMultiple.js.map +7 -0
  54. package/dist-cjs/version.js +3 -3
  55. package/dist-cjs/version.js.map +1 -1
  56. package/dist-esm/index.d.mts +99 -99
  57. package/dist-esm/index.mjs +9 -41
  58. package/dist-esm/index.mjs.map +2 -2
  59. package/dist-esm/lib/components/Shape.mjs +12 -8
  60. package/dist-esm/lib/components/Shape.mjs.map +2 -2
  61. package/dist-esm/lib/components/default-components/DefaultCanvas.mjs +31 -8
  62. package/dist-esm/lib/components/default-components/DefaultCanvas.mjs.map +2 -2
  63. package/dist-esm/lib/components/default-components/DefaultShapeIndicator.mjs +17 -11
  64. package/dist-esm/lib/components/default-components/DefaultShapeIndicator.mjs.map +2 -2
  65. package/dist-esm/lib/editor/Editor.mjs +85 -24
  66. package/dist-esm/lib/editor/Editor.mjs.map +2 -2
  67. package/dist-esm/lib/editor/managers/SnapManager/HandleSnaps.mjs.map +2 -2
  68. package/dist-esm/lib/editor/managers/TextManager.mjs +10 -0
  69. package/dist-esm/lib/editor/managers/TextManager.mjs.map +2 -2
  70. package/dist-esm/lib/editor/shapes/ShapeUtil.mjs +1 -1
  71. package/dist-esm/lib/editor/shapes/ShapeUtil.mjs.map +2 -2
  72. package/dist-esm/lib/editor/shapes/group/GroupShapeUtil.mjs +0 -3
  73. package/dist-esm/lib/editor/shapes/group/GroupShapeUtil.mjs.map +2 -2
  74. package/dist-esm/lib/editor/shapes/shared/getPerfectDashProps.mjs.map +2 -2
  75. package/dist-esm/lib/exports/getSvgJsx.mjs +12 -3
  76. package/dist-esm/lib/exports/getSvgJsx.mjs.map +2 -2
  77. package/dist-esm/lib/hooks/useEditorComponents.mjs +1 -4
  78. package/dist-esm/lib/hooks/useEditorComponents.mjs.map +2 -2
  79. package/dist-esm/lib/primitives/Box.mjs +16 -0
  80. package/dist-esm/lib/primitives/Box.mjs.map +2 -2
  81. package/dist-esm/lib/primitives/Mat.mjs +1 -1
  82. package/dist-esm/lib/primitives/Mat.mjs.map +2 -2
  83. package/dist-esm/lib/primitives/Vec.mjs +20 -0
  84. package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
  85. package/dist-esm/lib/primitives/geometry/Arc2d.mjs +2 -2
  86. package/dist-esm/lib/primitives/geometry/Arc2d.mjs.map +2 -2
  87. package/dist-esm/lib/primitives/geometry/Circle2d.mjs +1 -1
  88. package/dist-esm/lib/primitives/geometry/Circle2d.mjs.map +2 -2
  89. package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs +1 -1
  90. package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs.map +2 -2
  91. package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs.map +2 -2
  92. package/dist-esm/lib/primitives/geometry/Edge2d.mjs +1 -1
  93. package/dist-esm/lib/primitives/geometry/Edge2d.mjs.map +2 -2
  94. package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs.map +2 -2
  95. package/dist-esm/lib/primitives/geometry/Geometry2d.mjs +92 -21
  96. package/dist-esm/lib/primitives/geometry/Geometry2d.mjs.map +2 -2
  97. package/dist-esm/lib/primitives/geometry/Group2d.mjs +55 -2
  98. package/dist-esm/lib/primitives/geometry/Group2d.mjs.map +2 -2
  99. package/dist-esm/lib/primitives/geometry/Point2d.mjs.map +2 -2
  100. package/dist-esm/lib/primitives/geometry/Polyline2d.mjs.map +2 -2
  101. package/dist-esm/lib/primitives/geometry/Stadium2d.mjs.map +2 -2
  102. package/dist-esm/lib/utils/areShapesContentEqual.mjs +5 -0
  103. package/dist-esm/lib/utils/areShapesContentEqual.mjs.map +7 -0
  104. package/dist-esm/lib/utils/debug-flags.mjs +5 -2
  105. package/dist-esm/lib/utils/debug-flags.mjs.map +2 -2
  106. package/dist-esm/lib/utils/nearestMultiple.mjs +14 -0
  107. package/dist-esm/lib/utils/nearestMultiple.mjs.map +7 -0
  108. package/dist-esm/version.mjs +3 -3
  109. package/dist-esm/version.mjs.map +1 -1
  110. package/editor.css +36 -4
  111. package/package.json +7 -7
  112. package/src/index.ts +16 -31
  113. package/src/lib/components/Shape.tsx +14 -10
  114. package/src/lib/components/default-components/DefaultCanvas.tsx +32 -8
  115. package/src/lib/components/default-components/DefaultShapeIndicator.tsx +17 -8
  116. package/src/lib/editor/Editor.test.ts +1 -1
  117. package/src/lib/editor/Editor.ts +96 -24
  118. package/src/lib/editor/managers/SnapManager/HandleSnaps.ts +0 -1
  119. package/src/lib/editor/managers/TextManager.ts +12 -0
  120. package/src/lib/editor/shapes/ShapeUtil.ts +10 -2
  121. package/src/lib/editor/shapes/group/GroupShapeUtil.tsx +0 -4
  122. package/src/lib/editor/shapes/shared/getPerfectDashProps.ts +9 -9
  123. package/src/lib/exports/getSvgJsx.tsx +16 -7
  124. package/src/lib/hooks/useEditorComponents.tsx +2 -5
  125. package/src/lib/primitives/Box.ts +20 -0
  126. package/src/lib/primitives/Mat.ts +5 -4
  127. package/src/lib/primitives/Vec.ts +23 -0
  128. package/src/lib/primitives/geometry/Arc2d.ts +5 -5
  129. package/src/lib/primitives/geometry/Circle2d.ts +4 -4
  130. package/src/lib/primitives/geometry/CubicBezier2d.ts +4 -4
  131. package/src/lib/primitives/geometry/CubicSpline2d.ts +3 -3
  132. package/src/lib/primitives/geometry/Edge2d.ts +3 -3
  133. package/src/lib/primitives/geometry/Ellipse2d.ts +3 -3
  134. package/src/lib/primitives/geometry/Geometry2d.test.ts +42 -0
  135. package/src/lib/primitives/geometry/Geometry2d.ts +123 -35
  136. package/src/lib/primitives/geometry/Group2d.ts +70 -7
  137. package/src/lib/primitives/geometry/Point2d.ts +2 -2
  138. package/src/lib/primitives/geometry/Polyline2d.ts +3 -3
  139. package/src/lib/primitives/geometry/Stadium2d.ts +3 -3
  140. package/src/lib/test/currentToolIdMask.test.ts +1 -1
  141. package/src/lib/test/user.test.ts +1 -1
  142. package/src/lib/utils/areShapesContentEqual.ts +4 -0
  143. package/src/lib/utils/debug-flags.ts +7 -2
  144. package/src/lib/utils/nearestMultiple.ts +13 -0
  145. package/src/lib/utils/sync/LocalIndexedDb.test.ts +1 -1
  146. package/src/lib/utils/sync/TLLocalSyncClient.test.ts +1 -1
  147. package/src/version.ts +3 -3
@@ -29,6 +29,10 @@ class Box {
29
29
  this.x = n;
30
30
  }
31
31
  // eslint-disable-next-line no-restricted-syntax
32
+ get left() {
33
+ return this.x;
34
+ }
35
+ // eslint-disable-next-line no-restricted-syntax
32
36
  get midX() {
33
37
  return this.x + this.w / 2;
34
38
  }
@@ -37,6 +41,10 @@ class Box {
37
41
  return this.x + this.w;
38
42
  }
39
43
  // eslint-disable-next-line no-restricted-syntax
44
+ get right() {
45
+ return this.x + this.w;
46
+ }
47
+ // eslint-disable-next-line no-restricted-syntax
40
48
  get minY() {
41
49
  return this.y;
42
50
  }
@@ -45,6 +53,10 @@ class Box {
45
53
  this.y = n;
46
54
  }
47
55
  // eslint-disable-next-line no-restricted-syntax
56
+ get top() {
57
+ return this.y;
58
+ }
59
+ // eslint-disable-next-line no-restricted-syntax
48
60
  get midY() {
49
61
  return this.y + this.h / 2;
50
62
  }
@@ -53,6 +65,10 @@ class Box {
53
65
  return this.y + this.h;
54
66
  }
55
67
  // eslint-disable-next-line no-restricted-syntax
68
+ get bottom() {
69
+ return this.y + this.h;
70
+ }
71
+ // eslint-disable-next-line no-restricted-syntax
56
72
  get width() {
57
73
  return this.w;
58
74
  }
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../src/lib/primitives/Box.ts"],
4
- "sourcesContent": ["import { BoxModel } from '@tldraw/tlschema'\nimport { Vec, VecLike } from './Vec'\nimport { PI, PI2, toPrecision } from './utils'\n\n/** @public */\nexport type BoxLike = BoxModel | Box\n\n/** @public */\nexport type SelectionEdge = 'top' | 'right' | 'bottom' | 'left'\n\n/** @public */\nexport type SelectionCorner = 'top_left' | 'top_right' | 'bottom_right' | 'bottom_left'\n\n/** @public */\nexport type SelectionHandle = SelectionEdge | SelectionCorner\n\n/** @public */\nexport type RotateCorner =\n\t| 'top_left_rotate'\n\t| 'top_right_rotate'\n\t| 'bottom_right_rotate'\n\t| 'bottom_left_rotate'\n\t| 'mobile_rotate'\n\n/** @public */\nexport class Box {\n\tconstructor(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t}\n\n\tx = 0\n\ty = 0\n\tw = 0\n\th = 0\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget point() {\n\t\treturn new Vec(this.x, this.y)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset point(val: Vec) {\n\t\tthis.x = val.x\n\t\tthis.y = val.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minX() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minX(n: number) {\n\t\tthis.x = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midX() {\n\t\treturn this.x + this.w / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxX() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minY() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minY(n: number) {\n\t\tthis.y = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midY() {\n\t\treturn this.y + this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxY() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget width() {\n\t\treturn this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset width(n: number) {\n\t\tthis.w = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget height() {\n\t\treturn this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset height(n: number) {\n\t\tthis.h = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget aspectRatio() {\n\t\treturn this.width / this.height\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn new Vec(this.midX, this.midY)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset center(v: Vec) {\n\t\tthis.minX = v.x - this.width / 2\n\t\tthis.minY = v.y - this.height / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget corners() {\n\t\treturn [\n\t\t\tnew Vec(this.minX, this.minY),\n\t\t\tnew Vec(this.maxX, this.minY),\n\t\t\tnew Vec(this.maxX, this.maxY),\n\t\t\tnew Vec(this.minX, this.maxY),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget cornersAndCenter() {\n\t\treturn [\n\t\t\tnew Vec(this.minX, this.minY),\n\t\t\tnew Vec(this.maxX, this.minY),\n\t\t\tnew Vec(this.maxX, this.maxY),\n\t\t\tnew Vec(this.minX, this.maxY),\n\t\t\tthis.center,\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget sides(): Array<[Vec, Vec]> {\n\t\tconst { corners } = this\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget size(): Vec {\n\t\treturn new Vec(this.w, this.h)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toPrecision(this.x)\n\t\tthis.y = toPrecision(this.y)\n\t\tthis.w = toPrecision(this.w)\n\t\tthis.h = toPrecision(this.h)\n\t\treturn this\n\t}\n\n\tsetTo(B: Box) {\n\t\tthis.x = B.x\n\t\tthis.y = B.y\n\t\tthis.w = B.w\n\t\tthis.h = B.h\n\t\treturn this\n\t}\n\n\tset(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t\treturn this\n\t}\n\n\texpand(A: Box) {\n\t\tconst minX = Math.min(this.minX, A.minX)\n\t\tconst minY = Math.min(this.minY, A.minY)\n\t\tconst maxX = Math.max(this.maxX, A.maxX)\n\t\tconst maxY = Math.max(this.maxY, A.maxY)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.w = maxX - minX\n\t\tthis.h = maxY - minY\n\t\treturn this\n\t}\n\n\texpandBy(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\tthis.w += n * 2\n\t\tthis.h += n * 2\n\t\treturn this\n\t}\n\n\tscale(n: number) {\n\t\tthis.x /= n\n\t\tthis.y /= n\n\t\tthis.w /= n\n\t\tthis.h /= n\n\t\treturn this\n\t}\n\n\tclone() {\n\t\tconst { x, y, w, h } = this\n\t\treturn new Box(x, y, w, h)\n\t}\n\n\ttranslate(delta: VecLike) {\n\t\tthis.x += delta.x\n\t\tthis.y += delta.y\n\t\treturn this\n\t}\n\n\tsnapToGrid(size: number) {\n\t\tconst minX = Math.round(this.minX / size) * size\n\t\tconst minY = Math.round(this.minY / size) * size\n\t\tconst maxX = Math.round(this.maxX / size) * size\n\t\tconst maxY = Math.round(this.maxY / size) * size\n\t\tthis.minX = minX\n\t\tthis.minY = minY\n\t\tthis.width = Math.max(1, maxX - minX)\n\t\tthis.height = Math.max(1, maxY - minY)\n\t}\n\n\tcollides(B: Box) {\n\t\treturn Box.Collides(this, B)\n\t}\n\n\tcontains(B: Box) {\n\t\treturn Box.Contains(this, B)\n\t}\n\n\tincludes(B: Box) {\n\t\treturn Box.Includes(this, B)\n\t}\n\n\tcontainsPoint(V: VecLike, margin = 0) {\n\t\treturn Box.ContainsPoint(this, V, margin)\n\t}\n\n\tgetHandlePoint(handle: SelectionCorner | SelectionEdge) {\n\t\tswitch (handle) {\n\t\t\tcase 'top_left':\n\t\t\t\treturn new Vec(this.minX, this.minY)\n\t\t\tcase 'top_right':\n\t\t\t\treturn new Vec(this.maxX, this.minY)\n\t\t\tcase 'bottom_left':\n\t\t\t\treturn new Vec(this.minX, this.maxY)\n\t\t\tcase 'bottom_right':\n\t\t\t\treturn new Vec(this.maxX, this.maxY)\n\t\t\tcase 'top':\n\t\t\t\treturn new Vec(this.midX, this.minY)\n\t\t\tcase 'right':\n\t\t\t\treturn new Vec(this.maxX, this.midY)\n\t\t\tcase 'bottom':\n\t\t\t\treturn new Vec(this.midX, this.maxY)\n\t\t\tcase 'left':\n\t\t\t\treturn new Vec(this.minX, this.midY)\n\t\t}\n\t}\n\n\ttoJson(): BoxModel {\n\t\treturn { x: this.minX, y: this.minY, w: this.w, h: this.h }\n\t}\n\n\tresize(handle: SelectionCorner | SelectionEdge | string, dx: number, dy: number) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = this\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = this\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tthis.minX = b0x\n\t\tthis.minY = b0y\n\t\tthis.width = Math.abs(b1x - b0x)\n\t\tthis.height = Math.abs(b1y - b0y)\n\t}\n\n\tunion(box: BoxModel) {\n\t\tconst minX = Math.min(this.minX, box.x)\n\t\tconst minY = Math.min(this.minY, box.y)\n\t\tconst maxX = Math.max(this.maxX, box.w + box.x)\n\t\tconst maxY = Math.max(this.maxY, box.h + box.y)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.width = maxX - minX\n\t\tthis.height = maxY - minY\n\n\t\treturn this\n\t}\n\n\tstatic From(box: BoxModel) {\n\t\treturn new Box(box.x, box.y, box.w, box.h)\n\t}\n\n\tstatic FromCenter(center: VecLike, size: VecLike) {\n\t\treturn new Box(center.x - size.x / 2, center.y - size.y / 2, size.x, size.y)\n\t}\n\n\tstatic FromPoints(points: VecLike[]) {\n\t\tif (points.length === 0) return new Box()\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\t\tlet point: VecLike\n\t\tfor (let i = 0, n = points.length; i < n; i++) {\n\t\t\tpoint = points[i]\n\t\t\tminX = Math.min(point.x, minX)\n\t\t\tminY = Math.min(point.y, minY)\n\t\t\tmaxX = Math.max(point.x, maxX)\n\t\t\tmaxY = Math.max(point.y, maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Expand(A: Box, B: Box) {\n\t\tconst minX = Math.min(B.minX, A.minX)\n\t\tconst minY = Math.min(B.minY, A.minY)\n\t\tconst maxX = Math.max(B.maxX, A.maxX)\n\t\tconst maxY = Math.max(B.maxY, A.maxY)\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic ExpandBy(A: Box, n: number) {\n\t\treturn new Box(A.minX - n, A.minY - n, A.width + n * 2, A.height + n * 2)\n\t}\n\n\tstatic Collides(A: Box, B: Box) {\n\t\treturn !(A.maxX < B.minX || A.minX > B.maxX || A.maxY < B.minY || A.minY > B.maxY)\n\t}\n\n\tstatic Contains(A: Box, B: Box) {\n\t\treturn A.minX < B.minX && A.minY < B.minY && A.maxY > B.maxY && A.maxX > B.maxX\n\t}\n\n\tstatic Includes(A: Box, B: Box) {\n\t\treturn Box.Collides(A, B) || Box.Contains(A, B)\n\t}\n\n\tstatic ContainsPoint(A: Box, B: VecLike, margin = 0) {\n\t\treturn !(\n\t\t\tB.x < A.minX - margin ||\n\t\t\tB.y < A.minY - margin ||\n\t\t\tB.x > A.maxX + margin ||\n\t\t\tB.y > A.maxY + margin\n\t\t)\n\t}\n\n\tstatic Common(boxes: Box[]) {\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\n\t\tfor (let i = 0; i < boxes.length; i++) {\n\t\t\tconst B = boxes[i]\n\t\t\tminX = Math.min(minX, B.minX)\n\t\t\tminY = Math.min(minY, B.minY)\n\t\t\tmaxX = Math.max(maxX, B.maxX)\n\t\t\tmaxY = Math.max(maxY, B.maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Sides(A: Box, inset = 0) {\n\t\tconst { corners } = A\n\t\tif (inset) {\n\t\t\t// TODO: Inset the corners by the inset amount.\n\t\t}\n\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\tstatic Resize(\n\t\tbox: Box,\n\t\thandle: SelectionCorner | SelectionEdge | string,\n\t\tdx: number,\n\t\tdy: number,\n\t\tisAspectRatioLocked = false\n\t) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = box\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = box\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\t/*\n 2. Aspect ratio\n If the aspect ratio is locked, adjust the corners so that the\n new box's aspect ratio matches the original aspect ratio.\n */\n\t\tif (isAspectRatioLocked) {\n\t\t\tconst aspectRatio = (a1x - a0x) / (a1y - a0y)\n\t\t\tconst bw = Math.abs(b1x - b0x)\n\t\t\tconst bh = Math.abs(b1y - b0y)\n\t\t\tconst tw = bw * (scaleY < 0 ? 1 : -1) * (1 / aspectRatio)\n\t\t\tconst th = bh * (scaleX < 0 ? 1 : -1) * aspectRatio\n\t\t\tconst isTall = aspectRatio < bw / bh\n\n\t\t\tswitch (handle) {\n\t\t\t\tcase 'top_left': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'top_right': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_right': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_left': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom':\n\t\t\t\tcase 'top': {\n\t\t\t\t\tconst m = (b0x + b1x) / 2\n\t\t\t\t\tconst w = bh * aspectRatio\n\t\t\t\t\tb0x = m - w / 2\n\t\t\t\t\tb1x = m + w / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'left':\n\t\t\t\tcase 'right': {\n\t\t\t\t\tconst m = (b0y + b1y) / 2\n\t\t\t\t\tconst h = bw / aspectRatio\n\t\t\t\t\tb0y = m - h / 2\n\t\t\t\t\tb1y = m + h / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tconst final = new Box(b0x, b0y, Math.abs(b1x - b0x), Math.abs(b1y - b0y))\n\n\t\treturn {\n\t\t\tbox: final,\n\t\t\tscaleX: +((final.width / box.width) * (scaleX > 0 ? 1 : -1)).toFixed(5),\n\t\t\tscaleY: +((final.height / box.height) * (scaleY > 0 ? 1 : -1)).toFixed(5),\n\t\t}\n\t}\n\n\tequals(other: Box | BoxModel) {\n\t\treturn Box.Equals(this, other)\n\t}\n\n\tstatic Equals(a: Box | BoxModel, b: Box | BoxModel) {\n\t\treturn b.x === a.x && b.y === a.y && b.w === a.w && b.h === a.h\n\t}\n\n\tzeroFix() {\n\t\tthis.w = Math.max(1, this.w)\n\t\tthis.h = Math.max(1, this.h)\n\t\treturn this\n\t}\n\n\tstatic ZeroFix(other: Box | BoxModel) {\n\t\treturn new Box(other.x, other.y, Math.max(1, other.w), Math.max(1, other.h))\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleY(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'top':\n\t\t\treturn 'bottom'\n\t\tcase 'bottom':\n\t\t\treturn 'top'\n\t\tcase 'top_left':\n\t\t\treturn 'bottom_left'\n\t\tcase 'top_right':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_left':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_right':\n\t\t\treturn 'top_right'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleX(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'left':\n\t\t\treturn 'right'\n\t\tcase 'right':\n\t\t\treturn 'left'\n\t\tcase 'top_left':\n\t\t\treturn 'top_right'\n\t\tcase 'top_right':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_left':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_right':\n\t\t\treturn 'bottom_left'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\nconst ORDERED_SELECTION_HANDLES = [\n\t'top',\n\t'top_right',\n\t'right',\n\t'bottom_right',\n\t'bottom',\n\t'bottom_left',\n\t'left',\n\t'top_left',\n] as const\n\n/** @public */\nexport function rotateSelectionHandle(handle: SelectionHandle, rotation: number): SelectionHandle {\n\t// first find out how many tau we need to rotate by\n\trotation = rotation % PI2\n\tconst numSteps = Math.round(rotation / (PI / 4))\n\n\tconst currentIndex = ORDERED_SELECTION_HANDLES.indexOf(handle)\n\treturn ORDERED_SELECTION_HANDLES[(currentIndex + numSteps) % ORDERED_SELECTION_HANDLES.length]\n}\n\n/** @public */\nexport function isSelectionCorner(selection: string): selection is SelectionCorner {\n\treturn (\n\t\tselection === 'top_left' ||\n\t\tselection === 'top_right' ||\n\t\tselection === 'bottom_right' ||\n\t\tselection === 'bottom_left'\n\t)\n}\n\n/** @public */\nexport const ROTATE_CORNER_TO_SELECTION_CORNER = {\n\ttop_left_rotate: 'top_left',\n\ttop_right_rotate: 'top_right',\n\tbottom_right_rotate: 'bottom_right',\n\tbottom_left_rotate: 'bottom_left',\n\tmobile_rotate: 'top_left',\n} as const\n"],
5
- "mappings": "AACA,SAAS,WAAoB;AAC7B,SAAS,IAAI,KAAK,mBAAmB;AAuB9B,MAAM,IAAI;AAAA,EAChB,YAAY,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA;AAAA,EAGJ,IAAI,QAAQ;AACX,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA;AAAA,EAGA,IAAI,MAAM,KAAU;AACnB,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI;AAAA,EACd;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,MAAM,GAAW;AACpB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO,GAAW;AACrB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,cAAc;AACjB,WAAO,KAAK,QAAQ,KAAK;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,EACpC;AAAA;AAAA,EAGA,IAAI,OAAO,GAAQ;AAClB,SAAK,OAAO,EAAE,IAAI,KAAK,QAAQ;AAC/B,SAAK,OAAO,EAAE,IAAI,KAAK,SAAS;AAAA,EACjC;AAAA;AAAA,EAGA,IAAI,UAAU;AACb,WAAO;AAAA,MACN,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,IAC7B;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,mBAAmB;AACtB,WAAO;AAAA,MACN,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,KAAK;AAAA,IACN;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,QAA2B;AAC9B,UAAM,EAAE,QAAQ,IAAI;AACpB,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,OAAY;AACf,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAQ;AACb,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAC/B,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAQ;AACd,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AAEvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI,OAAO;AAChB,SAAK,IAAI,OAAO;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAW;AACnB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK,IAAI;AACd,SAAK,KAAK,IAAI;AACd,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW;AAChB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ;AACP,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAAA,EAC1B;AAAA,EAEA,UAAU,OAAgB;AACzB,SAAK,KAAK,MAAM;AAChB,SAAK,KAAK,MAAM;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW,MAAc;AACxB,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,GAAG,OAAO,IAAI;AACpC,SAAK,SAAS,KAAK,IAAI,GAAG,OAAO,IAAI;AAAA,EACtC;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,cAAc,GAAY,SAAS,GAAG;AACrC,WAAO,IAAI,cAAc,MAAM,GAAG,MAAM;AAAA,EACzC;AAAA,EAEA,eAAe,QAAyC;AACvD,YAAQ,QAAQ;AAAA,MACf,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,IACrC;AAAA,EACD;AAAA,EAEA,SAAmB;AAClB,WAAO,EAAE,GAAG,KAAK,MAAM,GAAG,KAAK,MAAM,GAAG,KAAK,GAAG,GAAG,KAAK,EAAE;AAAA,EAC3D;AAAA,EAEA,OAAO,QAAkD,IAAY,IAAY;AAChF,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAEvB,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,MAAM,GAAG;AAC/B,SAAK,SAAS,KAAK,IAAI,MAAM,GAAG;AAAA,EACjC;AAAA,EAEA,MAAM,KAAe;AACpB,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,CAAC;AACtC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,CAAC;AACtC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,IAAI,IAAI,CAAC;AAC9C,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,IAAI,IAAI,CAAC;AAE9C,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,QAAQ,OAAO;AACpB,SAAK,SAAS,OAAO;AAErB,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,KAAK,KAAe;AAC1B,WAAO,IAAI,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,WAAW,QAAiB,MAAe;AACjD,WAAO,IAAI,IAAI,OAAO,IAAI,KAAK,IAAI,GAAG,OAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC5E;AAAA,EAEA,OAAO,WAAW,QAAmB;AACpC,QAAI,OAAO,WAAW,EAAG,QAAO,IAAI,IAAI;AACxC,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI;AACJ,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,IAAI,GAAG,KAAK;AAC9C,cAAQ,OAAO,CAAC;AAChB,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAAA,IAC9B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,OAAO,GAAQ,GAAQ;AAC7B,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AAEpC,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAW;AAClC,WAAO,IAAI,IAAI,EAAE,OAAO,GAAG,EAAE,OAAO,GAAG,EAAE,QAAQ,IAAI,GAAG,EAAE,SAAS,IAAI,CAAC;AAAA,EACzE;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC9E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC5E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,IAAI,SAAS,GAAG,CAAC,KAAK,IAAI,SAAS,GAAG,CAAC;AAAA,EAC/C;AAAA,EAEA,OAAO,cAAc,GAAQ,GAAY,SAAS,GAAG;AACpD,WAAO,EACN,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO;AAAA,EAEjB;AAAA,EAEA,OAAO,OAAO,OAAc;AAC3B,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AAEX,aAAS,IAAI,GAAG,IAAI,MAAM,QAAQ,KAAK;AACtC,YAAM,IAAI,MAAM,CAAC;AACjB,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAAA,IAC7B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,MAAM,GAAQ,QAAQ,GAAG;AAC/B,UAAM,EAAE,QAAQ,IAAI;AACpB,QAAI,OAAO;AAAA,IAEX;AAEA,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA,EAEA,OAAO,OACN,KACA,QACA,IACA,IACA,sBAAsB,OACrB;AACD,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAOvB,QAAI,qBAAqB;AACxB,YAAM,eAAe,MAAM,QAAQ,MAAM;AACzC,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,OAAO,IAAI;AAC7C,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,MAAM;AACxC,YAAM,SAAS,cAAc,KAAK;AAElC,cAAQ,QAAQ;AAAA,QACf,KAAK,YAAY;AAChB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,aAAa;AACjB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,gBAAgB;AACpB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,eAAe;AACnB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,OAAO;AACX,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,SAAS;AACb,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,UAAM,QAAQ,IAAI,IAAI,KAAK,KAAK,KAAK,IAAI,MAAM,GAAG,GAAG,KAAK,IAAI,MAAM,GAAG,CAAC;AAExE,WAAO;AAAA,MACN,KAAK;AAAA,MACL,QAAQ,EAAG,MAAM,QAAQ,IAAI,SAAU,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,MACtE,QAAQ,EAAG,MAAM,SAAS,IAAI,UAAW,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,IACzE;AAAA,EACD;AAAA,EAEA,OAAO,OAAuB;AAC7B,WAAO,IAAI,OAAO,MAAM,KAAK;AAAA,EAC9B;AAAA,EAEA,OAAO,OAAO,GAAmB,GAAmB;AACnD,WAAO,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE;AAAA,EAC/D;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,QAAQ,OAAuB;AACrC,WAAO,IAAI,IAAI,MAAM,GAAG,MAAM,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,CAAC;AAAA,EAC5E;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAEA,MAAM,4BAA4B;AAAA,EACjC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACD;AAGO,SAAS,sBAAsB,QAAyB,UAAmC;AAEjG,aAAW,WAAW;AACtB,QAAM,WAAW,KAAK,MAAM,YAAY,KAAK,EAAE;AAE/C,QAAM,eAAe,0BAA0B,QAAQ,MAAM;AAC7D,SAAO,2BAA2B,eAAe,YAAY,0BAA0B,MAAM;AAC9F;AAGO,SAAS,kBAAkB,WAAiD;AAClF,SACC,cAAc,cACd,cAAc,eACd,cAAc,kBACd,cAAc;AAEhB;AAGO,MAAM,oCAAoC;AAAA,EAChD,iBAAiB;AAAA,EACjB,kBAAkB;AAAA,EAClB,qBAAqB;AAAA,EACrB,oBAAoB;AAAA,EACpB,eAAe;AAChB;",
4
+ "sourcesContent": ["import { BoxModel } from '@tldraw/tlschema'\nimport { Vec, VecLike } from './Vec'\nimport { PI, PI2, toPrecision } from './utils'\n\n/** @public */\nexport type BoxLike = BoxModel | Box\n\n/** @public */\nexport type SelectionEdge = 'top' | 'right' | 'bottom' | 'left'\n\n/** @public */\nexport type SelectionCorner = 'top_left' | 'top_right' | 'bottom_right' | 'bottom_left'\n\n/** @public */\nexport type SelectionHandle = SelectionEdge | SelectionCorner\n\n/** @public */\nexport type RotateCorner =\n\t| 'top_left_rotate'\n\t| 'top_right_rotate'\n\t| 'bottom_right_rotate'\n\t| 'bottom_left_rotate'\n\t| 'mobile_rotate'\n\n/** @public */\nexport class Box {\n\tconstructor(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t}\n\n\tx = 0\n\ty = 0\n\tw = 0\n\th = 0\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget point() {\n\t\treturn new Vec(this.x, this.y)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset point(val: Vec) {\n\t\tthis.x = val.x\n\t\tthis.y = val.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minX() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minX(n: number) {\n\t\tthis.x = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget left() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midX() {\n\t\treturn this.x + this.w / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxX() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget right() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minY() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minY(n: number) {\n\t\tthis.y = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget top() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midY() {\n\t\treturn this.y + this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxY() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bottom() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget width() {\n\t\treturn this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset width(n: number) {\n\t\tthis.w = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget height() {\n\t\treturn this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset height(n: number) {\n\t\tthis.h = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget aspectRatio() {\n\t\treturn this.width / this.height\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn new Vec(this.midX, this.midY)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset center(v: Vec) {\n\t\tthis.minX = v.x - this.width / 2\n\t\tthis.minY = v.y - this.height / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget corners() {\n\t\treturn [\n\t\t\tnew Vec(this.minX, this.minY),\n\t\t\tnew Vec(this.maxX, this.minY),\n\t\t\tnew Vec(this.maxX, this.maxY),\n\t\t\tnew Vec(this.minX, this.maxY),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget cornersAndCenter() {\n\t\treturn [\n\t\t\tnew Vec(this.minX, this.minY),\n\t\t\tnew Vec(this.maxX, this.minY),\n\t\t\tnew Vec(this.maxX, this.maxY),\n\t\t\tnew Vec(this.minX, this.maxY),\n\t\t\tthis.center,\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget sides(): Array<[Vec, Vec]> {\n\t\tconst { corners } = this\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget size(): Vec {\n\t\treturn new Vec(this.w, this.h)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toPrecision(this.x)\n\t\tthis.y = toPrecision(this.y)\n\t\tthis.w = toPrecision(this.w)\n\t\tthis.h = toPrecision(this.h)\n\t\treturn this\n\t}\n\n\tsetTo(B: Box) {\n\t\tthis.x = B.x\n\t\tthis.y = B.y\n\t\tthis.w = B.w\n\t\tthis.h = B.h\n\t\treturn this\n\t}\n\n\tset(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t\treturn this\n\t}\n\n\texpand(A: Box) {\n\t\tconst minX = Math.min(this.minX, A.minX)\n\t\tconst minY = Math.min(this.minY, A.minY)\n\t\tconst maxX = Math.max(this.maxX, A.maxX)\n\t\tconst maxY = Math.max(this.maxY, A.maxY)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.w = maxX - minX\n\t\tthis.h = maxY - minY\n\t\treturn this\n\t}\n\n\texpandBy(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\tthis.w += n * 2\n\t\tthis.h += n * 2\n\t\treturn this\n\t}\n\n\tscale(n: number) {\n\t\tthis.x /= n\n\t\tthis.y /= n\n\t\tthis.w /= n\n\t\tthis.h /= n\n\t\treturn this\n\t}\n\n\tclone() {\n\t\tconst { x, y, w, h } = this\n\t\treturn new Box(x, y, w, h)\n\t}\n\n\ttranslate(delta: VecLike) {\n\t\tthis.x += delta.x\n\t\tthis.y += delta.y\n\t\treturn this\n\t}\n\n\tsnapToGrid(size: number) {\n\t\tconst minX = Math.round(this.minX / size) * size\n\t\tconst minY = Math.round(this.minY / size) * size\n\t\tconst maxX = Math.round(this.maxX / size) * size\n\t\tconst maxY = Math.round(this.maxY / size) * size\n\t\tthis.minX = minX\n\t\tthis.minY = minY\n\t\tthis.width = Math.max(1, maxX - minX)\n\t\tthis.height = Math.max(1, maxY - minY)\n\t}\n\n\tcollides(B: Box) {\n\t\treturn Box.Collides(this, B)\n\t}\n\n\tcontains(B: Box) {\n\t\treturn Box.Contains(this, B)\n\t}\n\n\tincludes(B: Box) {\n\t\treturn Box.Includes(this, B)\n\t}\n\n\tcontainsPoint(V: VecLike, margin = 0) {\n\t\treturn Box.ContainsPoint(this, V, margin)\n\t}\n\n\tgetHandlePoint(handle: SelectionCorner | SelectionEdge) {\n\t\tswitch (handle) {\n\t\t\tcase 'top_left':\n\t\t\t\treturn new Vec(this.minX, this.minY)\n\t\t\tcase 'top_right':\n\t\t\t\treturn new Vec(this.maxX, this.minY)\n\t\t\tcase 'bottom_left':\n\t\t\t\treturn new Vec(this.minX, this.maxY)\n\t\t\tcase 'bottom_right':\n\t\t\t\treturn new Vec(this.maxX, this.maxY)\n\t\t\tcase 'top':\n\t\t\t\treturn new Vec(this.midX, this.minY)\n\t\t\tcase 'right':\n\t\t\t\treturn new Vec(this.maxX, this.midY)\n\t\t\tcase 'bottom':\n\t\t\t\treturn new Vec(this.midX, this.maxY)\n\t\t\tcase 'left':\n\t\t\t\treturn new Vec(this.minX, this.midY)\n\t\t}\n\t}\n\n\ttoJson(): BoxModel {\n\t\treturn { x: this.minX, y: this.minY, w: this.w, h: this.h }\n\t}\n\n\tresize(handle: SelectionCorner | SelectionEdge | string, dx: number, dy: number) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = this\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = this\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tthis.minX = b0x\n\t\tthis.minY = b0y\n\t\tthis.width = Math.abs(b1x - b0x)\n\t\tthis.height = Math.abs(b1y - b0y)\n\t}\n\n\tunion(box: BoxModel) {\n\t\tconst minX = Math.min(this.minX, box.x)\n\t\tconst minY = Math.min(this.minY, box.y)\n\t\tconst maxX = Math.max(this.maxX, box.w + box.x)\n\t\tconst maxY = Math.max(this.maxY, box.h + box.y)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.width = maxX - minX\n\t\tthis.height = maxY - minY\n\n\t\treturn this\n\t}\n\n\tstatic From(box: BoxModel) {\n\t\treturn new Box(box.x, box.y, box.w, box.h)\n\t}\n\n\tstatic FromCenter(center: VecLike, size: VecLike) {\n\t\treturn new Box(center.x - size.x / 2, center.y - size.y / 2, size.x, size.y)\n\t}\n\n\tstatic FromPoints(points: VecLike[]) {\n\t\tif (points.length === 0) return new Box()\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\t\tlet point: VecLike\n\t\tfor (let i = 0, n = points.length; i < n; i++) {\n\t\t\tpoint = points[i]\n\t\t\tminX = Math.min(point.x, minX)\n\t\t\tminY = Math.min(point.y, minY)\n\t\t\tmaxX = Math.max(point.x, maxX)\n\t\t\tmaxY = Math.max(point.y, maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Expand(A: Box, B: Box) {\n\t\tconst minX = Math.min(B.minX, A.minX)\n\t\tconst minY = Math.min(B.minY, A.minY)\n\t\tconst maxX = Math.max(B.maxX, A.maxX)\n\t\tconst maxY = Math.max(B.maxY, A.maxY)\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic ExpandBy(A: Box, n: number) {\n\t\treturn new Box(A.minX - n, A.minY - n, A.width + n * 2, A.height + n * 2)\n\t}\n\n\tstatic Collides(A: Box, B: Box) {\n\t\treturn !(A.maxX < B.minX || A.minX > B.maxX || A.maxY < B.minY || A.minY > B.maxY)\n\t}\n\n\tstatic Contains(A: Box, B: Box) {\n\t\treturn A.minX < B.minX && A.minY < B.minY && A.maxY > B.maxY && A.maxX > B.maxX\n\t}\n\n\tstatic Includes(A: Box, B: Box) {\n\t\treturn Box.Collides(A, B) || Box.Contains(A, B)\n\t}\n\n\tstatic ContainsPoint(A: Box, B: VecLike, margin = 0) {\n\t\treturn !(\n\t\t\tB.x < A.minX - margin ||\n\t\t\tB.y < A.minY - margin ||\n\t\t\tB.x > A.maxX + margin ||\n\t\t\tB.y > A.maxY + margin\n\t\t)\n\t}\n\n\tstatic Common(boxes: Box[]) {\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\n\t\tfor (let i = 0; i < boxes.length; i++) {\n\t\t\tconst B = boxes[i]\n\t\t\tminX = Math.min(minX, B.minX)\n\t\t\tminY = Math.min(minY, B.minY)\n\t\t\tmaxX = Math.max(maxX, B.maxX)\n\t\t\tmaxY = Math.max(maxY, B.maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Sides(A: Box, inset = 0) {\n\t\tconst { corners } = A\n\t\tif (inset) {\n\t\t\t// TODO: Inset the corners by the inset amount.\n\t\t}\n\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\tstatic Resize(\n\t\tbox: Box,\n\t\thandle: SelectionCorner | SelectionEdge | string,\n\t\tdx: number,\n\t\tdy: number,\n\t\tisAspectRatioLocked = false\n\t) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = box\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = box\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\t/*\n 2. Aspect ratio\n If the aspect ratio is locked, adjust the corners so that the\n new box's aspect ratio matches the original aspect ratio.\n */\n\t\tif (isAspectRatioLocked) {\n\t\t\tconst aspectRatio = (a1x - a0x) / (a1y - a0y)\n\t\t\tconst bw = Math.abs(b1x - b0x)\n\t\t\tconst bh = Math.abs(b1y - b0y)\n\t\t\tconst tw = bw * (scaleY < 0 ? 1 : -1) * (1 / aspectRatio)\n\t\t\tconst th = bh * (scaleX < 0 ? 1 : -1) * aspectRatio\n\t\t\tconst isTall = aspectRatio < bw / bh\n\n\t\t\tswitch (handle) {\n\t\t\t\tcase 'top_left': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'top_right': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_right': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_left': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom':\n\t\t\t\tcase 'top': {\n\t\t\t\t\tconst m = (b0x + b1x) / 2\n\t\t\t\t\tconst w = bh * aspectRatio\n\t\t\t\t\tb0x = m - w / 2\n\t\t\t\t\tb1x = m + w / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'left':\n\t\t\t\tcase 'right': {\n\t\t\t\t\tconst m = (b0y + b1y) / 2\n\t\t\t\t\tconst h = bw / aspectRatio\n\t\t\t\t\tb0y = m - h / 2\n\t\t\t\t\tb1y = m + h / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tconst final = new Box(b0x, b0y, Math.abs(b1x - b0x), Math.abs(b1y - b0y))\n\n\t\treturn {\n\t\t\tbox: final,\n\t\t\tscaleX: +((final.width / box.width) * (scaleX > 0 ? 1 : -1)).toFixed(5),\n\t\t\tscaleY: +((final.height / box.height) * (scaleY > 0 ? 1 : -1)).toFixed(5),\n\t\t}\n\t}\n\n\tequals(other: Box | BoxModel) {\n\t\treturn Box.Equals(this, other)\n\t}\n\n\tstatic Equals(a: Box | BoxModel, b: Box | BoxModel) {\n\t\treturn b.x === a.x && b.y === a.y && b.w === a.w && b.h === a.h\n\t}\n\n\tzeroFix() {\n\t\tthis.w = Math.max(1, this.w)\n\t\tthis.h = Math.max(1, this.h)\n\t\treturn this\n\t}\n\n\tstatic ZeroFix(other: Box | BoxModel) {\n\t\treturn new Box(other.x, other.y, Math.max(1, other.w), Math.max(1, other.h))\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleY(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'top':\n\t\t\treturn 'bottom'\n\t\tcase 'bottom':\n\t\t\treturn 'top'\n\t\tcase 'top_left':\n\t\t\treturn 'bottom_left'\n\t\tcase 'top_right':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_left':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_right':\n\t\t\treturn 'top_right'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleX(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'left':\n\t\t\treturn 'right'\n\t\tcase 'right':\n\t\t\treturn 'left'\n\t\tcase 'top_left':\n\t\t\treturn 'top_right'\n\t\tcase 'top_right':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_left':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_right':\n\t\t\treturn 'bottom_left'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\nconst ORDERED_SELECTION_HANDLES = [\n\t'top',\n\t'top_right',\n\t'right',\n\t'bottom_right',\n\t'bottom',\n\t'bottom_left',\n\t'left',\n\t'top_left',\n] as const\n\n/** @public */\nexport function rotateSelectionHandle(handle: SelectionHandle, rotation: number): SelectionHandle {\n\t// first find out how many tau we need to rotate by\n\trotation = rotation % PI2\n\tconst numSteps = Math.round(rotation / (PI / 4))\n\n\tconst currentIndex = ORDERED_SELECTION_HANDLES.indexOf(handle)\n\treturn ORDERED_SELECTION_HANDLES[(currentIndex + numSteps) % ORDERED_SELECTION_HANDLES.length]\n}\n\n/** @public */\nexport function isSelectionCorner(selection: string): selection is SelectionCorner {\n\treturn (\n\t\tselection === 'top_left' ||\n\t\tselection === 'top_right' ||\n\t\tselection === 'bottom_right' ||\n\t\tselection === 'bottom_left'\n\t)\n}\n\n/** @public */\nexport const ROTATE_CORNER_TO_SELECTION_CORNER = {\n\ttop_left_rotate: 'top_left',\n\ttop_right_rotate: 'top_right',\n\tbottom_right_rotate: 'bottom_right',\n\tbottom_left_rotate: 'bottom_left',\n\tmobile_rotate: 'top_left',\n} as const\n"],
5
+ "mappings": "AACA,SAAS,WAAoB;AAC7B,SAAS,IAAI,KAAK,mBAAmB;AAuB9B,MAAM,IAAI;AAAA,EAChB,YAAY,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA;AAAA,EAGJ,IAAI,QAAQ;AACX,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA;AAAA,EAGA,IAAI,MAAM,KAAU;AACnB,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI;AAAA,EACd;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,MAAM;AACT,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,MAAM,GAAW;AACpB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO,GAAW;AACrB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,cAAc;AACjB,WAAO,KAAK,QAAQ,KAAK;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,EACpC;AAAA;AAAA,EAGA,IAAI,OAAO,GAAQ;AAClB,SAAK,OAAO,EAAE,IAAI,KAAK,QAAQ;AAC/B,SAAK,OAAO,EAAE,IAAI,KAAK,SAAS;AAAA,EACjC;AAAA;AAAA,EAGA,IAAI,UAAU;AACb,WAAO;AAAA,MACN,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,IAC7B;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,mBAAmB;AACtB,WAAO;AAAA,MACN,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MAC5B,KAAK;AAAA,IACN;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,QAA2B;AAC9B,UAAM,EAAE,QAAQ,IAAI;AACpB,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,OAAY;AACf,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,SAAK,IAAI,YAAY,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAQ;AACb,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAC/B,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAQ;AACd,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AACvC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,EAAE,IAAI;AAEvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI,OAAO;AAChB,SAAK,IAAI,OAAO;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAW;AACnB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK,IAAI;AACd,SAAK,KAAK,IAAI;AACd,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW;AAChB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ;AACP,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAAA,EAC1B;AAAA,EAEA,UAAU,OAAgB;AACzB,SAAK,KAAK,MAAM;AAChB,SAAK,KAAK,MAAM;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW,MAAc;AACxB,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,UAAM,OAAO,KAAK,MAAM,KAAK,OAAO,IAAI,IAAI;AAC5C,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,GAAG,OAAO,IAAI;AACpC,SAAK,SAAS,KAAK,IAAI,GAAG,OAAO,IAAI;AAAA,EACtC;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,cAAc,GAAY,SAAS,GAAG;AACrC,WAAO,IAAI,cAAc,MAAM,GAAG,MAAM;AAAA,EACzC;AAAA,EAEA,eAAe,QAAyC;AACvD,YAAQ,QAAQ;AAAA,MACf,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,MACpC,KAAK;AACJ,eAAO,IAAI,IAAI,KAAK,MAAM,KAAK,IAAI;AAAA,IACrC;AAAA,EACD;AAAA,EAEA,SAAmB;AAClB,WAAO,EAAE,GAAG,KAAK,MAAM,GAAG,KAAK,MAAM,GAAG,KAAK,GAAG,GAAG,KAAK,EAAE;AAAA,EAC3D;AAAA,EAEA,OAAO,QAAkD,IAAY,IAAY;AAChF,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAEvB,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,MAAM,GAAG;AAC/B,SAAK,SAAS,KAAK,IAAI,MAAM,GAAG;AAAA,EACjC;AAAA,EAEA,MAAM,KAAe;AACpB,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,CAAC;AACtC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,CAAC;AACtC,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,IAAI,IAAI,CAAC;AAC9C,UAAM,OAAO,KAAK,IAAI,KAAK,MAAM,IAAI,IAAI,IAAI,CAAC;AAE9C,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,QAAQ,OAAO;AACpB,SAAK,SAAS,OAAO;AAErB,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,KAAK,KAAe;AAC1B,WAAO,IAAI,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,WAAW,QAAiB,MAAe;AACjD,WAAO,IAAI,IAAI,OAAO,IAAI,KAAK,IAAI,GAAG,OAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC5E;AAAA,EAEA,OAAO,WAAW,QAAmB;AACpC,QAAI,OAAO,WAAW,EAAG,QAAO,IAAI,IAAI;AACxC,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI;AACJ,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,IAAI,GAAG,KAAK;AAC9C,cAAQ,OAAO,CAAC;AAChB,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAAA,IAC9B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,OAAO,GAAQ,GAAQ;AAC7B,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AAEpC,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAW;AAClC,WAAO,IAAI,IAAI,EAAE,OAAO,GAAG,EAAE,OAAO,GAAG,EAAE,QAAQ,IAAI,GAAG,EAAE,SAAS,IAAI,CAAC;AAAA,EACzE;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC9E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC5E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,IAAI,SAAS,GAAG,CAAC,KAAK,IAAI,SAAS,GAAG,CAAC;AAAA,EAC/C;AAAA,EAEA,OAAO,cAAc,GAAQ,GAAY,SAAS,GAAG;AACpD,WAAO,EACN,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO;AAAA,EAEjB;AAAA,EAEA,OAAO,OAAO,OAAc;AAC3B,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AAEX,aAAS,IAAI,GAAG,IAAI,MAAM,QAAQ,KAAK;AACtC,YAAM,IAAI,MAAM,CAAC;AACjB,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAAA,IAC7B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,MAAM,GAAQ,QAAQ,GAAG;AAC/B,UAAM,EAAE,QAAQ,IAAI;AACpB,QAAI,OAAO;AAAA,IAEX;AAEA,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA,EAEA,OAAO,OACN,KACA,QACA,IACA,IACA,sBAAsB,OACrB;AACD,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAOvB,QAAI,qBAAqB;AACxB,YAAM,eAAe,MAAM,QAAQ,MAAM;AACzC,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,OAAO,IAAI;AAC7C,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,MAAM;AACxC,YAAM,SAAS,cAAc,KAAK;AAElC,cAAQ,QAAQ;AAAA,QACf,KAAK,YAAY;AAChB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,aAAa;AACjB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,gBAAgB;AACpB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,eAAe;AACnB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,OAAO;AACX,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,SAAS;AACb,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,UAAM,QAAQ,IAAI,IAAI,KAAK,KAAK,KAAK,IAAI,MAAM,GAAG,GAAG,KAAK,IAAI,MAAM,GAAG,CAAC;AAExE,WAAO;AAAA,MACN,KAAK;AAAA,MACL,QAAQ,EAAG,MAAM,QAAQ,IAAI,SAAU,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,MACtE,QAAQ,EAAG,MAAM,SAAS,IAAI,UAAW,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,IACzE;AAAA,EACD;AAAA,EAEA,OAAO,OAAuB;AAC7B,WAAO,IAAI,OAAO,MAAM,KAAK;AAAA,EAC9B;AAAA,EAEA,OAAO,OAAO,GAAmB,GAAmB;AACnD,WAAO,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE;AAAA,EAC/D;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,QAAQ,OAAuB;AACrC,WAAO,IAAI,IAAI,MAAM,GAAG,MAAM,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,CAAC;AAAA,EAC5E;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAEA,MAAM,4BAA4B;AAAA,EACjC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACD;AAGO,SAAS,sBAAsB,QAAyB,UAAmC;AAEjG,aAAW,WAAW;AACtB,QAAM,WAAW,KAAK,MAAM,YAAY,KAAK,EAAE;AAE/C,QAAM,eAAe,0BAA0B,QAAQ,MAAM;AAC7D,SAAO,2BAA2B,eAAe,YAAY,0BAA0B,MAAM;AAC9F;AAGO,SAAS,kBAAkB,WAAiD;AAClF,SACC,cAAc,cACd,cAAc,eACd,cAAc,kBACd,cAAc;AAEhB;AAGO,MAAM,oCAAoC;AAAA,EAChD,iBAAiB;AAAA,EACjB,kBAAkB;AAAA,EAClB,qBAAqB;AAAA,EACrB,oBAAoB;AAAA,EACpB,eAAe;AAChB;",
6
6
  "names": []
7
7
  }
@@ -107,7 +107,7 @@ class Mat {
107
107
  static Scale(x, y, cx, cy) {
108
108
  const scaleMatrix = new Mat(x, 0, 0, y, 0, 0);
109
109
  if (cx === void 0) return scaleMatrix;
110
- return Mat.Compose(Mat.Translate(cx, cy), scaleMatrix, Mat.Translate(-cx, -cy));
110
+ return Mat.Translate(cx, cy).multiply(scaleMatrix).translate(-cx, -cy);
111
111
  }
112
112
  static Multiply(m1, m2) {
113
113
  return {
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../src/lib/primitives/Mat.ts"],
4
- "sourcesContent": ["import { Box } from './Box'\nimport { clampRadians, HALF_PI, toDomPrecision } from './utils'\nimport { Vec, VecLike } from './Vec'\n\n/** @public */\nexport type MatLike = MatModel | Mat\n\n/** @public */\nexport interface MatModel {\n\ta: number\n\tb: number\n\tc: number\n\td: number\n\te: number\n\tf: number\n}\n\n// function getIdentity() {\n// return new Mat(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)\n// }\n\n/** @public */\nexport class Mat {\n\tconstructor(a: number, b: number, c: number, d: number, e: number, f: number) {\n\t\tthis.a = a\n\t\tthis.b = b\n\t\tthis.c = c\n\t\tthis.d = d\n\t\tthis.e = e\n\t\tthis.f = f\n\t}\n\n\ta = 1.0\n\tb = 0.0\n\tc = 0.0\n\td = 1.0\n\te = 0.0\n\tf = 0.0\n\n\tequals(m: Mat | MatModel) {\n\t\treturn (\n\t\t\tthis === m ||\n\t\t\t(this.a === m.a &&\n\t\t\t\tthis.b === m.b &&\n\t\t\t\tthis.c === m.c &&\n\t\t\t\tthis.d === m.d &&\n\t\t\t\tthis.e === m.e &&\n\t\t\t\tthis.f === m.f)\n\t\t)\n\t}\n\n\tidentity() {\n\t\tthis.a = 1.0\n\t\tthis.b = 0.0\n\t\tthis.c = 0.0\n\t\tthis.d = 1.0\n\t\tthis.e = 0.0\n\t\tthis.f = 0.0\n\t\treturn this\n\t}\n\n\tmultiply(m: Mat | MatModel) {\n\t\tconst m2: MatModel = m\n\t\tconst { a, b, c, d, e, f } = this\n\t\tthis.a = a * m2.a + c * m2.b\n\t\tthis.c = a * m2.c + c * m2.d\n\t\tthis.e = a * m2.e + c * m2.f + e\n\t\tthis.b = b * m2.a + d * m2.b\n\t\tthis.d = b * m2.c + d * m2.d\n\t\tthis.f = b * m2.e + d * m2.f + f\n\t\treturn this\n\t}\n\n\trotate(r: number, cx?: number, cy?: number) {\n\t\tif (r === 0) return this\n\t\tif (cx === undefined) return this.multiply(Mat.Rotate(r))\n\t\treturn this.translate(cx, cy!).multiply(Mat.Rotate(r)).translate(-cx, -cy!)\n\t}\n\n\ttranslate(x: number, y: number): Mat {\n\t\treturn this.multiply(Mat.Translate(x, y!))\n\t}\n\n\tscale(x: number, y: number) {\n\t\treturn this.multiply(Mat.Scale(x, y))\n\t}\n\n\tinvert() {\n\t\tconst { a, b, c, d, e, f } = this\n\t\tconst denom = a * d - b * c\n\t\tthis.a = d / denom\n\t\tthis.b = b / -denom\n\t\tthis.c = c / -denom\n\t\tthis.d = a / denom\n\t\tthis.e = (d * e - c * f) / -denom\n\t\tthis.f = (b * e - a * f) / denom\n\t\treturn this\n\t}\n\n\tapplyToPoint(point: VecLike) {\n\t\treturn Mat.applyToPoint(this, point)\n\t}\n\n\tapplyToPoints(points: VecLike[]) {\n\t\treturn Mat.applyToPoints(this, points)\n\t}\n\n\trotation() {\n\t\treturn Mat.Rotation(this)\n\t}\n\n\tpoint() {\n\t\treturn Mat.Point(this)\n\t}\n\n\tdecomposed() {\n\t\treturn Mat.Decompose(this)\n\t}\n\n\ttoCssString() {\n\t\treturn Mat.toCssString(this)\n\t}\n\n\tsetTo(model: MatModel) {\n\t\tObject.assign(this, model)\n\t\treturn this\n\t}\n\n\tdecompose() {\n\t\treturn Mat.Decompose(this)\n\t}\n\n\tclone() {\n\t\treturn new Mat(this.a, this.b, this.c, this.d, this.e, this.f)\n\t}\n\n\t/* --------------------- Static --------------------- */\n\n\tstatic Identity() {\n\t\treturn new Mat(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)\n\t}\n\n\tstatic Translate(x: number, y: number) {\n\t\treturn new Mat(1.0, 0.0, 0.0, 1.0, x, y)\n\t}\n\n\tstatic Rotate(r: number, cx?: number, cy?: number) {\n\t\tif (r === 0) return Mat.Identity()\n\n\t\tconst cosAngle = Math.cos(r)\n\t\tconst sinAngle = Math.sin(r)\n\n\t\tconst rotationMatrix = new Mat(cosAngle, sinAngle, -sinAngle, cosAngle, 0.0, 0.0)\n\n\t\tif (cx === undefined) return rotationMatrix\n\n\t\treturn Mat.Compose(Mat.Translate(cx, cy!), rotationMatrix, Mat.Translate(-cx, -cy!))\n\t}\n\n\tstatic Scale(x: number, y: number): MatModel\n\tstatic Scale(x: number, y: number, cx: number, cy: number): MatModel\n\tstatic Scale(x: number, y: number, cx?: number, cy?: number): MatModel {\n\t\tconst scaleMatrix = new Mat(x, 0, 0, y, 0, 0)\n\t\tif (cx === undefined) return scaleMatrix\n\t\treturn Mat.Compose(Mat.Translate(cx, cy!), scaleMatrix, Mat.Translate(-cx, -cy!))\n\t}\n\tstatic Multiply(m1: MatModel, m2: MatModel): MatModel {\n\t\treturn {\n\t\t\ta: m1.a * m2.a + m1.c * m2.b,\n\t\t\tc: m1.a * m2.c + m1.c * m2.d,\n\t\t\te: m1.a * m2.e + m1.c * m2.f + m1.e,\n\t\t\tb: m1.b * m2.a + m1.d * m2.b,\n\t\t\td: m1.b * m2.c + m1.d * m2.d,\n\t\t\tf: m1.b * m2.e + m1.d * m2.f + m1.f,\n\t\t}\n\t}\n\n\tstatic Inverse(m: MatModel): MatModel {\n\t\tconst denom = m.a * m.d - m.b * m.c\n\t\treturn {\n\t\t\ta: m.d / denom,\n\t\t\tb: m.b / -denom,\n\t\t\tc: m.c / -denom,\n\t\t\td: m.a / denom,\n\t\t\te: (m.d * m.e - m.c * m.f) / -denom,\n\t\t\tf: (m.b * m.e - m.a * m.f) / denom,\n\t\t}\n\t}\n\n\tstatic Absolute(m: MatLike): MatModel {\n\t\tconst denom = m.a * m.d - m.b * m.c\n\t\treturn {\n\t\t\ta: m.d / denom,\n\t\t\tb: m.b / -denom,\n\t\t\tc: m.c / -denom,\n\t\t\td: m.a / denom,\n\t\t\te: (m.d * m.e - m.c * m.f) / denom,\n\t\t\tf: (m.b * m.e - m.a * m.f) / -denom,\n\t\t}\n\t}\n\n\tstatic Compose(...matrices: MatLike[]) {\n\t\tconst matrix = Mat.Identity()\n\t\tfor (let i = 0, n = matrices.length; i < n; i++) {\n\t\t\tmatrix.multiply(matrices[i])\n\t\t}\n\t\treturn matrix\n\t}\n\n\tstatic Point(m: MatLike) {\n\t\treturn new Vec(m.e, m.f)\n\t}\n\n\tstatic Rotation(m: MatLike): number {\n\t\tlet rotation\n\n\t\tif (m.a !== 0 || m.c !== 0) {\n\t\t\tconst hypotAc = (m.a * m.a + m.c * m.c) ** 0.5\n\t\t\trotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1)\n\t\t} else if (m.b !== 0 || m.d !== 0) {\n\t\t\tconst hypotBd = (m.b * m.b + m.d * m.d) ** 0.5\n\t\t\trotation = HALF_PI + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1)\n\t\t} else {\n\t\t\trotation = 0\n\t\t}\n\n\t\treturn clampRadians(rotation)\n\t}\n\n\tstatic Decompose(m: MatLike) {\n\t\tlet scaleX, scaleY, rotation\n\n\t\tif (m.a !== 0 || m.c !== 0) {\n\t\t\tconst hypotAc = (m.a * m.a + m.c * m.c) ** 0.5\n\t\t\tscaleX = hypotAc\n\t\t\tscaleY = (m.a * m.d - m.b * m.c) / hypotAc\n\t\t\trotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1)\n\t\t} else if (m.b !== 0 || m.d !== 0) {\n\t\t\tconst hypotBd = (m.b * m.b + m.d * m.d) ** 0.5\n\t\t\tscaleX = (m.a * m.d - m.b * m.c) / hypotBd\n\t\t\tscaleY = hypotBd\n\t\t\trotation = HALF_PI + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1)\n\t\t} else {\n\t\t\tscaleX = 0\n\t\t\tscaleY = 0\n\t\t\trotation = 0\n\t\t}\n\n\t\treturn {\n\t\t\tx: m.e,\n\t\t\ty: m.f,\n\t\t\tscaleX,\n\t\t\tscaleY,\n\t\t\trotation: clampRadians(rotation),\n\t\t}\n\t}\n\n\tstatic Smooth(m: MatLike, precision = 10000000000) {\n\t\tm.a = Math.round(m.a * precision) / precision\n\t\tm.b = Math.round(m.b * precision) / precision\n\t\tm.c = Math.round(m.c * precision) / precision\n\t\tm.d = Math.round(m.d * precision) / precision\n\t\tm.e = Math.round(m.e * precision) / precision\n\t\tm.f = Math.round(m.f * precision) / precision\n\t\treturn m\n\t}\n\n\tstatic toCssString(m: MatLike) {\n\t\treturn `matrix(${toDomPrecision(m.a)}, ${toDomPrecision(m.b)}, ${toDomPrecision(\n\t\t\tm.c\n\t\t)}, ${toDomPrecision(m.d)}, ${toDomPrecision(m.e)}, ${toDomPrecision(m.f)})`\n\t}\n\n\tstatic applyToPoint(m: MatLike, point: VecLike) {\n\t\treturn new Vec(\n\t\t\tm.a * point.x + m.c * point.y + m.e,\n\t\t\tm.b * point.x + m.d * point.y + m.f,\n\t\t\tpoint.z\n\t\t)\n\t}\n\n\tstatic applyToXY(m: MatLike, x: number, y: number) {\n\t\treturn [m.a * x + m.c * y + m.e, m.b * x + m.d * y + m.f]\n\t}\n\n\tstatic applyToPoints(m: MatLike, points: VecLike[]): Vec[] {\n\t\treturn points.map(\n\t\t\t(point) =>\n\t\t\t\tnew Vec(m.a * point.x + m.c * point.y + m.e, m.b * point.x + m.d * point.y + m.f, point.z)\n\t\t)\n\t}\n\n\tstatic applyToBounds(m: MatLike, box: Box) {\n\t\treturn new Box(m.e + box.minX, m.f + box.minY, box.width, box.height)\n\t}\n\n\tstatic From(m: MatLike) {\n\t\treturn new Mat(m.a, m.b, m.c, m.d, m.e, m.f)\n\t}\n\n\tstatic Cast(m: MatLike) {\n\t\treturn m instanceof Mat ? m : Mat.From(m)\n\t}\n}\n\n/** @public */\nexport function decomposeMatrix(m: MatLike) {\n\treturn {\n\t\tx: m.e,\n\t\ty: m.f,\n\t\tscaleX: Math.sqrt(m.a * m.a + m.b * m.b),\n\t\tscaleY: Math.sqrt(m.c * m.c + m.d * m.d),\n\t\trotation: Math.atan2(m.b, m.a),\n\t}\n}\n"],
5
- "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,cAAc,SAAS,sBAAsB;AACtD,SAAS,WAAoB;AAoBtB,MAAM,IAAI;AAAA,EAChB,YAAY,GAAW,GAAW,GAAW,GAAW,GAAW,GAAW;AAC7E,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EAEJ,OAAO,GAAmB;AACzB,WACC,SAAS,KACR,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE;AAAA,EAEhB;AAAA,EAEA,WAAW;AACV,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAmB;AAC3B,UAAM,KAAe;AACrB,UAAM,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,EAAE,IAAI;AAC7B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI;AAC/B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI;AAC/B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAW,IAAa,IAAa;AAC3C,QAAI,MAAM,EAAG,QAAO;AACpB,QAAI,OAAO,OAAW,QAAO,KAAK,SAAS,IAAI,OAAO,CAAC,CAAC;AACxD,WAAO,KAAK,UAAU,IAAI,EAAG,EAAE,SAAS,IAAI,OAAO,CAAC,CAAC,EAAE,UAAU,CAAC,IAAI,CAAC,EAAG;AAAA,EAC3E;AAAA,EAEA,UAAU,GAAW,GAAgB;AACpC,WAAO,KAAK,SAAS,IAAI,UAAU,GAAG,CAAE,CAAC;AAAA,EAC1C;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,WAAO,KAAK,SAAS,IAAI,MAAM,GAAG,CAAC,CAAC;AAAA,EACrC;AAAA,EAEA,SAAS;AACR,UAAM,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,EAAE,IAAI;AAC7B,UAAM,QAAQ,IAAI,IAAI,IAAI;AAC1B,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI,CAAC;AACd,SAAK,IAAI,IAAI,CAAC;AACd,SAAK,IAAI,IAAI;AACb,SAAK,KAAK,IAAI,IAAI,IAAI,KAAK,CAAC;AAC5B,SAAK,KAAK,IAAI,IAAI,IAAI,KAAK;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAgB;AAC5B,WAAO,IAAI,aAAa,MAAM,KAAK;AAAA,EACpC;AAAA,EAEA,cAAc,QAAmB;AAChC,WAAO,IAAI,cAAc,MAAM,MAAM;AAAA,EACtC;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI;AAAA,EACzB;AAAA,EAEA,QAAQ;AACP,WAAO,IAAI,MAAM,IAAI;AAAA,EACtB;AAAA,EAEA,aAAa;AACZ,WAAO,IAAI,UAAU,IAAI;AAAA,EAC1B;AAAA,EAEA,cAAc;AACb,WAAO,IAAI,YAAY,IAAI;AAAA,EAC5B;AAAA,EAEA,MAAM,OAAiB;AACtB,WAAO,OAAO,MAAM,KAAK;AACzB,WAAO;AAAA,EACR;AAAA,EAEA,YAAY;AACX,WAAO,IAAI,UAAU,IAAI;AAAA,EAC1B;AAAA,EAEA,QAAQ;AACP,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9D;AAAA;AAAA,EAIA,OAAO,WAAW;AACjB,WAAO,IAAI,IAAI,GAAK,GAAK,GAAK,GAAK,GAAK,CAAG;AAAA,EAC5C;AAAA,EAEA,OAAO,UAAU,GAAW,GAAW;AACtC,WAAO,IAAI,IAAI,GAAK,GAAK,GAAK,GAAK,GAAG,CAAC;AAAA,EACxC;AAAA,EAEA,OAAO,OAAO,GAAW,IAAa,IAAa;AAClD,QAAI,MAAM,EAAG,QAAO,IAAI,SAAS;AAEjC,UAAM,WAAW,KAAK,IAAI,CAAC;AAC3B,UAAM,WAAW,KAAK,IAAI,CAAC;AAE3B,UAAM,iBAAiB,IAAI,IAAI,UAAU,UAAU,CAAC,UAAU,UAAU,GAAK,CAAG;AAEhF,QAAI,OAAO,OAAW,QAAO;AAE7B,WAAO,IAAI,QAAQ,IAAI,UAAU,IAAI,EAAG,GAAG,gBAAgB,IAAI,UAAU,CAAC,IAAI,CAAC,EAAG,CAAC;AAAA,EACpF;AAAA,EAIA,OAAO,MAAM,GAAW,GAAW,IAAa,IAAuB;AACtE,UAAM,cAAc,IAAI,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;AAC5C,QAAI,OAAO,OAAW,QAAO;AAC7B,WAAO,IAAI,QAAQ,IAAI,UAAU,IAAI,EAAG,GAAG,aAAa,IAAI,UAAU,CAAC,IAAI,CAAC,EAAG,CAAC;AAAA,EACjF;AAAA,EACA,OAAO,SAAS,IAAc,IAAwB;AACrD,WAAO;AAAA,MACN,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAClC,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,IACnC;AAAA,EACD;AAAA,EAEA,OAAO,QAAQ,GAAuB;AACrC,UAAM,QAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAClC,WAAO;AAAA,MACN,GAAG,EAAE,IAAI;AAAA,MACT,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI;AAAA,MACT,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,MAC9B,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AAAA,IAC9B;AAAA,EACD;AAAA,EAEA,OAAO,SAAS,GAAsB;AACrC,UAAM,QAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAClC,WAAO;AAAA,MACN,GAAG,EAAE,IAAI;AAAA,MACT,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI;AAAA,MACT,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AAAA,MAC7B,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,WAAW,UAAqB;AACtC,UAAM,SAAS,IAAI,SAAS;AAC5B,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,aAAO,SAAS,SAAS,CAAC,CAAC;AAAA,IAC5B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI,IAAI,EAAE,GAAG,EAAE,CAAC;AAAA,EACxB;AAAA,EAEA,OAAO,SAAS,GAAoB;AACnC,QAAI;AAEJ,QAAI,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAC3B,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,iBAAW,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACvD,WAAW,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAClC,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,iBAAW,UAAU,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACjE,OAAO;AACN,iBAAW;AAAA,IACZ;AAEA,WAAO,aAAa,QAAQ;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY;AAC5B,QAAI,QAAQ,QAAQ;AAEpB,QAAI,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAC3B,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,eAAS;AACT,gBAAU,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AACnC,iBAAW,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACvD,WAAW,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAClC,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,gBAAU,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AACnC,eAAS;AACT,iBAAW,UAAU,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACjE,OAAO;AACN,eAAS;AACT,eAAS;AACT,iBAAW;AAAA,IACZ;AAEA,WAAO;AAAA,MACN,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL;AAAA,MACA;AAAA,MACA,UAAU,aAAa,QAAQ;AAAA,IAChC;AAAA,EACD;AAAA,EAEA,OAAO,OAAO,GAAY,YAAY,MAAa;AAClD,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,YAAY,GAAY;AAC9B,WAAO,UAAU,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK;AAAA,MAChE,EAAE;AAAA,IACH,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC;AAAA,EAC1E;AAAA,EAEA,OAAO,aAAa,GAAY,OAAgB;AAC/C,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE;AAAA,MAClC,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE;AAAA,MAClC,MAAM;AAAA,IACP;AAAA,EACD;AAAA,EAEA,OAAO,UAAU,GAAY,GAAW,GAAW;AAClD,WAAO,CAAC,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,CAAC;AAAA,EACzD;AAAA,EAEA,OAAO,cAAc,GAAY,QAA0B;AAC1D,WAAO,OAAO;AAAA,MACb,CAAC,UACA,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,GAAG,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,GAAG,MAAM,CAAC;AAAA,IAC3F;AAAA,EACD;AAAA,EAEA,OAAO,cAAc,GAAY,KAAU;AAC1C,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,MAAM,EAAE,IAAI,IAAI,MAAM,IAAI,OAAO,IAAI,MAAM;AAAA,EACrE;AAAA,EAEA,OAAO,KAAK,GAAY;AACvB,WAAO,IAAI,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,KAAK,GAAY;AACvB,WAAO,aAAa,MAAM,IAAI,IAAI,KAAK,CAAC;AAAA,EACzC;AACD;AAGO,SAAS,gBAAgB,GAAY;AAC3C,SAAO;AAAA,IACN,GAAG,EAAE;AAAA,IACL,GAAG,EAAE;AAAA,IACL,QAAQ,KAAK,KAAK,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,IACvC,QAAQ,KAAK,KAAK,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,IACvC,UAAU,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAAA,EAC9B;AACD;",
4
+ "sourcesContent": ["import { Box } from './Box'\nimport { clampRadians, HALF_PI, toDomPrecision } from './utils'\nimport { Vec, VecLike } from './Vec'\n\n/** @public */\nexport type MatLike = MatModel | Mat\n\n/** @public */\nexport interface MatModel {\n\ta: number\n\tb: number\n\tc: number\n\td: number\n\te: number\n\tf: number\n}\n\n// function getIdentity() {\n// return new Mat(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)\n// }\n\n/** @public */\nexport class Mat {\n\tconstructor(a: number, b: number, c: number, d: number, e: number, f: number) {\n\t\tthis.a = a\n\t\tthis.b = b\n\t\tthis.c = c\n\t\tthis.d = d\n\t\tthis.e = e\n\t\tthis.f = f\n\t}\n\n\ta = 1.0\n\tb = 0.0\n\tc = 0.0\n\td = 1.0\n\te = 0.0\n\tf = 0.0\n\n\tequals(m: Mat | MatModel) {\n\t\treturn (\n\t\t\tthis === m ||\n\t\t\t(this.a === m.a &&\n\t\t\t\tthis.b === m.b &&\n\t\t\t\tthis.c === m.c &&\n\t\t\t\tthis.d === m.d &&\n\t\t\t\tthis.e === m.e &&\n\t\t\t\tthis.f === m.f)\n\t\t)\n\t}\n\n\tidentity() {\n\t\tthis.a = 1.0\n\t\tthis.b = 0.0\n\t\tthis.c = 0.0\n\t\tthis.d = 1.0\n\t\tthis.e = 0.0\n\t\tthis.f = 0.0\n\t\treturn this\n\t}\n\n\tmultiply(m: Mat | MatModel) {\n\t\tconst m2: MatModel = m\n\t\tconst { a, b, c, d, e, f } = this\n\t\tthis.a = a * m2.a + c * m2.b\n\t\tthis.c = a * m2.c + c * m2.d\n\t\tthis.e = a * m2.e + c * m2.f + e\n\t\tthis.b = b * m2.a + d * m2.b\n\t\tthis.d = b * m2.c + d * m2.d\n\t\tthis.f = b * m2.e + d * m2.f + f\n\t\treturn this\n\t}\n\n\trotate(r: number, cx?: number, cy?: number) {\n\t\tif (r === 0) return this\n\t\tif (cx === undefined) return this.multiply(Mat.Rotate(r))\n\t\treturn this.translate(cx, cy!).multiply(Mat.Rotate(r)).translate(-cx, -cy!)\n\t}\n\n\ttranslate(x: number, y: number): Mat {\n\t\treturn this.multiply(Mat.Translate(x, y!))\n\t}\n\n\tscale(x: number, y: number) {\n\t\treturn this.multiply(Mat.Scale(x, y))\n\t}\n\n\tinvert() {\n\t\tconst { a, b, c, d, e, f } = this\n\t\tconst denom = a * d - b * c\n\t\tthis.a = d / denom\n\t\tthis.b = b / -denom\n\t\tthis.c = c / -denom\n\t\tthis.d = a / denom\n\t\tthis.e = (d * e - c * f) / -denom\n\t\tthis.f = (b * e - a * f) / denom\n\t\treturn this\n\t}\n\n\tapplyToPoint(point: VecLike) {\n\t\treturn Mat.applyToPoint(this, point)\n\t}\n\n\tapplyToPoints(points: VecLike[]) {\n\t\treturn Mat.applyToPoints(this, points)\n\t}\n\n\trotation() {\n\t\treturn Mat.Rotation(this)\n\t}\n\n\tpoint() {\n\t\treturn Mat.Point(this)\n\t}\n\n\tdecomposed() {\n\t\treturn Mat.Decompose(this)\n\t}\n\n\ttoCssString() {\n\t\treturn Mat.toCssString(this)\n\t}\n\n\tsetTo(model: MatModel) {\n\t\tObject.assign(this, model)\n\t\treturn this\n\t}\n\n\tdecompose() {\n\t\treturn Mat.Decompose(this)\n\t}\n\n\tclone() {\n\t\treturn new Mat(this.a, this.b, this.c, this.d, this.e, this.f)\n\t}\n\n\t/* --------------------- Static --------------------- */\n\n\tstatic Identity() {\n\t\treturn new Mat(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)\n\t}\n\n\tstatic Translate(x: number, y: number) {\n\t\treturn new Mat(1.0, 0.0, 0.0, 1.0, x, y)\n\t}\n\n\tstatic Rotate(r: number, cx?: number, cy?: number) {\n\t\tif (r === 0) return Mat.Identity()\n\n\t\tconst cosAngle = Math.cos(r)\n\t\tconst sinAngle = Math.sin(r)\n\n\t\tconst rotationMatrix = new Mat(cosAngle, sinAngle, -sinAngle, cosAngle, 0.0, 0.0)\n\n\t\tif (cx === undefined) return rotationMatrix\n\n\t\treturn Mat.Compose(Mat.Translate(cx, cy!), rotationMatrix, Mat.Translate(-cx, -cy!))\n\t}\n\n\tstatic Scale(x: number, y: number): Mat\n\tstatic Scale(x: number, y: number, cx: number, cy: number): Mat\n\tstatic Scale(x: number, y: number, cx?: number, cy?: number): Mat {\n\t\tconst scaleMatrix = new Mat(x, 0, 0, y, 0, 0)\n\t\tif (cx === undefined) return scaleMatrix\n\n\t\treturn Mat.Translate(cx, cy!).multiply(scaleMatrix).translate(-cx, -cy!)\n\t}\n\tstatic Multiply(m1: MatModel, m2: MatModel): MatModel {\n\t\treturn {\n\t\t\ta: m1.a * m2.a + m1.c * m2.b,\n\t\t\tc: m1.a * m2.c + m1.c * m2.d,\n\t\t\te: m1.a * m2.e + m1.c * m2.f + m1.e,\n\t\t\tb: m1.b * m2.a + m1.d * m2.b,\n\t\t\td: m1.b * m2.c + m1.d * m2.d,\n\t\t\tf: m1.b * m2.e + m1.d * m2.f + m1.f,\n\t\t}\n\t}\n\n\tstatic Inverse(m: MatModel): MatModel {\n\t\tconst denom = m.a * m.d - m.b * m.c\n\t\treturn {\n\t\t\ta: m.d / denom,\n\t\t\tb: m.b / -denom,\n\t\t\tc: m.c / -denom,\n\t\t\td: m.a / denom,\n\t\t\te: (m.d * m.e - m.c * m.f) / -denom,\n\t\t\tf: (m.b * m.e - m.a * m.f) / denom,\n\t\t}\n\t}\n\n\tstatic Absolute(m: MatLike): MatModel {\n\t\tconst denom = m.a * m.d - m.b * m.c\n\t\treturn {\n\t\t\ta: m.d / denom,\n\t\t\tb: m.b / -denom,\n\t\t\tc: m.c / -denom,\n\t\t\td: m.a / denom,\n\t\t\te: (m.d * m.e - m.c * m.f) / denom,\n\t\t\tf: (m.b * m.e - m.a * m.f) / -denom,\n\t\t}\n\t}\n\n\tstatic Compose(...matrices: MatLike[]) {\n\t\tconst matrix = Mat.Identity()\n\t\tfor (let i = 0, n = matrices.length; i < n; i++) {\n\t\t\tmatrix.multiply(matrices[i])\n\t\t}\n\t\treturn matrix\n\t}\n\n\tstatic Point(m: MatLike) {\n\t\treturn new Vec(m.e, m.f)\n\t}\n\n\tstatic Rotation(m: MatLike): number {\n\t\tlet rotation\n\n\t\tif (m.a !== 0 || m.c !== 0) {\n\t\t\tconst hypotAc = (m.a * m.a + m.c * m.c) ** 0.5\n\t\t\trotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1)\n\t\t} else if (m.b !== 0 || m.d !== 0) {\n\t\t\tconst hypotBd = (m.b * m.b + m.d * m.d) ** 0.5\n\t\t\trotation = HALF_PI + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1)\n\t\t} else {\n\t\t\trotation = 0\n\t\t}\n\n\t\treturn clampRadians(rotation)\n\t}\n\n\tstatic Decompose(m: MatLike) {\n\t\tlet scaleX, scaleY, rotation\n\n\t\tif (m.a !== 0 || m.c !== 0) {\n\t\t\tconst hypotAc = (m.a * m.a + m.c * m.c) ** 0.5\n\t\t\tscaleX = hypotAc\n\t\t\tscaleY = (m.a * m.d - m.b * m.c) / hypotAc\n\t\t\trotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1)\n\t\t} else if (m.b !== 0 || m.d !== 0) {\n\t\t\tconst hypotBd = (m.b * m.b + m.d * m.d) ** 0.5\n\t\t\tscaleX = (m.a * m.d - m.b * m.c) / hypotBd\n\t\t\tscaleY = hypotBd\n\t\t\trotation = HALF_PI + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1)\n\t\t} else {\n\t\t\tscaleX = 0\n\t\t\tscaleY = 0\n\t\t\trotation = 0\n\t\t}\n\n\t\treturn {\n\t\t\tx: m.e,\n\t\t\ty: m.f,\n\t\t\tscaleX,\n\t\t\tscaleY,\n\t\t\trotation: clampRadians(rotation),\n\t\t}\n\t}\n\n\tstatic Smooth(m: MatLike, precision = 10000000000) {\n\t\tm.a = Math.round(m.a * precision) / precision\n\t\tm.b = Math.round(m.b * precision) / precision\n\t\tm.c = Math.round(m.c * precision) / precision\n\t\tm.d = Math.round(m.d * precision) / precision\n\t\tm.e = Math.round(m.e * precision) / precision\n\t\tm.f = Math.round(m.f * precision) / precision\n\t\treturn m\n\t}\n\n\tstatic toCssString(m: MatLike) {\n\t\treturn `matrix(${toDomPrecision(m.a)}, ${toDomPrecision(m.b)}, ${toDomPrecision(\n\t\t\tm.c\n\t\t)}, ${toDomPrecision(m.d)}, ${toDomPrecision(m.e)}, ${toDomPrecision(m.f)})`\n\t}\n\n\tstatic applyToPoint(m: MatLike, point: VecLike) {\n\t\treturn new Vec(\n\t\t\tm.a * point.x + m.c * point.y + m.e,\n\t\t\tm.b * point.x + m.d * point.y + m.f,\n\t\t\tpoint.z\n\t\t)\n\t}\n\n\tstatic applyToXY(m: MatLike, x: number, y: number) {\n\t\treturn [m.a * x + m.c * y + m.e, m.b * x + m.d * y + m.f]\n\t}\n\n\tstatic applyToPoints(m: MatLike, points: VecLike[]): Vec[] {\n\t\treturn points.map(\n\t\t\t(point) =>\n\t\t\t\tnew Vec(m.a * point.x + m.c * point.y + m.e, m.b * point.x + m.d * point.y + m.f, point.z)\n\t\t)\n\t}\n\n\tstatic applyToBounds(m: MatLike, box: Box) {\n\t\treturn new Box(m.e + box.minX, m.f + box.minY, box.width, box.height)\n\t}\n\n\tstatic From(m: MatLike) {\n\t\treturn new Mat(m.a, m.b, m.c, m.d, m.e, m.f)\n\t}\n\n\tstatic Cast(m: MatLike) {\n\t\treturn m instanceof Mat ? m : Mat.From(m)\n\t}\n}\n\n/** @public */\nexport function decomposeMatrix(m: MatLike) {\n\treturn {\n\t\tx: m.e,\n\t\ty: m.f,\n\t\tscaleX: Math.sqrt(m.a * m.a + m.b * m.b),\n\t\tscaleY: Math.sqrt(m.c * m.c + m.d * m.d),\n\t\trotation: Math.atan2(m.b, m.a),\n\t}\n}\n"],
5
+ "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,cAAc,SAAS,sBAAsB;AACtD,SAAS,WAAoB;AAoBtB,MAAM,IAAI;AAAA,EAChB,YAAY,GAAW,GAAW,GAAW,GAAW,GAAW,GAAW;AAC7E,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EAEJ,OAAO,GAAmB;AACzB,WACC,SAAS,KACR,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE,KACb,KAAK,MAAM,EAAE;AAAA,EAEhB;AAAA,EAEA,WAAW;AACV,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAmB;AAC3B,UAAM,KAAe;AACrB,UAAM,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,EAAE,IAAI;AAC7B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI;AAC/B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG;AAC3B,SAAK,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI;AAC/B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAW,IAAa,IAAa;AAC3C,QAAI,MAAM,EAAG,QAAO;AACpB,QAAI,OAAO,OAAW,QAAO,KAAK,SAAS,IAAI,OAAO,CAAC,CAAC;AACxD,WAAO,KAAK,UAAU,IAAI,EAAG,EAAE,SAAS,IAAI,OAAO,CAAC,CAAC,EAAE,UAAU,CAAC,IAAI,CAAC,EAAG;AAAA,EAC3E;AAAA,EAEA,UAAU,GAAW,GAAgB;AACpC,WAAO,KAAK,SAAS,IAAI,UAAU,GAAG,CAAE,CAAC;AAAA,EAC1C;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,WAAO,KAAK,SAAS,IAAI,MAAM,GAAG,CAAC,CAAC;AAAA,EACrC;AAAA,EAEA,SAAS;AACR,UAAM,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,EAAE,IAAI;AAC7B,UAAM,QAAQ,IAAI,IAAI,IAAI;AAC1B,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI,CAAC;AACd,SAAK,IAAI,IAAI,CAAC;AACd,SAAK,IAAI,IAAI;AACb,SAAK,KAAK,IAAI,IAAI,IAAI,KAAK,CAAC;AAC5B,SAAK,KAAK,IAAI,IAAI,IAAI,KAAK;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAgB;AAC5B,WAAO,IAAI,aAAa,MAAM,KAAK;AAAA,EACpC;AAAA,EAEA,cAAc,QAAmB;AAChC,WAAO,IAAI,cAAc,MAAM,MAAM;AAAA,EACtC;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI;AAAA,EACzB;AAAA,EAEA,QAAQ;AACP,WAAO,IAAI,MAAM,IAAI;AAAA,EACtB;AAAA,EAEA,aAAa;AACZ,WAAO,IAAI,UAAU,IAAI;AAAA,EAC1B;AAAA,EAEA,cAAc;AACb,WAAO,IAAI,YAAY,IAAI;AAAA,EAC5B;AAAA,EAEA,MAAM,OAAiB;AACtB,WAAO,OAAO,MAAM,KAAK;AACzB,WAAO;AAAA,EACR;AAAA,EAEA,YAAY;AACX,WAAO,IAAI,UAAU,IAAI;AAAA,EAC1B;AAAA,EAEA,QAAQ;AACP,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9D;AAAA;AAAA,EAIA,OAAO,WAAW;AACjB,WAAO,IAAI,IAAI,GAAK,GAAK,GAAK,GAAK,GAAK,CAAG;AAAA,EAC5C;AAAA,EAEA,OAAO,UAAU,GAAW,GAAW;AACtC,WAAO,IAAI,IAAI,GAAK,GAAK,GAAK,GAAK,GAAG,CAAC;AAAA,EACxC;AAAA,EAEA,OAAO,OAAO,GAAW,IAAa,IAAa;AAClD,QAAI,MAAM,EAAG,QAAO,IAAI,SAAS;AAEjC,UAAM,WAAW,KAAK,IAAI,CAAC;AAC3B,UAAM,WAAW,KAAK,IAAI,CAAC;AAE3B,UAAM,iBAAiB,IAAI,IAAI,UAAU,UAAU,CAAC,UAAU,UAAU,GAAK,CAAG;AAEhF,QAAI,OAAO,OAAW,QAAO;AAE7B,WAAO,IAAI,QAAQ,IAAI,UAAU,IAAI,EAAG,GAAG,gBAAgB,IAAI,UAAU,CAAC,IAAI,CAAC,EAAG,CAAC;AAAA,EACpF;AAAA,EAIA,OAAO,MAAM,GAAW,GAAW,IAAa,IAAkB;AACjE,UAAM,cAAc,IAAI,IAAI,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC;AAC5C,QAAI,OAAO,OAAW,QAAO;AAE7B,WAAO,IAAI,UAAU,IAAI,EAAG,EAAE,SAAS,WAAW,EAAE,UAAU,CAAC,IAAI,CAAC,EAAG;AAAA,EACxE;AAAA,EACA,OAAO,SAAS,IAAc,IAAwB;AACrD,WAAO;AAAA,MACN,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAClC,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,MAC3B,GAAG,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAAA,IACnC;AAAA,EACD;AAAA,EAEA,OAAO,QAAQ,GAAuB;AACrC,UAAM,QAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAClC,WAAO;AAAA,MACN,GAAG,EAAE,IAAI;AAAA,MACT,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI;AAAA,MACT,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,MAC9B,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AAAA,IAC9B;AAAA,EACD;AAAA,EAEA,OAAO,SAAS,GAAsB;AACrC,UAAM,QAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAClC,WAAO;AAAA,MACN,GAAG,EAAE,IAAI;AAAA,MACT,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI,CAAC;AAAA,MACV,GAAG,EAAE,IAAI;AAAA,MACT,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AAAA,MAC7B,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,WAAW,UAAqB;AACtC,UAAM,SAAS,IAAI,SAAS;AAC5B,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,aAAO,SAAS,SAAS,CAAC,CAAC;AAAA,IAC5B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI,IAAI,EAAE,GAAG,EAAE,CAAC;AAAA,EACxB;AAAA,EAEA,OAAO,SAAS,GAAoB;AACnC,QAAI;AAEJ,QAAI,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAC3B,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,iBAAW,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACvD,WAAW,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAClC,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,iBAAW,UAAU,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACjE,OAAO;AACN,iBAAW;AAAA,IACZ;AAEA,WAAO,aAAa,QAAQ;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY;AAC5B,QAAI,QAAQ,QAAQ;AAEpB,QAAI,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAC3B,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,eAAS;AACT,gBAAU,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AACnC,iBAAW,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACvD,WAAW,EAAE,MAAM,KAAK,EAAE,MAAM,GAAG;AAClC,YAAM,WAAW,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAC3C,gBAAU,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK;AACnC,eAAS;AACT,iBAAW,UAAU,KAAK,KAAK,EAAE,IAAI,OAAO,KAAK,EAAE,IAAI,IAAI,KAAK;AAAA,IACjE,OAAO;AACN,eAAS;AACT,eAAS;AACT,iBAAW;AAAA,IACZ;AAEA,WAAO;AAAA,MACN,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL;AAAA,MACA;AAAA,MACA,UAAU,aAAa,QAAQ;AAAA,IAChC;AAAA,EACD;AAAA,EAEA,OAAO,OAAO,GAAY,YAAY,MAAa;AAClD,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,MAAE,IAAI,KAAK,MAAM,EAAE,IAAI,SAAS,IAAI;AACpC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,YAAY,GAAY;AAC9B,WAAO,UAAU,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK;AAAA,MAChE,EAAE;AAAA,IACH,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC,KAAK,eAAe,EAAE,CAAC,CAAC;AAAA,EAC1E;AAAA,EAEA,OAAO,aAAa,GAAY,OAAgB;AAC/C,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE;AAAA,MAClC,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE;AAAA,MAClC,MAAM;AAAA,IACP;AAAA,EACD;AAAA,EAEA,OAAO,UAAU,GAAY,GAAW,GAAW;AAClD,WAAO,CAAC,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,CAAC;AAAA,EACzD;AAAA,EAEA,OAAO,cAAc,GAAY,QAA0B;AAC1D,WAAO,OAAO;AAAA,MACb,CAAC,UACA,IAAI,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,GAAG,EAAE,IAAI,MAAM,IAAI,EAAE,IAAI,MAAM,IAAI,EAAE,GAAG,MAAM,CAAC;AAAA,IAC3F;AAAA,EACD;AAAA,EAEA,OAAO,cAAc,GAAY,KAAU;AAC1C,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,MAAM,EAAE,IAAI,IAAI,MAAM,IAAI,OAAO,IAAI,MAAM;AAAA,EACrE;AAAA,EAEA,OAAO,KAAK,GAAY;AACvB,WAAO,IAAI,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,KAAK,GAAY;AACvB,WAAO,aAAa,MAAM,IAAI,IAAI,KAAK,CAAC;AAAA,EACzC;AACD;AAGO,SAAS,gBAAgB,GAAY;AAC3C,SAAO;AAAA,IACN,GAAG,EAAE;AAAA,IACL,GAAG,EAAE;AAAA,IACL,QAAQ,KAAK,KAAK,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,IACvC,QAAQ,KAAK,KAAK,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,IACvC,UAAU,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAAA,EAC9B;AACD;",
6
6
  "names": []
7
7
  }
@@ -245,6 +245,10 @@ class Vec {
245
245
  static Dist(A, B) {
246
246
  return ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5;
247
247
  }
248
+ // Get the Manhattan distance between two points.
249
+ static ManhattanDist(A, B) {
250
+ return Math.abs(A.x - B.x) + Math.abs(A.y - B.y);
251
+ }
248
252
  // Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.
249
253
  static DistMin(A, B, n) {
250
254
  return (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2;
@@ -364,9 +368,25 @@ class Vec {
364
368
  static IsNaN(A) {
365
369
  return isNaN(A.x) || isNaN(A.y);
366
370
  }
371
+ /**
372
+ * Get the angle from position A to position B.
373
+ */
367
374
  static Angle(A, B) {
368
375
  return Math.atan2(B.y - A.y, B.x - A.x);
369
376
  }
377
+ /**
378
+ * Get the angle between vector A and vector B. This will return the smallest angle between the
379
+ * two vectors, between -π and π. The sign indicates direction of angle.
380
+ */
381
+ static AngleBetween(A, B) {
382
+ const p = A.x * B.x + A.y * B.y;
383
+ const n = Math.sqrt(
384
+ (Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))
385
+ );
386
+ const sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1;
387
+ const angle = sign * Math.acos(p / n);
388
+ return angle;
389
+ }
370
390
  /**
371
391
  * Linearly interpolate between two points.
372
392
  * @param A - The first point.
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../src/lib/primitives/Vec.ts"],
4
- "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
- "mappings": "AACA,SAAS,eAAe;AACxB,SAAS,eAAe;AAMjB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAY,QAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAI,OAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAY,QAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAG,KAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
4
+ "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(p / n)\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
+ "mappings": "AACA,SAAS,eAAe;AACxB,SAAS,eAAe;AAMjB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAY,QAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAI,OAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAY,QAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAG,KAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,KAAK,IAAI,CAAC;AAEpC,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
6
6
  "names": []
7
7
  }
@@ -32,7 +32,7 @@ class Arc2d extends Geometry2d {
32
32
  const t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point));
33
33
  if (t <= 0) return A;
34
34
  if (t >= 1) return B;
35
- const P = _center.clone().add(point.clone().sub(_center).uni().mul(radius));
35
+ const P = Vec.Sub(point, _center).uni().mul(radius).add(_center);
36
36
  let nearest;
37
37
  let dist = Infinity;
38
38
  let d;
@@ -70,7 +70,7 @@ class Arc2d extends Geometry2d {
70
70
  return `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`;
71
71
  }
72
72
  getLength() {
73
- return this.measure * this.radius;
73
+ return Math.abs(this.measure * this.radius);
74
74
  }
75
75
  }
76
76
  export {
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Arc2d.ts"],
4
- "sourcesContent": ["import { Vec } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { getArcMeasure, getPointInArcT, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Arc2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tstart: Vec\n\tend: Vec\n\tlargeArcFlag: number\n\tsweepFlag: number\n\n\tmeasure: number\n\tangleStart: number\n\tangleEnd: number\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tcenter: Vec\n\t\t\tstart: Vec\n\t\t\tend: Vec\n\t\t\tsweepFlag: number\n\t\t\tlargeArcFlag: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isFilled: false, isClosed: false })\n\t\tconst { center, sweepFlag, largeArcFlag, start, end } = config\n\t\tif (start.equals(end)) throw Error(`Arc must have different start and end points.`)\n\n\t\t// ensure that the start and end are clockwise\n\t\tthis.angleStart = Vec.Angle(center, start)\n\t\tthis.angleEnd = Vec.Angle(center, end)\n\t\tthis.radius = Vec.Dist(center, start)\n\t\tthis.measure = getArcMeasure(this.angleStart, this.angleEnd, sweepFlag, largeArcFlag)\n\n\t\tthis.start = start\n\t\tthis.end = end\n\n\t\tthis.sweepFlag = sweepFlag\n\t\tthis.largeArcFlag = largeArcFlag\n\t\tthis._center = center\n\t}\n\n\tnearestPoint(point: Vec): Vec {\n\t\tconst { _center, measure, radius, angleEnd, angleStart, start: A, end: B } = this\n\t\tconst t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point))\n\t\tif (t <= 0) return A\n\t\tif (t >= 1) return B\n\n\t\t// Get the point (P) on the arc, then pick the nearest of A, B, and P\n\t\tconst P = _center.clone().add(point.clone().sub(_center).uni().mul(radius))\n\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tfor (const p of [A, B, P]) {\n\t\t\td = Vec.Dist2(point, p)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec): boolean {\n\t\tconst { _center, radius, measure, angleStart, angleEnd } = this\n\t\tconst intersection = intersectLineSegmentCircle(A, B, _center, radius)\n\t\tif (intersection === null) return false\n\n\t\treturn intersection.some((p) => {\n\t\t\tconst result = getPointInArcT(measure, angleStart, angleEnd, _center.angle(p))\n\t\t\treturn result >= 0 && result <= 1\n\t\t})\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, measure, length, radius, angleStart } = this\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(Math.abs(length)); i < n + 1; i++) {\n\t\t\tconst t = (i / n) * measure\n\t\t\tconst angle = angleStart + t\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { start, end, radius, largeArcFlag, sweepFlag } = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`\n\t}\n\n\toverride getLength() {\n\t\treturn this.measure * this.radius\n\t}\n}\n"],
5
- "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,kCAAkC;AAC3C,SAAS,eAAe,gBAAgB,wBAAwB;AAChE,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,cAAc,WAAW;AAAA,EACrC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAOC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,QAAQ,WAAW,cAAc,OAAO,IAAI,IAAI;AACxD,QAAI,MAAM,OAAO,GAAG,EAAG,OAAM,MAAM,+CAA+C;AAGlF,SAAK,aAAa,IAAI,MAAM,QAAQ,KAAK;AACzC,SAAK,WAAW,IAAI,MAAM,QAAQ,GAAG;AACrC,SAAK,SAAS,IAAI,KAAK,QAAQ,KAAK;AACpC,SAAK,UAAU,cAAc,KAAK,YAAY,KAAK,UAAU,WAAW,YAAY;AAEpF,SAAK,QAAQ;AACb,SAAK,MAAM;AAEX,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,UAAU;AAAA,EAChB;AAAA,EAEA,aAAa,OAAiB;AAC7B,UAAM,EAAE,SAAS,SAAS,QAAQ,UAAU,YAAY,OAAO,GAAG,KAAK,EAAE,IAAI;AAC7E,UAAM,IAAI,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,KAAK,CAAC;AAC5E,QAAI,KAAK,EAAG,QAAO;AACnB,QAAI,KAAK,EAAG,QAAO;AAGnB,UAAM,IAAI,QAAQ,MAAM,EAAE,IAAI,MAAM,MAAM,EAAE,IAAI,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,CAAC;AAE1E,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,eAAW,KAAK,CAAC,GAAG,GAAG,CAAC,GAAG;AAC1B,UAAI,IAAI,MAAM,OAAO,CAAC;AACtB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAQ,GAAiB;AAC3C,UAAM,EAAE,SAAS,QAAQ,SAAS,YAAY,SAAS,IAAI;AAC3D,UAAM,eAAe,2BAA2B,GAAG,GAAG,SAAS,MAAM;AACrE,QAAI,iBAAiB,KAAM,QAAO;AAElC,WAAO,aAAa,KAAK,CAAC,MAAM;AAC/B,YAAM,SAAS,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,CAAC,CAAC;AAC7E,aAAO,UAAU,KAAK,UAAU;AAAA,IACjC,CAAC;AAAA,EACF;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,SAAS,QAAQ,QAAQ,WAAW,IAAI;AACzD,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,KAAK,IAAI,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,KAAK;AAChF,YAAM,IAAK,IAAI,IAAK;AACpB,YAAM,QAAQ,aAAa;AAC3B,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,OAAO,KAAK,QAAQ,cAAc,UAAU,IAAI;AACxD,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,MAAM,IAAI,MAAM,MAAM,YAAY,IAAI,SAAS,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClH;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,UAAU,KAAK;AAAA,EAC5B;AACD;",
4
+ "sourcesContent": ["import { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { getArcMeasure, getPointInArcT, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Arc2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tstart: Vec\n\tend: Vec\n\tlargeArcFlag: number\n\tsweepFlag: number\n\n\tmeasure: number\n\tangleStart: number\n\tangleEnd: number\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tcenter: Vec\n\t\t\tstart: Vec\n\t\t\tend: Vec\n\t\t\tsweepFlag: number\n\t\t\tlargeArcFlag: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isFilled: false, isClosed: false })\n\t\tconst { center, sweepFlag, largeArcFlag, start, end } = config\n\t\tif (start.equals(end)) throw Error(`Arc must have different start and end points.`)\n\n\t\t// ensure that the start and end are clockwise\n\t\tthis.angleStart = Vec.Angle(center, start)\n\t\tthis.angleEnd = Vec.Angle(center, end)\n\t\tthis.radius = Vec.Dist(center, start)\n\t\tthis.measure = getArcMeasure(this.angleStart, this.angleEnd, sweepFlag, largeArcFlag)\n\n\t\tthis.start = start\n\t\tthis.end = end\n\n\t\tthis.sweepFlag = sweepFlag\n\t\tthis.largeArcFlag = largeArcFlag\n\t\tthis._center = center\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst { _center, measure, radius, angleEnd, angleStart, start: A, end: B } = this\n\t\tconst t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point))\n\t\tif (t <= 0) return A\n\t\tif (t >= 1) return B\n\n\t\t// Get the point (P) on the arc, then pick the nearest of A, B, and P\n\t\tconst P = Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tfor (const p of [A, B, P]) {\n\t\t\td = Vec.Dist2(point, p)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike): boolean {\n\t\tconst { _center, radius, measure, angleStart, angleEnd } = this\n\t\tconst intersection = intersectLineSegmentCircle(A, B, _center, radius)\n\t\tif (intersection === null) return false\n\n\t\treturn intersection.some((p) => {\n\t\t\tconst result = getPointInArcT(measure, angleStart, angleEnd, _center.angle(p))\n\t\t\treturn result >= 0 && result <= 1\n\t\t})\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, measure, length, radius, angleStart } = this\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(Math.abs(length)); i < n + 1; i++) {\n\t\t\tconst t = (i / n) * measure\n\t\t\tconst angle = angleStart + t\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { start, end, radius, largeArcFlag, sweepFlag } = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`\n\t}\n\n\toverride getLength() {\n\t\treturn Math.abs(this.measure * this.radius)\n\t}\n}\n"],
5
+ "mappings": "AAAA,SAAS,WAAoB;AAC7B,SAAS,kCAAkC;AAC3C,SAAS,eAAe,gBAAgB,wBAAwB;AAChE,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,cAAc,WAAW;AAAA,EACrC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAOC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,QAAQ,WAAW,cAAc,OAAO,IAAI,IAAI;AACxD,QAAI,MAAM,OAAO,GAAG,EAAG,OAAM,MAAM,+CAA+C;AAGlF,SAAK,aAAa,IAAI,MAAM,QAAQ,KAAK;AACzC,SAAK,WAAW,IAAI,MAAM,QAAQ,GAAG;AACrC,SAAK,SAAS,IAAI,KAAK,QAAQ,KAAK;AACpC,SAAK,UAAU,cAAc,KAAK,YAAY,KAAK,UAAU,WAAW,YAAY;AAEpF,SAAK,QAAQ;AACb,SAAK,MAAM;AAEX,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,UAAU;AAAA,EAChB;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM,EAAE,SAAS,SAAS,QAAQ,UAAU,YAAY,OAAO,GAAG,KAAK,EAAE,IAAI;AAC7E,UAAM,IAAI,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,KAAK,CAAC;AAC5E,QAAI,KAAK,EAAG,QAAO;AACnB,QAAI,KAAK,EAAG,QAAO;AAGnB,UAAM,IAAI,IAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAE/D,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,eAAW,KAAK,CAAC,GAAG,GAAG,CAAC,GAAG;AAC1B,UAAI,IAAI,MAAM,OAAO,CAAC;AACtB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAY,GAAqB;AACnD,UAAM,EAAE,SAAS,QAAQ,SAAS,YAAY,SAAS,IAAI;AAC3D,UAAM,eAAe,2BAA2B,GAAG,GAAG,SAAS,MAAM;AACrE,QAAI,iBAAiB,KAAM,QAAO;AAElC,WAAO,aAAa,KAAK,CAAC,MAAM;AAC/B,YAAM,SAAS,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,CAAC,CAAC;AAC7E,aAAO,UAAU,KAAK,UAAU;AAAA,IACjC,CAAC;AAAA,EACF;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,SAAS,QAAQ,QAAQ,WAAW,IAAI;AACzD,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,KAAK,IAAI,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,KAAK;AAChF,YAAM,IAAK,IAAI,IAAK;AACpB,YAAM,QAAQ,aAAa;AAC3B,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,OAAO,KAAK,QAAQ,cAAc,UAAU,IAAI;AACxD,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,MAAM,IAAI,MAAM,MAAM,YAAY,IAAI,SAAS,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClH;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,IAAI,KAAK,UAAU,KAAK,MAAM;AAAA,EAC3C;AACD;",
6
6
  "names": []
7
7
  }
@@ -34,7 +34,7 @@ class Circle2d extends Geometry2d {
34
34
  nearestPoint(point) {
35
35
  const { _center, radius } = this;
36
36
  if (_center.equals(point)) return Vec.AddXY(_center, radius, 0);
37
- return _center.clone().add(point.clone().sub(_center).uni().mul(radius));
37
+ return Vec.Sub(point, _center).uni().mul(radius).add(_center);
38
38
  }
39
39
  hitTestLineSegment(A, B, distance = 0) {
40
40
  const { _center, radius } = this;
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Circle2d.ts"],
4
- "sourcesContent": ["import { Box } from '../Box'\nimport { Vec } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { PI2, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Circle2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tx: number\n\ty: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\tx?: number\n\t\t\ty?: number\n\t\t\tradius: number\n\t\t\tisFilled: boolean\n\t\t}\n\t) {\n\t\tsuper({ isClosed: true, ...config })\n\t\tconst { x = 0, y = 0, radius } = config\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis._center = new Vec(radius + x, radius + y)\n\t\tthis.radius = radius\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(this.x, this.y, this.radius * 2, this.radius * 2)\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, radius } = this\n\t\tconst perimeter = PI2 * radius\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(perimeter); i < n; i++) {\n\t\t\tconst angle = (i / n) * PI2\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tnearestPoint(point: Vec): Vec {\n\t\tconst { _center, radius } = this\n\t\tif (_center.equals(point)) return Vec.AddXY(_center, radius, 0)\n\t\treturn _center.clone().add(point.clone().sub(_center).uni().mul(radius))\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec, distance = 0): boolean {\n\t\tconst { _center, radius } = this\n\t\treturn intersectLineSegmentCircle(A, B, _center, radius + distance) !== null\n\t}\n\n\tgetSvgPathData(): string {\n\t\tconst { _center, radius } = this\n\t\treturn `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`\n\t}\n}\n"],
5
- "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,WAAW;AACpB,SAAS,kCAAkC;AAC3C,SAAS,KAAK,wBAAwB;AACtC,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,iBAAiB,WAAW;AAAA,EAMxC,YACQ,QAMN;AACD,UAAM,EAAE,UAAU,MAAM,GAAG,OAAO,CAAC;AAP5B;AAQP,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,OAAO,IAAI;AACjC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,UAAU,IAAI,IAAI,SAAS,GAAG,SAAS,CAAC;AAC7C,SAAK,SAAS;AAAA,EACf;AAAA,EAnBA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAkBA,YAAY;AACX,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,GAAG,KAAK,SAAS,GAAG,KAAK,SAAS,CAAC;AAAA,EAChE;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,UAAM,YAAY,MAAM;AACxB,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,SAAS,GAAG,IAAI,GAAG,KAAK;AACrE,YAAM,QAAS,IAAI,IAAK;AACxB,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAiB;AAC7B,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,QAAI,QAAQ,OAAO,KAAK,EAAG,QAAO,IAAI,MAAM,SAAS,QAAQ,CAAC;AAC9D,WAAO,QAAQ,MAAM,EAAE,IAAI,MAAM,MAAM,EAAE,IAAI,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,CAAC;AAAA,EACxE;AAAA,EAEA,mBAAmB,GAAQ,GAAQ,WAAW,GAAY;AACzD,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,2BAA2B,GAAG,GAAG,SAAS,SAAS,QAAQ,MAAM;AAAA,EACzE;AAAA,EAEA,iBAAyB;AACxB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,IAAI,QAAQ,IAAI,MAAM,IAAI,QAAQ,CAAC,KAAK,MAAM,IAAI,MAAM,UAAU,SAAS,CAAC,MAAM,MAAM,IAAI,MAAM,WAAW,SAAS,CAAC;AAAA,EAC/H;AACD;",
4
+ "sourcesContent": ["import { Box } from '../Box'\nimport { Vec, VecLike } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { PI2, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Circle2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tx: number\n\ty: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\tx?: number\n\t\t\ty?: number\n\t\t\tradius: number\n\t\t\tisFilled: boolean\n\t\t}\n\t) {\n\t\tsuper({ isClosed: true, ...config })\n\t\tconst { x = 0, y = 0, radius } = config\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis._center = new Vec(radius + x, radius + y)\n\t\tthis.radius = radius\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(this.x, this.y, this.radius * 2, this.radius * 2)\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, radius } = this\n\t\tconst perimeter = PI2 * radius\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(perimeter); i < n; i++) {\n\t\t\tconst angle = (i / n) * PI2\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tnearestPoint(point: VecLike): Vec {\n\t\tconst { _center, radius } = this\n\t\tif (_center.equals(point)) return Vec.AddXY(_center, radius, 0)\n\t\treturn Vec.Sub(point, _center).uni().mul(radius).add(_center)\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0): boolean {\n\t\tconst { _center, radius } = this\n\t\treturn intersectLineSegmentCircle(A, B, _center, radius + distance) !== null\n\t}\n\n\tgetSvgPathData(): string {\n\t\tconst { _center, radius } = this\n\t\treturn `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`\n\t}\n}\n"],
5
+ "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,WAAoB;AAC7B,SAAS,kCAAkC;AAC3C,SAAS,KAAK,wBAAwB;AACtC,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,iBAAiB,WAAW;AAAA,EAMxC,YACQ,QAMN;AACD,UAAM,EAAE,UAAU,MAAM,GAAG,OAAO,CAAC;AAP5B;AAQP,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,OAAO,IAAI;AACjC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,UAAU,IAAI,IAAI,SAAS,GAAG,SAAS,CAAC;AAC7C,SAAK,SAAS;AAAA,EACf;AAAA,EAnBA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAkBA,YAAY;AACX,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,GAAG,KAAK,SAAS,GAAG,KAAK,SAAS,CAAC;AAAA,EAChE;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,UAAM,YAAY,MAAM;AACxB,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,SAAS,GAAG,IAAI,GAAG,KAAK;AACrE,YAAM,QAAS,IAAI,IAAK;AACxB,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAqB;AACjC,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,QAAI,QAAQ,OAAO,KAAK,EAAG,QAAO,IAAI,MAAM,SAAS,QAAQ,CAAC;AAC9D,WAAO,IAAI,IAAI,OAAO,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,EAAE,IAAI,OAAO;AAAA,EAC7D;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAY;AACjE,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,2BAA2B,GAAG,GAAG,SAAS,SAAS,QAAQ,MAAM;AAAA,EACzE;AAAA,EAEA,iBAAyB;AACxB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,IAAI,QAAQ,IAAI,MAAM,IAAI,QAAQ,CAAC,KAAK,MAAM,IAAI,MAAM,UAAU,SAAS,CAAC,MAAM,MAAM,IAAI,MAAM,WAAW,SAAS,CAAC;AAAA,EAC/H;AACD;",
6
6
  "names": []
7
7
  }
@@ -57,7 +57,7 @@ class CubicBezier2d extends Polyline2d {
57
57
  (1 - t) * (1 - t) * (1 - t) * a.y + 3 * ((1 - t) * (1 - t)) * t * b.y + 3 * (1 - t) * (t * t) * c.y + t * t * t * d.y
58
58
  );
59
59
  }
60
- getLength(precision = 32) {
60
+ getLength(filters, precision = 32) {
61
61
  let n1, p1 = this.a, length = 0;
62
62
  for (let i = 1; i <= precision; i++) {
63
63
  n1 = CubicBezier2d.GetAtT(this, i / precision);
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/CubicBezier2d.ts"],
4
- "sourcesContent": ["import { Vec } from '../Vec'\nimport { Geometry2dOptions } from './Geometry2d'\nimport { Polyline2d } from './Polyline2d'\n\n/** @public */\nexport class CubicBezier2d extends Polyline2d {\n\ta: Vec\n\tb: Vec\n\tc: Vec\n\td: Vec\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tstart: Vec\n\t\t\tcp1: Vec\n\t\t\tcp2: Vec\n\t\t\tend: Vec\n\t\t}\n\t) {\n\t\tconst { start: a, cp1: b, cp2: c, end: d } = config\n\t\tsuper({ ...config, points: [a, d] })\n\n\t\tthis.a = a\n\t\tthis.b = b\n\t\tthis.c = c\n\t\tthis.d = d\n\t}\n\n\toverride getVertices() {\n\t\tconst vertices = [] as Vec[]\n\t\tconst { a, b, c, d } = this\n\t\t// we'll always use ten vertices for each bezier curve\n\t\tfor (let i = 0, n = 10; i <= n; i++) {\n\t\t\tconst t = i / n\n\t\t\tvertices.push(\n\t\t\t\tnew Vec(\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\t\t\tt * t * t * d.x,\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\t\t\tt * t * t * d.y\n\t\t\t\t)\n\t\t\t)\n\t\t}\n\t\treturn vertices\n\t}\n\n\tmidPoint() {\n\t\treturn CubicBezier2d.GetAtT(this, 0.5)\n\t}\n\n\tnearestPoint(A: Vec): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const edge of this.segments) {\n\t\t\tp = edge.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { a, b, c, d } = this\n\t\treturn `${first ? `M ${a.toFixed()} ` : ``} C${b.toFixed()} ${c.toFixed()} ${d.toFixed()}`\n\t}\n\n\tstatic GetAtT(segment: CubicBezier2d, t: number) {\n\t\tconst { a, b, c, d } = segment\n\t\treturn new Vec(\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\tt * t * t * d.x,\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\tt * t * t * d.y\n\t\t)\n\t}\n\n\toverride getLength(precision = 32) {\n\t\tlet n1: Vec,\n\t\t\tp1 = this.a,\n\t\t\tlength = 0\n\t\tfor (let i = 1; i <= precision; i++) {\n\t\t\tn1 = CubicBezier2d.GetAtT(this, i / precision)\n\t\t\tlength += Vec.Dist(p1, n1)\n\t\t\tp1 = n1\n\t\t}\n\t\treturn length\n\t}\n}\n"],
5
- "mappings": "AAAA,SAAS,WAAW;AAEpB,SAAS,kBAAkB;AAGpB,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAMC;AACD,UAAM,EAAE,OAAO,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,EAAE,IAAI;AAC7C,UAAM,EAAE,GAAG,QAAQ,QAAQ,CAAC,GAAG,CAAC,EAAE,CAAC;AAEnC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAES,cAAc;AACtB,UAAM,WAAW,CAAC;AAClB,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AAEvB,aAAS,IAAI,GAAG,IAAI,IAAI,KAAK,GAAG,KAAK;AACpC,YAAM,IAAI,IAAI;AACd,eAAS;AAAA,QACR,IAAI;AAAA,WACF,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,WACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,QAChB;AAAA,MACD;AAAA,IACD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,cAAc,OAAO,MAAM,GAAG;AAAA,EACtC;AAAA,EAEA,aAAa,GAAa;AACzB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,QAAQ,KAAK,UAAU;AACjC,UAAI,KAAK,aAAa,CAAC;AACvB,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AAEA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,GAAG,QAAQ,KAAK,EAAE,QAAQ,CAAC,MAAM,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC;AAAA,EACzF;AAAA,EAEA,OAAO,OAAO,SAAwB,GAAW;AAChD,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI;AAAA,OACT,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,OACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,IAChB;AAAA,EACD;AAAA,EAES,UAAU,YAAY,IAAI;AAClC,QAAI,IACH,KAAK,KAAK,GACV,SAAS;AACV,aAAS,IAAI,GAAG,KAAK,WAAW,KAAK;AACpC,WAAK,cAAc,OAAO,MAAM,IAAI,SAAS;AAC7C,gBAAU,IAAI,KAAK,IAAI,EAAE;AACzB,WAAK;AAAA,IACN;AACA,WAAO;AAAA,EACR;AACD;",
4
+ "sourcesContent": ["import { Vec, VecLike } from '../Vec'\nimport { Geometry2dFilters, Geometry2dOptions } from './Geometry2d'\nimport { Polyline2d } from './Polyline2d'\n\n/** @public */\nexport class CubicBezier2d extends Polyline2d {\n\ta: Vec\n\tb: Vec\n\tc: Vec\n\td: Vec\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tstart: Vec\n\t\t\tcp1: Vec\n\t\t\tcp2: Vec\n\t\t\tend: Vec\n\t\t}\n\t) {\n\t\tconst { start: a, cp1: b, cp2: c, end: d } = config\n\t\tsuper({ ...config, points: [a, d] })\n\n\t\tthis.a = a\n\t\tthis.b = b\n\t\tthis.c = c\n\t\tthis.d = d\n\t}\n\n\toverride getVertices() {\n\t\tconst vertices = [] as Vec[]\n\t\tconst { a, b, c, d } = this\n\t\t// we'll always use ten vertices for each bezier curve\n\t\tfor (let i = 0, n = 10; i <= n; i++) {\n\t\t\tconst t = i / n\n\t\t\tvertices.push(\n\t\t\t\tnew Vec(\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\t\t\tt * t * t * d.x,\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\t\t\tt * t * t * d.y\n\t\t\t\t)\n\t\t\t)\n\t\t}\n\t\treturn vertices\n\t}\n\n\tmidPoint() {\n\t\treturn CubicBezier2d.GetAtT(this, 0.5)\n\t}\n\n\tnearestPoint(A: VecLike): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const edge of this.segments) {\n\t\t\tp = edge.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { a, b, c, d } = this\n\t\treturn `${first ? `M ${a.toFixed()} ` : ``} C${b.toFixed()} ${c.toFixed()} ${d.toFixed()}`\n\t}\n\n\tstatic GetAtT(segment: CubicBezier2d, t: number) {\n\t\tconst { a, b, c, d } = segment\n\t\treturn new Vec(\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\tt * t * t * d.x,\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\tt * t * t * d.y\n\t\t)\n\t}\n\n\toverride getLength(filters?: Geometry2dFilters, precision = 32) {\n\t\tlet n1: Vec,\n\t\t\tp1 = this.a,\n\t\t\tlength = 0\n\t\tfor (let i = 1; i <= precision; i++) {\n\t\t\tn1 = CubicBezier2d.GetAtT(this, i / precision)\n\t\t\tlength += Vec.Dist(p1, n1)\n\t\t\tp1 = n1\n\t\t}\n\t\treturn length\n\t}\n}\n"],
5
+ "mappings": "AAAA,SAAS,WAAoB;AAE7B,SAAS,kBAAkB;AAGpB,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAMC;AACD,UAAM,EAAE,OAAO,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,EAAE,IAAI;AAC7C,UAAM,EAAE,GAAG,QAAQ,QAAQ,CAAC,GAAG,CAAC,EAAE,CAAC;AAEnC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAES,cAAc;AACtB,UAAM,WAAW,CAAC;AAClB,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AAEvB,aAAS,IAAI,GAAG,IAAI,IAAI,KAAK,GAAG,KAAK;AACpC,YAAM,IAAI,IAAI;AACd,eAAS;AAAA,QACR,IAAI;AAAA,WACF,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,WACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,QAChB;AAAA,MACD;AAAA,IACD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,cAAc,OAAO,MAAM,GAAG;AAAA,EACtC;AAAA,EAEA,aAAa,GAAiB;AAC7B,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,QAAQ,KAAK,UAAU;AACjC,UAAI,KAAK,aAAa,CAAC;AACvB,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AAEA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,GAAG,QAAQ,KAAK,EAAE,QAAQ,CAAC,MAAM,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC;AAAA,EACzF;AAAA,EAEA,OAAO,OAAO,SAAwB,GAAW;AAChD,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI;AAAA,OACT,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,OACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,IAChB;AAAA,EACD;AAAA,EAES,UAAU,SAA6B,YAAY,IAAI;AAC/D,QAAI,IACH,KAAK,KAAK,GACV,SAAS;AACV,aAAS,IAAI,GAAG,KAAK,WAAW,KAAK;AACpC,WAAK,cAAc,OAAO,MAAM,IAAI,SAAS;AAC7C,gBAAU,IAAI,KAAK,IAAI,EAAE;AACzB,WAAK;AAAA,IACN;AACA,WAAO;AAAA,EACR;AACD;",
6
6
  "names": []
7
7
  }
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/CubicSpline2d.ts"],
4
- "sourcesContent": ["import { Vec } from '../Vec'\nimport { CubicBezier2d } from './CubicBezier2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class CubicSpline2d extends Geometry2d {\n\tpoints: Vec[]\n\n\tconstructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & { points: Vec[] }) {\n\t\tsuper({ ...config, isClosed: false, isFilled: false })\n\t\tconst { points } = config\n\n\t\tthis.points = points\n\t}\n\n\t_segments?: CubicBezier2d[]\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget segments() {\n\t\tif (!this._segments) {\n\t\t\tthis._segments = []\n\t\t\tconst { points } = this\n\n\t\t\tconst len = points.length\n\t\t\tconst last = len - 2\n\t\t\tconst k = 1.25\n\n\t\t\tfor (let i = 0; i < len - 1; i++) {\n\t\t\t\tconst p0 = i === 0 ? points[0] : points[i - 1]\n\t\t\t\tconst p1 = points[i]\n\t\t\t\tconst p2 = points[i + 1]\n\t\t\t\tconst p3 = i === last ? p2 : points[i + 2]\n\t\t\t\tconst start = p1,\n\t\t\t\t\tcp1 =\n\t\t\t\t\t\ti === 0 ? p0 : new Vec(p1.x + ((p2.x - p0.x) / 6) * k, p1.y + ((p2.y - p0.y) / 6) * k),\n\t\t\t\t\tcp2 =\n\t\t\t\t\t\ti === last\n\t\t\t\t\t\t\t? p2\n\t\t\t\t\t\t\t: new Vec(p2.x - ((p3.x - p1.x) / 6) * k, p2.y - ((p3.y - p1.y) / 6) * k),\n\t\t\t\t\tend = p2\n\n\t\t\t\tthis._segments.push(new CubicBezier2d({ start, cp1, cp2, end }))\n\t\t\t}\n\t\t}\n\n\t\treturn this._segments\n\t}\n\n\toverride getLength() {\n\t\treturn this.segments.reduce((acc, segment) => acc + segment.length, 0)\n\t}\n\n\tgetVertices() {\n\t\tconst vertices = this.segments.reduce((acc, segment) => {\n\t\t\treturn acc.concat(segment.vertices)\n\t\t}, [] as Vec[])\n\t\tvertices.push(this.points[this.points.length - 1])\n\t\treturn vertices\n\t}\n\n\tnearestPoint(A: Vec): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const segment of this.segments) {\n\t\t\tp = segment.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec): boolean {\n\t\treturn this.segments.some((segment) => segment.hitTestLineSegment(A, B))\n\t}\n\n\tgetSvgPathData() {\n\t\tlet d = this.segments.reduce((d, segment, i) => {\n\t\t\treturn d + segment.getSvgPathData(i === 0)\n\t\t}, '')\n\n\t\tif (this.isClosed) {\n\t\t\td += 'Z'\n\t\t}\n\n\t\treturn d\n\t}\n}\n"],
5
- "mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,qBAAqB;AAC9B,SAAS,kBAAqC;AAGvC,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EAEA,YAAY,QAA8E;AACzF,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,OAAO,IAAI;AAEnB,SAAK,SAAS;AAAA,EACf;AAAA,EAEA;AAAA;AAAA,EAGA,IAAI,WAAW;AACd,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,CAAC;AAClB,YAAM,EAAE,OAAO,IAAI;AAEnB,YAAM,MAAM,OAAO;AACnB,YAAM,OAAO,MAAM;AACnB,YAAM,IAAI;AAEV,eAAS,IAAI,GAAG,IAAI,MAAM,GAAG,KAAK;AACjC,cAAM,KAAK,MAAM,IAAI,OAAO,CAAC,IAAI,OAAO,IAAI,CAAC;AAC7C,cAAM,KAAK,OAAO,CAAC;AACnB,cAAM,KAAK,OAAO,IAAI,CAAC;AACvB,cAAM,KAAK,MAAM,OAAO,KAAK,OAAO,IAAI,CAAC;AACzC,cAAM,QAAQ,IACb,MACC,MAAM,IAAI,KAAK,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GACtF,MACC,MAAM,OACH,KACA,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GAC1E,MAAM;AAEP,aAAK,UAAU,KAAK,IAAI,cAAc,EAAE,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC;AAAA,MAChE;AAAA,IACD;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY,MAAM,QAAQ,QAAQ,CAAC;AAAA,EACtE;AAAA,EAEA,cAAc;AACb,UAAM,WAAW,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY;AACvD,aAAO,IAAI,OAAO,QAAQ,QAAQ;AAAA,IACnC,GAAG,CAAC,CAAU;AACd,aAAS,KAAK,KAAK,OAAO,KAAK,OAAO,SAAS,CAAC,CAAC;AACjD,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,GAAa;AACzB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,WAAW,KAAK,UAAU;AACpC,UAAI,QAAQ,aAAa,CAAC;AAC1B,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAQ,GAAiB;AAC3C,WAAO,KAAK,SAAS,KAAK,CAAC,YAAY,QAAQ,mBAAmB,GAAG,CAAC,CAAC;AAAA,EACxE;AAAA,EAEA,iBAAiB;AAChB,QAAI,IAAI,KAAK,SAAS,OAAO,CAACA,IAAG,SAAS,MAAM;AAC/C,aAAOA,KAAI,QAAQ,eAAe,MAAM,CAAC;AAAA,IAC1C,GAAG,EAAE;AAEL,QAAI,KAAK,UAAU;AAClB,WAAK;AAAA,IACN;AAEA,WAAO;AAAA,EACR;AACD;",
4
+ "sourcesContent": ["import { Vec, VecLike } from '../Vec'\nimport { CubicBezier2d } from './CubicBezier2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class CubicSpline2d extends Geometry2d {\n\tpoints: Vec[]\n\n\tconstructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & { points: Vec[] }) {\n\t\tsuper({ ...config, isClosed: false, isFilled: false })\n\t\tconst { points } = config\n\n\t\tthis.points = points\n\t}\n\n\t_segments?: CubicBezier2d[]\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget segments() {\n\t\tif (!this._segments) {\n\t\t\tthis._segments = []\n\t\t\tconst { points } = this\n\n\t\t\tconst len = points.length\n\t\t\tconst last = len - 2\n\t\t\tconst k = 1.25\n\n\t\t\tfor (let i = 0; i < len - 1; i++) {\n\t\t\t\tconst p0 = i === 0 ? points[0] : points[i - 1]\n\t\t\t\tconst p1 = points[i]\n\t\t\t\tconst p2 = points[i + 1]\n\t\t\t\tconst p3 = i === last ? p2 : points[i + 2]\n\t\t\t\tconst start = p1,\n\t\t\t\t\tcp1 =\n\t\t\t\t\t\ti === 0 ? p0 : new Vec(p1.x + ((p2.x - p0.x) / 6) * k, p1.y + ((p2.y - p0.y) / 6) * k),\n\t\t\t\t\tcp2 =\n\t\t\t\t\t\ti === last\n\t\t\t\t\t\t\t? p2\n\t\t\t\t\t\t\t: new Vec(p2.x - ((p3.x - p1.x) / 6) * k, p2.y - ((p3.y - p1.y) / 6) * k),\n\t\t\t\t\tend = p2\n\n\t\t\t\tthis._segments.push(new CubicBezier2d({ start, cp1, cp2, end }))\n\t\t\t}\n\t\t}\n\n\t\treturn this._segments\n\t}\n\n\toverride getLength() {\n\t\treturn this.segments.reduce((acc, segment) => acc + segment.length, 0)\n\t}\n\n\tgetVertices() {\n\t\tconst vertices = this.segments.reduce((acc, segment) => {\n\t\t\treturn acc.concat(segment.vertices)\n\t\t}, [] as Vec[])\n\t\tvertices.push(this.points[this.points.length - 1])\n\t\treturn vertices\n\t}\n\n\tnearestPoint(A: VecLike): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const segment of this.segments) {\n\t\t\tp = segment.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike): boolean {\n\t\treturn this.segments.some((segment) => segment.hitTestLineSegment(A, B))\n\t}\n\n\tgetSvgPathData() {\n\t\tlet d = this.segments.reduce((d, segment, i) => {\n\t\t\treturn d + segment.getSvgPathData(i === 0)\n\t\t}, '')\n\n\t\tif (this.isClosed) {\n\t\t\td += 'Z'\n\t\t}\n\n\t\treturn d\n\t}\n}\n"],
5
+ "mappings": "AAAA,SAAS,WAAoB;AAC7B,SAAS,qBAAqB;AAC9B,SAAS,kBAAqC;AAGvC,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EAEA,YAAY,QAA8E;AACzF,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,OAAO,IAAI;AAEnB,SAAK,SAAS;AAAA,EACf;AAAA,EAEA;AAAA;AAAA,EAGA,IAAI,WAAW;AACd,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,CAAC;AAClB,YAAM,EAAE,OAAO,IAAI;AAEnB,YAAM,MAAM,OAAO;AACnB,YAAM,OAAO,MAAM;AACnB,YAAM,IAAI;AAEV,eAAS,IAAI,GAAG,IAAI,MAAM,GAAG,KAAK;AACjC,cAAM,KAAK,MAAM,IAAI,OAAO,CAAC,IAAI,OAAO,IAAI,CAAC;AAC7C,cAAM,KAAK,OAAO,CAAC;AACnB,cAAM,KAAK,OAAO,IAAI,CAAC;AACvB,cAAM,KAAK,MAAM,OAAO,KAAK,OAAO,IAAI,CAAC;AACzC,cAAM,QAAQ,IACb,MACC,MAAM,IAAI,KAAK,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GACtF,MACC,MAAM,OACH,KACA,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GAC1E,MAAM;AAEP,aAAK,UAAU,KAAK,IAAI,cAAc,EAAE,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC;AAAA,MAChE;AAAA,IACD;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY,MAAM,QAAQ,QAAQ,CAAC;AAAA,EACtE;AAAA,EAEA,cAAc;AACb,UAAM,WAAW,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY;AACvD,aAAO,IAAI,OAAO,QAAQ,QAAQ;AAAA,IACnC,GAAG,CAAC,CAAU;AACd,aAAS,KAAK,KAAK,OAAO,KAAK,OAAO,SAAS,CAAC,CAAC;AACjD,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,GAAiB;AAC7B,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,WAAW,KAAK,UAAU;AACpC,UAAI,QAAQ,aAAa,CAAC;AAC1B,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAY,GAAqB;AACnD,WAAO,KAAK,SAAS,KAAK,CAAC,YAAY,QAAQ,mBAAmB,GAAG,CAAC,CAAC;AAAA,EACxE;AAAA,EAEA,iBAAiB;AAChB,QAAI,IAAI,KAAK,SAAS,OAAO,CAACA,IAAG,SAAS,MAAM;AAC/C,aAAOA,KAAI,QAAQ,eAAe,MAAM,CAAC;AAAA,IAC1C,GAAG,EAAE;AAEL,QAAI,KAAK,UAAU;AAClB,WAAK;AAAA,IACN;AAEA,WAAO;AAAA,EACR;AACD;",
6
6
  "names": ["d"]
7
7
  }