@promptbook/markdown-utils 0.89.0 → 0.92.0-10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +4 -0
- package/esm/index.es.js +173 -30
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/core.index.d.ts +6 -0
- package/esm/typings/src/_packages/deepseek.index.d.ts +2 -0
- package/esm/typings/src/_packages/google.index.d.ts +2 -0
- package/esm/typings/src/_packages/utils.index.d.ts +2 -0
- package/esm/typings/src/cli/common/$provideLlmToolsForCli.d.ts +1 -1
- package/esm/typings/src/conversion/archive/loadArchive.d.ts +2 -2
- package/esm/typings/src/execution/CommonToolsOptions.d.ts +4 -0
- package/esm/typings/src/execution/createPipelineExecutor/getKnowledgeForTask.d.ts +12 -0
- package/esm/typings/src/execution/createPipelineExecutor/getReservedParametersForTask.d.ts +5 -0
- package/esm/typings/src/formats/csv/utils/csvParse.d.ts +12 -0
- package/esm/typings/src/formats/json/utils/jsonParse.d.ts +11 -0
- package/esm/typings/src/llm-providers/_common/filterModels.d.ts +15 -0
- package/esm/typings/src/llm-providers/_common/register/LlmToolsMetadata.d.ts +43 -0
- package/esm/typings/src/llm-providers/azure-openai/AzureOpenAiExecutionTools.d.ts +4 -0
- package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +23 -0
- package/esm/typings/src/llm-providers/google/google-models.d.ts +23 -0
- package/esm/typings/src/llm-providers/openai/OpenAiExecutionTools.d.ts +4 -0
- package/esm/typings/src/personas/preparePersona.d.ts +1 -1
- package/esm/typings/src/pipeline/PipelineJson/PersonaJson.d.ts +4 -2
- package/esm/typings/src/remote-server/openapi-types.d.ts +348 -6
- package/esm/typings/src/remote-server/openapi.d.ts +397 -3
- package/package.json +1 -1
- package/umd/index.umd.js +173 -30
- package/umd/index.umd.js.map +1 -1
package/README.md
CHANGED
|
@@ -23,6 +23,10 @@
|
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
|
|
26
|
+
<blockquote style="color: #ff8811">
|
|
27
|
+
<b>⚠ Warning:</b> This is a pre-release version of the library. It is not yet ready for production use. Please look at <a href="https://www.npmjs.com/package/@promptbook/core?activeTab=versions">latest stable release</a>.
|
|
28
|
+
</blockquote>
|
|
29
|
+
|
|
26
30
|
## 📦 Package `@promptbook/markdown-utils`
|
|
27
31
|
|
|
28
32
|
- Promptbooks are [divided into several](#-packages) packages, all are published from [single monorepo](https://github.com/webgptorg/promptbook).
|
package/esm/index.es.js
CHANGED
|
@@ -25,7 +25,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
|
|
|
25
25
|
* @generated
|
|
26
26
|
* @see https://github.com/webgptorg/promptbook
|
|
27
27
|
*/
|
|
28
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.
|
|
28
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.92.0-10';
|
|
29
29
|
/**
|
|
30
30
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
31
31
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -537,7 +537,7 @@ function extractJsonBlock(markdown) {
|
|
|
537
537
|
function keepUnused(...valuesToKeep) {
|
|
538
538
|
}
|
|
539
539
|
|
|
540
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
540
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
541
541
|
|
|
542
542
|
/**
|
|
543
543
|
* Checks if value is valid email
|
|
@@ -1563,7 +1563,7 @@ function extractParameterNames(template) {
|
|
|
1563
1563
|
*/
|
|
1564
1564
|
function unpreparePipeline(pipeline) {
|
|
1565
1565
|
let { personas, knowledgeSources, tasks } = pipeline;
|
|
1566
|
-
personas = personas.map((persona) => ({ ...persona,
|
|
1566
|
+
personas = personas.map((persona) => ({ ...persona, modelsRequirements: undefined, preparationIds: undefined }));
|
|
1567
1567
|
knowledgeSources = knowledgeSources.map((knowledgeSource) => ({ ...knowledgeSource, preparationIds: undefined }));
|
|
1568
1568
|
tasks = tasks.map((task) => {
|
|
1569
1569
|
let { dependentParameterNames } = task;
|
|
@@ -1773,7 +1773,7 @@ function isPipelinePrepared(pipeline) {
|
|
|
1773
1773
|
if (pipeline.title === undefined || pipeline.title === '' || pipeline.title === DEFAULT_BOOK_TITLE) {
|
|
1774
1774
|
return false;
|
|
1775
1775
|
}
|
|
1776
|
-
if (!pipeline.personas.every((persona) => persona.
|
|
1776
|
+
if (!pipeline.personas.every((persona) => persona.modelsRequirements !== undefined)) {
|
|
1777
1777
|
return false;
|
|
1778
1778
|
}
|
|
1779
1779
|
if (!pipeline.knowledgeSources.every((knowledgeSource) => knowledgeSource.preparationIds !== undefined)) {
|
|
@@ -1797,6 +1797,45 @@ function isPipelinePrepared(pipeline) {
|
|
|
1797
1797
|
* - [♨] Are tasks prepared
|
|
1798
1798
|
*/
|
|
1799
1799
|
|
|
1800
|
+
/**
|
|
1801
|
+
* Converts a JavaScript Object Notation (JSON) string into an object.
|
|
1802
|
+
*
|
|
1803
|
+
* Note: This is wrapper around `JSON.parse()` with better error and type handling
|
|
1804
|
+
*
|
|
1805
|
+
* @public exported from `@promptbook/utils`
|
|
1806
|
+
*/
|
|
1807
|
+
function jsonParse(value) {
|
|
1808
|
+
if (value === undefined) {
|
|
1809
|
+
throw new Error(`Can not parse JSON from undefined value.`);
|
|
1810
|
+
}
|
|
1811
|
+
else if (typeof value !== 'string') {
|
|
1812
|
+
console.error('Can not parse JSON from non-string value.', { text: value });
|
|
1813
|
+
throw new Error(spaceTrim(`
|
|
1814
|
+
Can not parse JSON from non-string value.
|
|
1815
|
+
|
|
1816
|
+
The value type: ${typeof value}
|
|
1817
|
+
See more in console.
|
|
1818
|
+
`));
|
|
1819
|
+
}
|
|
1820
|
+
try {
|
|
1821
|
+
return JSON.parse(value);
|
|
1822
|
+
}
|
|
1823
|
+
catch (error) {
|
|
1824
|
+
if (!(error instanceof Error)) {
|
|
1825
|
+
throw error;
|
|
1826
|
+
}
|
|
1827
|
+
throw new Error(spaceTrim((block) => `
|
|
1828
|
+
${block(error.message)}
|
|
1829
|
+
|
|
1830
|
+
The JSON text:
|
|
1831
|
+
${block(value)}
|
|
1832
|
+
`));
|
|
1833
|
+
}
|
|
1834
|
+
}
|
|
1835
|
+
/**
|
|
1836
|
+
* TODO: !!!! Use in Promptbook.studio
|
|
1837
|
+
*/
|
|
1838
|
+
|
|
1800
1839
|
/**
|
|
1801
1840
|
* Recursively converts JSON strings to JSON objects
|
|
1802
1841
|
|
|
@@ -1815,7 +1854,7 @@ function jsonStringsToJsons(object) {
|
|
|
1815
1854
|
const newObject = { ...object };
|
|
1816
1855
|
for (const [key, value] of Object.entries(object)) {
|
|
1817
1856
|
if (typeof value === 'string' && isValidJsonString(value)) {
|
|
1818
|
-
newObject[key] =
|
|
1857
|
+
newObject[key] = jsonParse(value);
|
|
1819
1858
|
}
|
|
1820
1859
|
else {
|
|
1821
1860
|
newObject[key] = jsonStringsToJsons(value);
|
|
@@ -2673,27 +2712,48 @@ async function preparePersona(personaDescription, tools, options) {
|
|
|
2673
2712
|
pipeline: await collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book'),
|
|
2674
2713
|
tools,
|
|
2675
2714
|
});
|
|
2676
|
-
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
2677
2715
|
const _llms = arrayableToArray(tools.llm);
|
|
2678
2716
|
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
2679
|
-
const availableModels = await llmTools.listModels()
|
|
2680
|
-
const availableModelNames = availableModels
|
|
2717
|
+
const availableModels = (await llmTools.listModels())
|
|
2681
2718
|
.filter(({ modelVariant }) => modelVariant === 'CHAT')
|
|
2682
|
-
.map(({ modelName }) =>
|
|
2683
|
-
|
|
2684
|
-
|
|
2719
|
+
.map(({ modelName, modelDescription }) => ({
|
|
2720
|
+
modelName,
|
|
2721
|
+
modelDescription,
|
|
2722
|
+
// <- Note: `modelTitle` and `modelVariant` is not relevant for this task
|
|
2723
|
+
}));
|
|
2724
|
+
const result = await preparePersonaExecutor({
|
|
2725
|
+
availableModels /* <- Note: Passing as JSON */,
|
|
2726
|
+
personaDescription,
|
|
2727
|
+
}).asPromise();
|
|
2685
2728
|
const { outputParameters } = result;
|
|
2686
|
-
const {
|
|
2687
|
-
|
|
2729
|
+
const { modelsRequirements: modelsRequirementsJson } = outputParameters;
|
|
2730
|
+
let modelsRequirementsUnchecked = jsonParse(modelsRequirementsJson);
|
|
2688
2731
|
if (isVerbose) {
|
|
2689
|
-
console.info(`PERSONA ${personaDescription}`,
|
|
2732
|
+
console.info(`PERSONA ${personaDescription}`, modelsRequirementsUnchecked);
|
|
2690
2733
|
}
|
|
2691
|
-
|
|
2692
|
-
|
|
2734
|
+
if (!Array.isArray(modelsRequirementsUnchecked)) {
|
|
2735
|
+
// <- TODO: Book should have syntax and system to enforce shape of JSON
|
|
2736
|
+
modelsRequirementsUnchecked = [modelsRequirementsUnchecked];
|
|
2737
|
+
/*
|
|
2738
|
+
throw new UnexpectedError(
|
|
2739
|
+
spaceTrim(
|
|
2740
|
+
(block) => `
|
|
2741
|
+
Invalid \`modelsRequirements\`:
|
|
2742
|
+
|
|
2743
|
+
\`\`\`json
|
|
2744
|
+
${block(JSON.stringify(modelsRequirementsUnchecked, null, 4))}
|
|
2745
|
+
\`\`\`
|
|
2746
|
+
`,
|
|
2747
|
+
),
|
|
2748
|
+
);
|
|
2749
|
+
*/
|
|
2750
|
+
}
|
|
2751
|
+
const modelsRequirements = modelsRequirementsUnchecked.map((modelRequirements) => ({
|
|
2693
2752
|
modelVariant: 'CHAT',
|
|
2694
|
-
|
|
2695
|
-
|
|
2696
|
-
|
|
2753
|
+
...modelRequirements,
|
|
2754
|
+
}));
|
|
2755
|
+
return {
|
|
2756
|
+
modelsRequirements,
|
|
2697
2757
|
};
|
|
2698
2758
|
}
|
|
2699
2759
|
/**
|
|
@@ -3517,7 +3577,7 @@ async function makeKnowledgeSourceHandler(knowledgeSource, tools, options) {
|
|
|
3517
3577
|
> },
|
|
3518
3578
|
*/
|
|
3519
3579
|
async asJson() {
|
|
3520
|
-
return
|
|
3580
|
+
return jsonParse(await tools.fs.readFile(filename, 'utf-8'));
|
|
3521
3581
|
},
|
|
3522
3582
|
async asText() {
|
|
3523
3583
|
return await tools.fs.readFile(filename, 'utf-8');
|
|
@@ -3775,14 +3835,14 @@ async function preparePipeline(pipeline, tools, options) {
|
|
|
3775
3835
|
// TODO: [🖌][🧠] Implement some `mapAsync` function
|
|
3776
3836
|
const preparedPersonas = new Array(personas.length);
|
|
3777
3837
|
await forEachAsync(personas, { maxParallelCount /* <- TODO: [🪂] When there are subtasks, this maximul limit can be broken */ }, async (persona, index) => {
|
|
3778
|
-
const
|
|
3838
|
+
const { modelsRequirements } = await preparePersona(persona.description, { ...tools, llm: llmToolsWithUsage }, {
|
|
3779
3839
|
rootDirname,
|
|
3780
3840
|
maxParallelCount /* <- TODO: [🪂] */,
|
|
3781
3841
|
isVerbose,
|
|
3782
3842
|
});
|
|
3783
3843
|
const preparedPersona = {
|
|
3784
3844
|
...persona,
|
|
3785
|
-
|
|
3845
|
+
modelsRequirements,
|
|
3786
3846
|
preparationIds: [/* TODO: [🧊] -> */ currentPreparation.id],
|
|
3787
3847
|
// <- TODO: [🍙] Make some standard order of json properties
|
|
3788
3848
|
};
|
|
@@ -4121,6 +4181,24 @@ function isValidCsvString(value) {
|
|
|
4121
4181
|
}
|
|
4122
4182
|
}
|
|
4123
4183
|
|
|
4184
|
+
/**
|
|
4185
|
+
* Converts a CSV string into an object
|
|
4186
|
+
*
|
|
4187
|
+
* Note: This is wrapper around `papaparse.parse()` with better autohealing
|
|
4188
|
+
*
|
|
4189
|
+
* @private - for now until `@promptbook/csv` is released
|
|
4190
|
+
*/
|
|
4191
|
+
function csvParse(value /* <- TODO: string_csv */, settings, schema /* <- TODO: Make CSV Schemas */) {
|
|
4192
|
+
settings = { ...settings, ...MANDATORY_CSV_SETTINGS };
|
|
4193
|
+
// Note: Autoheal invalid '\n' characters
|
|
4194
|
+
if (settings.newline && !settings.newline.includes('\r') && value.includes('\r')) {
|
|
4195
|
+
console.warn('CSV string contains carriage return characters, but in the CSV settings the `newline` setting does not include them. Autohealing the CSV string.');
|
|
4196
|
+
value = value.replace(/\r\n/g, '\n').replace(/\r/g, '\n');
|
|
4197
|
+
}
|
|
4198
|
+
const csv = parse(value, settings);
|
|
4199
|
+
return csv;
|
|
4200
|
+
}
|
|
4201
|
+
|
|
4124
4202
|
/**
|
|
4125
4203
|
* Definition for CSV spreadsheet
|
|
4126
4204
|
*
|
|
@@ -4143,8 +4221,7 @@ const CsvFormatDefinition = {
|
|
|
4143
4221
|
{
|
|
4144
4222
|
subvalueName: 'ROW',
|
|
4145
4223
|
async mapValues(value, outputParameterName, settings, mapCallback) {
|
|
4146
|
-
|
|
4147
|
-
const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
|
|
4224
|
+
const csv = csvParse(value, settings);
|
|
4148
4225
|
if (csv.errors.length !== 0) {
|
|
4149
4226
|
throw new CsvFormatError(spaceTrim((block) => `
|
|
4150
4227
|
CSV parsing error
|
|
@@ -4174,8 +4251,7 @@ const CsvFormatDefinition = {
|
|
|
4174
4251
|
{
|
|
4175
4252
|
subvalueName: 'CELL',
|
|
4176
4253
|
async mapValues(value, outputParameterName, settings, mapCallback) {
|
|
4177
|
-
|
|
4178
|
-
const csv = parse(value, { ...settings, ...MANDATORY_CSV_SETTINGS });
|
|
4254
|
+
const csv = csvParse(value, settings);
|
|
4179
4255
|
if (csv.errors.length !== 0) {
|
|
4180
4256
|
throw new CsvFormatError(spaceTrim((block) => `
|
|
4181
4257
|
CSV parsing error
|
|
@@ -5102,13 +5178,79 @@ async function getExamplesForTask(task) {
|
|
|
5102
5178
|
/**
|
|
5103
5179
|
* @@@
|
|
5104
5180
|
*
|
|
5181
|
+
* Here is the place where RAG (retrieval-augmented generation) happens
|
|
5182
|
+
*
|
|
5105
5183
|
* @private internal utility of `createPipelineExecutor`
|
|
5106
5184
|
*/
|
|
5107
5185
|
async function getKnowledgeForTask(options) {
|
|
5108
|
-
const { preparedPipeline, task } = options;
|
|
5109
|
-
|
|
5186
|
+
const { tools, preparedPipeline, task } = options;
|
|
5187
|
+
const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
|
|
5188
|
+
const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
|
|
5189
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5190
|
+
if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
|
|
5191
|
+
return 'No knowledge pieces found';
|
|
5192
|
+
}
|
|
5193
|
+
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
5194
|
+
const _llms = arrayableToArray(tools.llm);
|
|
5195
|
+
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
5196
|
+
const taskEmbeddingPrompt = {
|
|
5197
|
+
title: 'Knowledge Search',
|
|
5198
|
+
modelRequirements: {
|
|
5199
|
+
modelVariant: 'EMBEDDING',
|
|
5200
|
+
modelName: firstKnowlegeIndex.modelName,
|
|
5201
|
+
},
|
|
5202
|
+
content: task.content,
|
|
5203
|
+
parameters: {
|
|
5204
|
+
/* !!!!!!!! */
|
|
5205
|
+
},
|
|
5206
|
+
};
|
|
5207
|
+
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5208
|
+
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5209
|
+
const { index } = knowledgePiece;
|
|
5210
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
|
|
5211
|
+
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5212
|
+
if (knowledgePieceIndex === undefined) {
|
|
5213
|
+
return {
|
|
5214
|
+
content: knowledgePiece.content,
|
|
5215
|
+
relevance: 0,
|
|
5216
|
+
};
|
|
5217
|
+
}
|
|
5218
|
+
const relevance = computeCosineSimilarity(knowledgePieceIndex.position, taskEmbeddingResult.content);
|
|
5219
|
+
return {
|
|
5220
|
+
content: knowledgePiece.content,
|
|
5221
|
+
relevance,
|
|
5222
|
+
};
|
|
5223
|
+
});
|
|
5224
|
+
const knowledgePiecesSorted = knowledgePiecesWithRelevance.sort((a, b) => a.relevance - b.relevance);
|
|
5225
|
+
const knowledgePiecesLimited = knowledgePiecesSorted.slice(0, 5);
|
|
5226
|
+
console.log('!!! Embedding', {
|
|
5227
|
+
task,
|
|
5228
|
+
taskEmbeddingPrompt,
|
|
5229
|
+
taskEmbeddingResult,
|
|
5230
|
+
firstKnowlegePiece,
|
|
5231
|
+
firstKnowlegeIndex,
|
|
5232
|
+
knowledgePiecesWithRelevance,
|
|
5233
|
+
knowledgePiecesSorted,
|
|
5234
|
+
knowledgePiecesLimited,
|
|
5235
|
+
});
|
|
5236
|
+
return knowledgePiecesLimited.map(({ content }) => `- ${content}`).join('\n');
|
|
5110
5237
|
// <- TODO: [🧠] Some smart aggregation of knowledge pieces, single-line vs multi-line vs mixed
|
|
5111
5238
|
}
|
|
5239
|
+
// TODO: !!!!!! Annotate + to new file
|
|
5240
|
+
function computeCosineSimilarity(embeddingVector1, embeddingVector2) {
|
|
5241
|
+
if (embeddingVector1.length !== embeddingVector2.length) {
|
|
5242
|
+
throw new TypeError('Embedding vectors must have the same length');
|
|
5243
|
+
}
|
|
5244
|
+
const dotProduct = embeddingVector1.reduce((sum, value, index) => sum + value * embeddingVector2[index], 0);
|
|
5245
|
+
const magnitude1 = Math.sqrt(embeddingVector1.reduce((sum, value) => sum + value * value, 0));
|
|
5246
|
+
const magnitude2 = Math.sqrt(embeddingVector2.reduce((sum, value) => sum + value * value, 0));
|
|
5247
|
+
return 1 - dotProduct / (magnitude1 * magnitude2);
|
|
5248
|
+
}
|
|
5249
|
+
/**
|
|
5250
|
+
* TODO: !!!! Verify if this is working
|
|
5251
|
+
* TODO: [♨] Implement Better - use keyword search
|
|
5252
|
+
* TODO: [♨] Examples of values
|
|
5253
|
+
*/
|
|
5112
5254
|
|
|
5113
5255
|
/**
|
|
5114
5256
|
* @@@
|
|
@@ -5116,9 +5258,9 @@ async function getKnowledgeForTask(options) {
|
|
|
5116
5258
|
* @private internal utility of `createPipelineExecutor`
|
|
5117
5259
|
*/
|
|
5118
5260
|
async function getReservedParametersForTask(options) {
|
|
5119
|
-
const { preparedPipeline, task, pipelineIdentification } = options;
|
|
5261
|
+
const { tools, preparedPipeline, task, pipelineIdentification } = options;
|
|
5120
5262
|
const context = await getContextForTask(); // <- [🏍]
|
|
5121
|
-
const knowledge = await getKnowledgeForTask({ preparedPipeline, task });
|
|
5263
|
+
const knowledge = await getKnowledgeForTask({ tools, preparedPipeline, task });
|
|
5122
5264
|
const examples = await getExamplesForTask();
|
|
5123
5265
|
const currentDate = new Date().toISOString(); // <- TODO: [🧠][💩] Better
|
|
5124
5266
|
const modelName = RESERVED_PARAMETER_MISSING_VALUE;
|
|
@@ -5180,6 +5322,7 @@ async function executeTask(options) {
|
|
|
5180
5322
|
}
|
|
5181
5323
|
const definedParameters = Object.freeze({
|
|
5182
5324
|
...(await getReservedParametersForTask({
|
|
5325
|
+
tools,
|
|
5183
5326
|
preparedPipeline,
|
|
5184
5327
|
task: currentTask,
|
|
5185
5328
|
pipelineIdentification,
|