torch-rb 0.2.7 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +7 -2
- data/README.md +4 -1
- data/ext/torch/ext.cpp +4 -3
- data/lib/torch.rb +1 -5
- data/lib/torch/native/native_functions.yaml +654 -660
- data/lib/torch/nn/conv2d.rb +0 -1
- data/lib/torch/optim/optimizer.rb +6 -4
- data/lib/torch/tensor.rb +10 -11
- data/lib/torch/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 33636e58063f25c2b9f122d29332e4136bb6a4de0fd227349f75d65a9db94931
|
4
|
+
data.tar.gz: 9349dd0b050a4c9e0714d92bb451bdd916e55fb47a5c4d90a74720d53564a1d6
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 692e8dc3531426377413fc9325c2b03dd7fcbbbce0c05cbd5d7c3182a08bbe733bb9a6b0aa62a56fb27917073e1f1f5859aa0dd3f6f40e74043bba242ede6267
|
7
|
+
data.tar.gz: f57d0411c18c7c4753f5edc82e48b666ad3154c72bf189a8ec2c4dceb08cd1f37a9421b9a6eae3d20e10c4c9236a1136d76559a31989ce22868a9f44ef3e0e66
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,8 @@
|
|
1
|
+
## 0.3.0 (2020-07-29)
|
2
|
+
|
3
|
+
- Updated LibTorch to 1.6.0
|
4
|
+
- Removed `state_dict` method from optimizers until `load_state_dict` is implemented
|
5
|
+
|
1
6
|
## 0.2.7 (2020-06-29)
|
2
7
|
|
3
8
|
- Made tensors enumerable
|
@@ -43,7 +48,7 @@
|
|
43
48
|
## 0.2.0 (2020-04-22)
|
44
49
|
|
45
50
|
- No longer experimental
|
46
|
-
- Updated
|
51
|
+
- Updated LibTorch to 1.5.0
|
47
52
|
- Added support for GPUs and OpenMP
|
48
53
|
- Added adaptive pooling layers
|
49
54
|
- Tensor `dtype` is now based on Numo type for `Torch.tensor`
|
@@ -52,7 +57,7 @@
|
|
52
57
|
|
53
58
|
## 0.1.8 (2020-01-17)
|
54
59
|
|
55
|
-
- Updated
|
60
|
+
- Updated LibTorch to 1.4.0
|
56
61
|
|
57
62
|
## 0.1.7 (2020-01-10)
|
58
63
|
|
data/README.md
CHANGED
@@ -42,6 +42,8 @@ This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.htm
|
|
42
42
|
- Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`)
|
43
43
|
- Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`)
|
44
44
|
|
45
|
+
You can follow PyTorch tutorials and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
|
46
|
+
|
45
47
|
## Tutorial
|
46
48
|
|
47
49
|
Some examples below are from [Deep Learning with PyTorch: A 60 Minutes Blitz](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html)
|
@@ -409,7 +411,8 @@ Here’s the list of compatible versions.
|
|
409
411
|
|
410
412
|
Torch.rb | LibTorch
|
411
413
|
--- | ---
|
412
|
-
0.
|
414
|
+
0.3.0 | 1.6.0
|
415
|
+
0.2.0-0.2.7 | 1.5.0-1.5.1
|
413
416
|
0.1.8 | 1.4.0
|
414
417
|
0.1.0-0.1.7 | 1.3.1
|
415
418
|
|
data/ext/torch/ext.cpp
CHANGED
@@ -48,13 +48,14 @@ void Init_ext()
|
|
48
48
|
.define_singleton_method(
|
49
49
|
"initial_seed",
|
50
50
|
*[]() {
|
51
|
-
return at::detail::getDefaultCPUGenerator()
|
51
|
+
return at::detail::getDefaultCPUGenerator().current_seed();
|
52
52
|
})
|
53
53
|
.define_singleton_method(
|
54
54
|
"seed",
|
55
55
|
*[]() {
|
56
56
|
// TODO set for CUDA when available
|
57
|
-
|
57
|
+
auto generator = at::detail::getDefaultCPUGenerator();
|
58
|
+
return generator.seed();
|
58
59
|
});
|
59
60
|
|
60
61
|
// https://pytorch.org/cppdocs/api/structc10_1_1_i_value.html
|
@@ -460,7 +461,7 @@ void Init_ext()
|
|
460
461
|
.define_singleton_method(
|
461
462
|
"_make_subclass",
|
462
463
|
*[](Tensor& rd, bool requires_grad) {
|
463
|
-
auto data =
|
464
|
+
auto data = rd.detach();
|
464
465
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
465
466
|
auto var = data.set_requires_grad(requires_grad);
|
466
467
|
return Parameter(std::move(var));
|
data/lib/torch.rb
CHANGED
@@ -470,11 +470,7 @@ module Torch
|
|
470
470
|
when nil
|
471
471
|
IValue.new
|
472
472
|
when Array
|
473
|
-
|
474
|
-
IValue.from_list(obj.map { |v| IValue.from_tensor(v) })
|
475
|
-
else
|
476
|
-
raise Error, "Unknown list type"
|
477
|
-
end
|
473
|
+
IValue.from_list(obj.map { |v| to_ivalue(v) })
|
478
474
|
else
|
479
475
|
raise Error, "Unknown type: #{obj.class.name}"
|
480
476
|
end
|
@@ -1,44 +1,52 @@
|
|
1
1
|
# See README.md in this directory for more guidance
|
2
2
|
|
3
|
+
# *********NB: _cast_* operators are DEPRECATED and will be removed
|
4
|
+
# eventually. These were previously used before TorchScript IR supported
|
5
|
+
# representing ScalarType's. They are now superseded by usage of
|
6
|
+
# `aten::to()`. The ops remain here for backward compatibility purposes.
|
3
7
|
|
4
|
-
#
|
5
|
-
# Type's are not supported in the IR. Instead, we call down to these
|
6
|
-
# specialized operators for each datatype.
|
7
|
-
# TODO: remove when we have Type support in the IR
|
8
|
+
# DEPRECATED. DO NOT USE
|
8
9
|
- func: _cast_Byte(Tensor self, bool non_blocking=False) -> Tensor
|
9
10
|
use_c10_dispatcher: full
|
10
11
|
variants: function
|
11
12
|
|
13
|
+
# DEPRECATED. DO NOT USE
|
12
14
|
- func: _cast_Char(Tensor self, bool non_blocking=False) -> Tensor
|
13
15
|
use_c10_dispatcher: full
|
14
16
|
variants: function
|
15
17
|
|
18
|
+
# DEPRECATED. DO NOT USE
|
16
19
|
- func: _cast_Double(Tensor self, bool non_blocking=False) -> Tensor
|
17
20
|
use_c10_dispatcher: full
|
18
21
|
variants: function
|
19
22
|
|
23
|
+
# DEPRECATED. DO NOT USE
|
20
24
|
- func: _cast_Float(Tensor self, bool non_blocking=False) -> Tensor
|
21
25
|
use_c10_dispatcher: full
|
22
26
|
variants: function
|
23
27
|
|
28
|
+
# DEPRECATED. DO NOT USE
|
24
29
|
- func: _cast_Int(Tensor self, bool non_blocking=False) -> Tensor
|
25
30
|
use_c10_dispatcher: full
|
26
31
|
variants: function
|
27
32
|
|
33
|
+
# DEPRECATED. DO NOT USE
|
28
34
|
- func: _cast_Long(Tensor self, bool non_blocking=False) -> Tensor
|
29
35
|
use_c10_dispatcher: full
|
30
36
|
variants: function
|
31
37
|
|
38
|
+
# DEPRECATED. DO NOT USE
|
32
39
|
- func: _cast_Short(Tensor self, bool non_blocking=False) -> Tensor
|
33
40
|
use_c10_dispatcher: full
|
34
41
|
variants: function
|
35
42
|
|
43
|
+
# DEPRECATED. DO NOT USE
|
36
44
|
- func: _cast_Half(Tensor self, bool non_blocking=False) -> Tensor
|
37
45
|
use_c10_dispatcher: full
|
38
46
|
variants: function
|
39
47
|
|
40
48
|
# Computes the gradient of current tensor w.r.t. graph leaves.
|
41
|
-
- func: backward(Tensor self, Tensor? gradient=None, bool
|
49
|
+
- func: backward(Tensor self, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> ()
|
42
50
|
manual_kernel_registration: True
|
43
51
|
variants: method
|
44
52
|
|
@@ -79,14 +87,13 @@
|
|
79
87
|
use_c10_dispatcher: full
|
80
88
|
manual_kernel_registration: True
|
81
89
|
variants: method
|
82
|
-
supports_named_tensor: True
|
83
90
|
|
84
91
|
- func: _version(Tensor self) -> int
|
85
92
|
use_c10_dispatcher: full
|
86
93
|
manual_kernel_registration: True
|
87
94
|
variants: method
|
88
95
|
|
89
|
-
- func: requires_grad_(Tensor(a!) self, bool
|
96
|
+
- func: requires_grad_(Tensor(a!) self, bool requires_grad=True) -> Tensor(a!)
|
90
97
|
manual_kernel_registration: True
|
91
98
|
variants: method
|
92
99
|
|
@@ -98,45 +105,39 @@
|
|
98
105
|
|
99
106
|
- func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)
|
100
107
|
variants: method
|
101
|
-
supports_named_tensor: True
|
102
108
|
|
103
109
|
- func: rename(Tensor(a) self, Dimname[]? names) -> Tensor(a)
|
104
110
|
variants: method
|
105
|
-
supports_named_tensor: True
|
106
111
|
|
107
112
|
- func: align_to(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
108
113
|
variants: method
|
109
|
-
supports_named_tensor: True
|
110
114
|
|
111
115
|
- func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a)
|
112
116
|
variants: method
|
113
|
-
supports_named_tensor: True
|
114
117
|
|
115
118
|
- func: align_as(Tensor self, Tensor other) -> Tensor
|
119
|
+
use_c10_dispatcher: full
|
116
120
|
variants: method
|
117
|
-
supports_named_tensor: True
|
118
121
|
|
119
122
|
- func: align_tensors(Tensor[] tensors) -> Tensor[]
|
120
|
-
|
123
|
+
use_c10_dispatcher: full
|
121
124
|
|
122
125
|
- func: refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
123
126
|
variants: method
|
124
|
-
supports_named_tensor: True
|
125
127
|
|
126
128
|
- func: unflatten.Dimname(Tensor self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor
|
127
129
|
variants: method
|
128
|
-
supports_named_tensor: True
|
129
130
|
|
130
131
|
- func: unflatten.int(Tensor self, int dim, int[] sizes, Dimname[] names) -> Tensor
|
131
132
|
variants: method
|
132
|
-
supports_named_tensor: True
|
133
|
-
|
134
133
|
|
135
134
|
- func: _use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool
|
135
|
+
use_c10_dispatcher: full
|
136
136
|
dispatch:
|
137
137
|
CUDA: _use_cudnn_ctc_loss
|
138
138
|
|
139
139
|
- func: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor)
|
140
|
+
use_c10_dispatcher: full
|
140
141
|
dispatch:
|
141
142
|
CUDA: _cudnn_ctc_loss
|
142
143
|
|
@@ -144,6 +145,7 @@
|
|
144
145
|
use_c10_dispatcher: full
|
145
146
|
|
146
147
|
- func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
148
|
+
use_c10_dispatcher: full
|
147
149
|
dispatch:
|
148
150
|
CUDA: _cudnn_rnn_flatten_weight
|
149
151
|
|
@@ -167,7 +169,6 @@
|
|
167
169
|
variants: function
|
168
170
|
dispatch:
|
169
171
|
CUDA: fused_dropout_cuda
|
170
|
-
supports_named_tensor: True
|
171
172
|
|
172
173
|
- func: _masked_scale(Tensor self, Tensor mask, float scale) -> Tensor
|
173
174
|
use_c10_dispatcher: full
|
@@ -179,13 +180,10 @@
|
|
179
180
|
|
180
181
|
- func: _sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!)
|
181
182
|
|
182
|
-
|
183
183
|
- func: _sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!)
|
184
184
|
|
185
|
-
|
186
185
|
- func: _sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!)
|
187
186
|
|
188
|
-
|
189
187
|
- func: _reshape_from_tensor(Tensor self, Tensor shape) -> Tensor
|
190
188
|
use_c10_dispatcher: full
|
191
189
|
|
@@ -194,10 +192,8 @@
|
|
194
192
|
|
195
193
|
- func: dropout(Tensor input, float p, bool train) -> Tensor
|
196
194
|
use_c10_dispatcher: full
|
197
|
-
supports_named_tensor: True
|
198
195
|
|
199
196
|
- func: dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
200
|
-
supports_named_tensor: True
|
201
197
|
|
202
198
|
- func: feature_dropout(Tensor input, float p, bool train) -> Tensor
|
203
199
|
use_c10_dispatcher: full
|
@@ -209,69 +205,84 @@
|
|
209
205
|
|
210
206
|
- func: alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
211
207
|
|
212
|
-
|
213
208
|
- func: feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor
|
214
209
|
use_c10_dispatcher: full
|
215
210
|
|
216
211
|
- func: feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
217
212
|
|
218
|
-
|
219
213
|
- func: abs(Tensor self) -> Tensor
|
220
214
|
use_c10_dispatcher: full
|
221
215
|
variants: function, method
|
222
|
-
supports_named_tensor: True
|
223
216
|
|
224
217
|
- func: abs_(Tensor(a!) self) -> Tensor(a!)
|
225
218
|
variants: function, method
|
226
|
-
supports_named_tensor: True
|
227
219
|
|
228
220
|
- func: abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
229
|
-
|
221
|
+
|
222
|
+
- func: absolute(Tensor self) -> Tensor
|
223
|
+
use_c10_dispatcher: full
|
224
|
+
variants: function, method
|
225
|
+
dispatch:
|
226
|
+
CPU: abs
|
227
|
+
CUDA: abs
|
228
|
+
|
229
|
+
- func: absolute_(Tensor(a!) self) -> Tensor(a!)
|
230
|
+
variants: function, method
|
231
|
+
dispatch:
|
232
|
+
CPU: abs_
|
233
|
+
CUDA: abs_
|
234
|
+
|
235
|
+
- func: absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
236
|
+
dispatch:
|
237
|
+
CPU: abs_out
|
238
|
+
CUDA: abs_out
|
230
239
|
|
231
240
|
- func: angle(Tensor self) -> Tensor
|
232
241
|
use_c10_dispatcher: full
|
233
242
|
variants: function, method
|
234
|
-
supports_named_tensor: True
|
235
243
|
|
236
244
|
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
237
|
-
supports_named_tensor: True
|
238
245
|
|
239
|
-
- func:
|
246
|
+
- func: view_as_real(Tensor(a) self) -> Tensor(a)
|
240
247
|
use_c10_dispatcher: full
|
241
248
|
variants: function
|
242
|
-
supports_named_tensor: True
|
243
249
|
|
244
|
-
- func:
|
250
|
+
- func: view_as_complex(Tensor(a) self) -> Tensor(a)
|
251
|
+
use_c10_dispatcher: full
|
252
|
+
variants: function
|
253
|
+
|
254
|
+
- func: real(Tensor(a) self) -> Tensor(a)
|
255
|
+
use_c10_dispatcher: full
|
256
|
+
variants: function
|
257
|
+
|
258
|
+
- func: imag(Tensor(a) self) -> Tensor(a)
|
245
259
|
use_c10_dispatcher: full
|
246
260
|
variants: function
|
247
|
-
supports_named_tensor: True
|
248
261
|
|
249
262
|
- func: conj(Tensor self) -> Tensor
|
250
263
|
use_c10_dispatcher: full
|
251
264
|
variants: function, method
|
252
|
-
supports_named_tensor: True
|
253
265
|
|
254
266
|
- func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
255
|
-
supports_named_tensor: True
|
256
267
|
|
257
268
|
- func: acos(Tensor self) -> Tensor
|
258
269
|
use_c10_dispatcher: full
|
259
|
-
supports_named_tensor: True
|
260
270
|
variants: function, method
|
261
271
|
|
262
272
|
- func: acos_(Tensor(a!) self) -> Tensor(a!)
|
263
|
-
supports_named_tensor: True
|
264
273
|
variants: function, method
|
265
274
|
|
266
275
|
- func: acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
267
|
-
supports_named_tensor: True
|
268
276
|
|
269
277
|
- func: avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor
|
278
|
+
use_c10_dispatcher: full
|
270
279
|
|
271
280
|
- func: adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor
|
281
|
+
use_c10_dispatcher: full
|
272
282
|
|
273
283
|
# Return: (Tensor output, Tensor indices)
|
274
284
|
- func: adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)
|
285
|
+
use_c10_dispatcher: full
|
275
286
|
|
276
287
|
- func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
277
288
|
use_c10_dispatcher: full
|
@@ -282,7 +293,7 @@
|
|
282
293
|
SparseCPU: add_sparse
|
283
294
|
SparseCUDA: add_sparse
|
284
295
|
MkldnnCPU: mkldnn_add
|
285
|
-
|
296
|
+
Vulkan: vulkan_add
|
286
297
|
|
287
298
|
- func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
288
299
|
variants: method
|
@@ -292,7 +303,6 @@
|
|
292
303
|
SparseCPU: add_sparse_
|
293
304
|
SparseCUDA: add_sparse_
|
294
305
|
MkldnnCPU: mkldnn_add_
|
295
|
-
supports_named_tensor: True
|
296
306
|
|
297
307
|
- func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
298
308
|
dispatch:
|
@@ -301,38 +311,28 @@
|
|
301
311
|
SparseCPU: add_out_sparse_cpu
|
302
312
|
SparseCUDA: add_out_sparse_cuda
|
303
313
|
MkldnnCPU: mkldnn_add_out
|
304
|
-
supports_named_tensor: True
|
305
314
|
|
306
315
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
307
316
|
- func: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
|
308
317
|
use_c10_dispatcher: full
|
309
318
|
variants: function, method
|
310
|
-
supports_named_tensor: True
|
311
319
|
|
312
320
|
- func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
313
321
|
variants: method
|
314
|
-
supports_named_tensor: True
|
315
322
|
|
316
323
|
- func: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
317
324
|
use_c10_dispatcher: full
|
318
325
|
variants: function, method
|
319
|
-
dispatch:
|
320
|
-
CPU: legacy::cpu::_th_addmv
|
321
|
-
CUDA: legacy::cuda::_th_addmv
|
322
|
-
supports_named_tensor: True
|
323
326
|
|
324
327
|
- func: addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
325
328
|
variants: function, method
|
326
|
-
dispatch:
|
327
|
-
CPU: legacy::cpu::_th_addmv_
|
328
|
-
CUDA: legacy::cuda::_th_addmv_
|
329
|
-
supports_named_tensor: True
|
330
329
|
|
331
330
|
- func: addmv.out(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
331
|
+
|
332
|
+
- func: _addmv_impl_(Tensor(a!) self, Tensor self2, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
332
333
|
dispatch:
|
333
|
-
CPU:
|
334
|
-
CUDA:
|
335
|
-
supports_named_tensor: True
|
334
|
+
CPU: addmv_impl_cpu
|
335
|
+
CUDA: addmv_impl_cuda
|
336
336
|
|
337
337
|
- func: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
338
338
|
use_c10_dispatcher: full
|
@@ -344,9 +344,11 @@
|
|
344
344
|
- func: addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
345
345
|
|
346
346
|
- func: affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> Tensor
|
347
|
+
use_c10_dispatcher: full
|
347
348
|
variants: function
|
348
349
|
|
349
350
|
- func: affine_grid_generator_backward(Tensor grad, int[] size, bool align_corners) -> Tensor
|
351
|
+
use_c10_dispatcher: full
|
350
352
|
variants: function
|
351
353
|
|
352
354
|
- func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
|
@@ -397,25 +399,64 @@
|
|
397
399
|
use_c10_dispatcher: full
|
398
400
|
|
399
401
|
- func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
402
|
+
use_c10_dispatcher: full
|
400
403
|
variants: function, method
|
401
404
|
dispatch:
|
402
405
|
CPU: argmax
|
403
406
|
CUDA: argmax
|
404
407
|
|
405
408
|
- func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
409
|
+
use_c10_dispatcher: full
|
406
410
|
variants: function, method
|
407
411
|
dispatch:
|
408
412
|
CPU: argmin
|
409
413
|
CUDA: argmin
|
410
414
|
|
415
|
+
- func: acosh(Tensor self) -> Tensor
|
416
|
+
use_c10_dispatcher: full
|
417
|
+
supports_named_tensor: True
|
418
|
+
variants: function, method
|
419
|
+
|
420
|
+
- func: acosh_(Tensor(a!) self) -> Tensor(a!)
|
421
|
+
supports_named_tensor: True
|
422
|
+
variants: function, method
|
423
|
+
|
424
|
+
- func: acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
425
|
+
supports_named_tensor: True
|
426
|
+
|
427
|
+
- func: asinh(Tensor self) -> Tensor
|
428
|
+
use_c10_dispatcher: full
|
429
|
+
supports_named_tensor: True
|
430
|
+
variants: function, method
|
431
|
+
|
432
|
+
- func: asinh_(Tensor(a!) self) -> Tensor(a!)
|
433
|
+
supports_named_tensor: True
|
434
|
+
variants: function, method
|
435
|
+
|
436
|
+
- func: asinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
437
|
+
supports_named_tensor: True
|
438
|
+
|
439
|
+
- func: atanh(Tensor self) -> Tensor
|
440
|
+
use_c10_dispatcher: full
|
441
|
+
supports_named_tensor: True
|
442
|
+
variants: function, method
|
443
|
+
|
444
|
+
- func: atanh_(Tensor(a!) self) -> Tensor(a!)
|
445
|
+
supports_named_tensor: True
|
446
|
+
variants: function, method
|
447
|
+
|
448
|
+
- func: atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
449
|
+
supports_named_tensor: True
|
450
|
+
|
411
451
|
- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
|
452
|
+
use_c10_dispatcher: full
|
412
453
|
variants: function, method
|
413
454
|
dispatch:
|
414
455
|
CPU: as_strided_tensorimpl
|
415
456
|
CUDA: as_strided_tensorimpl
|
416
457
|
QuantizedCPU: as_strided_qtensorimpl
|
458
|
+
QuantizedCUDA: as_strided_qtensorimpl
|
417
459
|
device_guard: False
|
418
|
-
supports_named_tensor: True
|
419
460
|
|
420
461
|
- func: as_strided_(Tensor(a!) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a!)
|
421
462
|
variants: function, method
|
@@ -423,33 +464,21 @@
|
|
423
464
|
|
424
465
|
- func: asin(Tensor self) -> Tensor
|
425
466
|
use_c10_dispatcher: full
|
426
|
-
supports_named_tensor: True
|
427
467
|
variants: function, method
|
428
468
|
|
429
469
|
- func: asin_(Tensor(a!) self) -> Tensor(a!)
|
430
|
-
supports_named_tensor: True
|
431
470
|
variants: function, method
|
432
471
|
|
433
472
|
- func: asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
434
|
-
supports_named_tensor: True
|
435
473
|
|
436
474
|
- func: atan(Tensor self) -> Tensor
|
437
475
|
use_c10_dispatcher: full
|
438
|
-
supports_named_tensor: True
|
439
476
|
variants: function, method
|
440
477
|
|
441
478
|
- func: atan_(Tensor(a!) self) -> Tensor(a!)
|
442
|
-
supports_named_tensor: True
|
443
479
|
variants: function, method
|
444
|
-
dispatch:
|
445
|
-
CPU: _atan__cpu
|
446
|
-
CUDA: _atan__cuda
|
447
480
|
|
448
481
|
- func: atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
449
|
-
supports_named_tensor: True
|
450
|
-
dispatch:
|
451
|
-
CPU: _atan_out_cpu
|
452
|
-
CUDA: _atan_out_cuda
|
453
482
|
|
454
483
|
- func: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
455
484
|
use_c10_dispatcher: full
|
@@ -491,25 +520,15 @@
|
|
491
520
|
# Sample bernoulli with values in `self` as probability.
|
492
521
|
- func: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor
|
493
522
|
variants: function, method
|
494
|
-
supports_named_tensor: True
|
495
523
|
|
496
524
|
- func: bernoulli.out(Tensor self, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
497
525
|
variants: function
|
498
|
-
supports_named_tensor: True
|
499
526
|
|
500
527
|
- func: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!)
|
501
528
|
variants: method
|
502
|
-
dispatch:
|
503
|
-
CPU: bernoulli_tensor_cpu_
|
504
|
-
CUDA: bernoulli_tensor_cuda_
|
505
|
-
supports_named_tensor: True
|
506
529
|
|
507
530
|
- func: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!)
|
508
531
|
variants: method
|
509
|
-
dispatch:
|
510
|
-
CPU: bernoulli_scalar_cpu_
|
511
|
-
CUDA: bernoulli_scalar_cuda_
|
512
|
-
supports_named_tensor: True
|
513
532
|
|
514
533
|
# This out-of-place version isn't used explicitly, but needed by jit.
|
515
534
|
# There is no default valid on `p` here because it would introduce ambiguity
|
@@ -561,74 +580,63 @@
|
|
561
580
|
|
562
581
|
- func: bitwise_not(Tensor self) -> Tensor
|
563
582
|
use_c10_dispatcher: full
|
564
|
-
supports_named_tensor: True
|
565
583
|
variants: function, method
|
566
584
|
|
567
585
|
- func: bitwise_not_(Tensor(a!) self) -> Tensor(a!)
|
568
|
-
supports_named_tensor: True
|
569
586
|
variants: method
|
570
587
|
|
571
588
|
- func: bitwise_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
572
|
-
supports_named_tensor: True
|
573
589
|
dispatch:
|
574
590
|
CPU: bitwise_not_out
|
575
591
|
CUDA: bitwise_not_out
|
576
592
|
|
577
593
|
- func: logical_not(Tensor self) -> Tensor
|
578
|
-
|
594
|
+
use_c10_dispatcher: full
|
579
595
|
variants: function, method
|
580
596
|
|
581
597
|
- func: logical_not_(Tensor(a!) self) -> Tensor(a!)
|
582
|
-
supports_named_tensor: True
|
583
598
|
variants: method
|
584
599
|
|
585
600
|
- func: logical_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
586
|
-
supports_named_tensor: True
|
587
601
|
dispatch:
|
588
602
|
CPU: logical_not_out
|
589
603
|
CUDA: logical_not_out
|
590
604
|
|
591
605
|
- func: logical_xor(Tensor self, Tensor other) -> Tensor
|
606
|
+
use_c10_dispatcher: full
|
592
607
|
variants: function, method
|
593
|
-
supports_named_tensor: True
|
594
608
|
|
595
609
|
- func: logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
596
610
|
variants: method
|
597
|
-
supports_named_tensor: True
|
598
611
|
|
599
612
|
- func: logical_xor.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
600
613
|
dispatch:
|
601
614
|
CPU: logical_xor_out
|
602
615
|
CUDA: logical_xor_out
|
603
|
-
supports_named_tensor: True
|
604
616
|
|
605
617
|
- func: logical_and(Tensor self, Tensor other) -> Tensor
|
618
|
+
use_c10_dispatcher: full
|
606
619
|
variants: function, method
|
607
|
-
supports_named_tensor: True
|
608
620
|
|
609
621
|
- func: logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
610
622
|
variants: method
|
611
|
-
supports_named_tensor: True
|
612
623
|
|
613
624
|
- func: logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
614
625
|
dispatch:
|
615
626
|
CPU: logical_and_out
|
616
627
|
CUDA: logical_and_out
|
617
|
-
supports_named_tensor: True
|
618
628
|
|
619
629
|
- func: logical_or(Tensor self, Tensor other) -> Tensor
|
630
|
+
use_c10_dispatcher: full
|
620
631
|
variants: function, method
|
621
|
-
supports_named_tensor: True
|
622
632
|
|
623
633
|
- func: logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
624
634
|
variants: method
|
625
|
-
supports_named_tensor: True
|
626
635
|
|
627
636
|
- func: logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
628
637
|
dispatch:
|
629
638
|
CPU: logical_or_out
|
630
639
|
CUDA: logical_or_out
|
631
|
-
supports_named_tensor: True
|
632
640
|
|
633
641
|
- func: blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
634
642
|
|
@@ -640,127 +648,115 @@
|
|
640
648
|
dispatch:
|
641
649
|
CPU: bmm_cpu
|
642
650
|
CUDA: bmm_cuda
|
643
|
-
|
651
|
+
SparseCPU: bmm_sparse_cpu
|
652
|
+
SparseCUDA: bmm_sparse_cuda
|
653
|
+
|
654
|
+
- func: _bmm(Tensor self, Tensor mat2, *, bool deterministic=False) -> Tensor
|
655
|
+
use_c10_dispatcher: full
|
656
|
+
variants: function
|
657
|
+
dispatch:
|
658
|
+
SparseCUDA: _bmm_sparse_cuda
|
644
659
|
|
645
660
|
- func: bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
646
661
|
variants: function
|
647
662
|
dispatch:
|
648
663
|
CPU: bmm_out_cpu
|
649
664
|
CUDA: bmm_out_cuda
|
650
|
-
|
665
|
+
SparseCPU: bmm_out_sparse_cpu
|
666
|
+
SparseCUDA: bmm_out_sparse_cuda
|
667
|
+
|
668
|
+
- func: _bmm.out(Tensor self, Tensor mat2, *, bool deterministic=False, Tensor(a!) out) -> Tensor(a!)
|
669
|
+
variants: function
|
670
|
+
dispatch:
|
671
|
+
SparseCUDA: _bmm_out_sparse_cuda
|
651
672
|
|
652
673
|
- func: broadcast_tensors(Tensor[] tensors) -> Tensor[]
|
674
|
+
use_c10_dispatcher: full
|
653
675
|
device_guard: False
|
654
676
|
|
655
677
|
- func: cat(Tensor[] tensors, int dim=0) -> Tensor
|
656
|
-
|
678
|
+
use_c10_dispatcher: full
|
657
679
|
|
658
680
|
- func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
659
|
-
supports_named_tensor: True
|
660
681
|
|
661
682
|
- func: cat.names(Tensor[] tensors, Dimname dim) -> Tensor
|
662
|
-
supports_named_tensor: True
|
663
683
|
|
664
684
|
- func: cat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
|
665
|
-
|
685
|
+
|
686
|
+
- func: block_diag(Tensor[] tensors) -> Tensor
|
687
|
+
use_c10_dispatcher: full
|
688
|
+
variants: function
|
666
689
|
|
667
690
|
- func: ceil(Tensor self) -> Tensor
|
668
691
|
use_c10_dispatcher: full
|
669
|
-
supports_named_tensor: True
|
670
692
|
variants: function, method
|
671
693
|
|
672
694
|
- func: ceil_(Tensor(a!) self) -> Tensor(a!)
|
673
|
-
supports_named_tensor: True
|
674
695
|
variants: function, method
|
675
696
|
|
676
697
|
- func: ceil.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
677
|
-
supports_named_tensor: True
|
678
698
|
dispatch:
|
679
699
|
CPU: ceil_out
|
680
700
|
CUDA: ceil_out
|
681
701
|
|
682
702
|
- func: chain_matmul(Tensor[] matrices) -> Tensor
|
703
|
+
use_c10_dispatcher: full
|
683
704
|
variants: function
|
684
705
|
|
685
706
|
- func: chunk(Tensor(a) self, int chunks, int dim=0) -> Tensor(a)[]
|
707
|
+
use_c10_dispatcher: full
|
686
708
|
variants: function, method
|
687
709
|
device_guard: False
|
688
|
-
supports_named_tensor: True
|
689
710
|
|
690
711
|
- func: clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor
|
691
712
|
use_c10_dispatcher: full
|
692
|
-
supports_named_tensor: True
|
693
713
|
variants: function, method
|
694
714
|
dispatch:
|
695
715
|
CPU: clamp
|
696
716
|
CUDA: clamp
|
697
717
|
QuantizedCPU: quantized_clamp
|
718
|
+
Vulkan: vulkan_clamp
|
698
719
|
|
699
720
|
- func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)
|
700
|
-
supports_named_tensor: True
|
701
721
|
variants: function, method
|
702
|
-
dispatch:
|
703
|
-
CPU: _clamp__cpu
|
704
|
-
CUDA: _clamp__cuda
|
705
722
|
|
706
723
|
- func: clamp.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!)
|
707
|
-
supports_named_tensor: True
|
708
|
-
dispatch:
|
709
|
-
CPU: _clamp_out_cpu
|
710
|
-
CUDA: _clamp_out_cuda
|
711
724
|
|
712
725
|
- func: clamp_max(Tensor self, Scalar max) -> Tensor
|
713
726
|
use_c10_dispatcher: full
|
714
|
-
supports_named_tensor: True
|
715
727
|
variants: function, method
|
716
728
|
|
717
729
|
- func: clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!)
|
718
|
-
supports_named_tensor: True
|
719
730
|
variants: function, method
|
720
|
-
dispatch:
|
721
|
-
CPU: _clamp_max__cpu
|
722
|
-
CUDA: _clamp_max__cuda
|
723
731
|
|
724
732
|
- func: clamp_max.out(Tensor self, Scalar max, *, Tensor(a!) out) -> Tensor(a!)
|
725
|
-
supports_named_tensor: True
|
726
|
-
dispatch:
|
727
|
-
CPU: _clamp_max_out_cpu
|
728
|
-
CUDA: _clamp_max_out_cuda
|
729
733
|
|
730
734
|
- func: clamp_min(Tensor self, Scalar min) -> Tensor
|
731
735
|
use_c10_dispatcher: full
|
732
|
-
supports_named_tensor: True
|
733
736
|
variants: function, method
|
734
737
|
|
735
738
|
- func: clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!)
|
736
|
-
supports_named_tensor: True
|
737
739
|
variants: function, method
|
738
|
-
dispatch:
|
739
|
-
CPU: _clamp_min__cpu
|
740
|
-
CUDA: _clamp_min__cuda
|
741
740
|
|
742
741
|
- func: clamp_min.out(Tensor self, Scalar min, *, Tensor(a!) out) -> Tensor(a!)
|
743
|
-
supports_named_tensor: True
|
744
|
-
dispatch:
|
745
|
-
CPU: _clamp_min_out_cpu
|
746
|
-
CUDA: _clamp_min_out_cuda
|
747
742
|
|
748
743
|
- func: cudnn_is_acceptable(Tensor self) -> bool
|
749
744
|
use_c10_dispatcher: full
|
750
745
|
device_guard: False
|
751
746
|
|
752
747
|
- func: constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> Tensor
|
748
|
+
use_c10_dispatcher: full
|
753
749
|
variants: function
|
754
750
|
|
755
751
|
- func: contiguous(Tensor self, *, MemoryFormat memory_format=contiguous_format) -> Tensor
|
756
752
|
variants: method
|
757
|
-
supports_named_tensor: True
|
758
753
|
|
759
754
|
- func: convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor
|
760
755
|
|
761
756
|
- func: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> Tensor
|
762
757
|
|
763
758
|
- func: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
759
|
+
use_c10_dispatcher: full
|
764
760
|
|
765
761
|
- func: _convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor
|
766
762
|
|
@@ -778,6 +774,7 @@
|
|
778
774
|
use_c10_dispatcher: full
|
779
775
|
|
780
776
|
- func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)
|
777
|
+
use_c10_dispatcher: full
|
781
778
|
|
782
779
|
# NB: we inherit the goofy argument order from PyTorch torch.nn.functional
|
783
780
|
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] output_padding=0, int groups=1, int[1] dilation=1) -> Tensor
|
@@ -790,7 +787,6 @@
|
|
790
787
|
manual_kernel_registration: True
|
791
788
|
variants: method
|
792
789
|
device_guard: False
|
793
|
-
supports_named_tensor: True
|
794
790
|
|
795
791
|
- func: _copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> Tensor
|
796
792
|
use_c10_dispatcher: full
|
@@ -798,39 +794,21 @@
|
|
798
794
|
|
799
795
|
- func: cos(Tensor self) -> Tensor
|
800
796
|
use_c10_dispatcher: full
|
801
|
-
supports_named_tensor: True
|
802
797
|
variants: function, method
|
803
798
|
|
804
799
|
- func: cos_(Tensor(a!) self) -> Tensor(a!)
|
805
|
-
supports_named_tensor: True
|
806
800
|
variants: function, method
|
807
|
-
dispatch:
|
808
|
-
CPU: _cos__cpu
|
809
|
-
CUDA: _cos__cuda
|
810
801
|
|
811
802
|
- func: cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
812
|
-
supports_named_tensor: True
|
813
|
-
dispatch:
|
814
|
-
CPU: _cos_out_cpu
|
815
|
-
CUDA: _cos_out_cuda
|
816
803
|
|
817
804
|
- func: cosh(Tensor self) -> Tensor
|
818
805
|
use_c10_dispatcher: full
|
819
|
-
supports_named_tensor: True
|
820
806
|
variants: function, method
|
821
807
|
|
822
808
|
- func: cosh_(Tensor(a!) self) -> Tensor(a!)
|
823
|
-
supports_named_tensor: True
|
824
809
|
variants: function, method
|
825
|
-
dispatch:
|
826
|
-
CPU: _cosh__cpu
|
827
|
-
CUDA: _cosh__cuda
|
828
810
|
|
829
811
|
- func: cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
830
|
-
supports_named_tensor: True
|
831
|
-
dispatch:
|
832
|
-
CPU: _cosh_out_cpu
|
833
|
-
CUDA: _cosh_out_cuda
|
834
812
|
|
835
813
|
- func: cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor
|
836
814
|
use_c10_dispatcher: full
|
@@ -860,18 +838,22 @@
|
|
860
838
|
CUDA: cudnn_convolution_deprecated
|
861
839
|
|
862
840
|
- func: cudnn_convolution(Tensor self, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
841
|
+
use_c10_dispatcher: full
|
863
842
|
dispatch:
|
864
843
|
CUDA: cudnn_convolution
|
865
844
|
|
866
845
|
- func: cudnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
846
|
+
use_c10_dispatcher: full
|
867
847
|
dispatch:
|
868
848
|
CUDA: cudnn_convolution_backward_input
|
869
849
|
|
870
850
|
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
851
|
+
use_c10_dispatcher: full
|
871
852
|
dispatch:
|
872
853
|
CUDA: cudnn_convolution_backward
|
873
854
|
|
874
855
|
- func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
856
|
+
use_c10_dispatcher: full
|
875
857
|
dispatch:
|
876
858
|
CUDA: cudnn_convolution_backward_weight
|
877
859
|
|
@@ -880,20 +862,24 @@
|
|
880
862
|
CUDA: cudnn_convolution_transpose_deprecated
|
881
863
|
|
882
864
|
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
865
|
+
use_c10_dispatcher: full
|
883
866
|
dispatch:
|
884
867
|
CUDA: cudnn_convolution_transpose
|
885
868
|
|
886
869
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
887
870
|
# backwards
|
888
871
|
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
872
|
+
use_c10_dispatcher: full
|
889
873
|
dispatch:
|
890
874
|
CUDA: cudnn_convolution_transpose_backward
|
891
875
|
|
892
876
|
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
877
|
+
use_c10_dispatcher: full
|
893
878
|
dispatch:
|
894
879
|
CUDA: cudnn_convolution_transpose_backward_input
|
895
880
|
|
896
881
|
- func: cudnn_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
882
|
+
use_c10_dispatcher: full
|
897
883
|
dispatch:
|
898
884
|
CUDA: cudnn_convolution_transpose_backward_weight
|
899
885
|
|
@@ -904,22 +890,20 @@
|
|
904
890
|
CUDA: cudnn_grid_sampler_forward
|
905
891
|
|
906
892
|
- func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid)
|
893
|
+
use_c10_dispatcher: full
|
907
894
|
dispatch:
|
908
895
|
CUDA: cudnn_grid_sampler_backward
|
909
896
|
|
910
897
|
- func: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
911
|
-
|
898
|
+
use_c10_dispatcher: full
|
912
899
|
variants: function, method
|
913
900
|
|
914
901
|
- func: cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
915
|
-
supports_named_tensor: True
|
916
902
|
|
917
903
|
- func: cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
918
|
-
supports_named_tensor: True
|
919
904
|
variants: function, method
|
920
905
|
|
921
906
|
- func: cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
922
|
-
supports_named_tensor: True
|
923
907
|
|
924
908
|
- func: _cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
925
909
|
variants: function
|
@@ -928,18 +912,15 @@
|
|
928
912
|
CUDA: cummax_helper_cuda
|
929
913
|
|
930
914
|
- func: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
931
|
-
|
915
|
+
use_c10_dispatcher: full
|
932
916
|
variants: function, method
|
933
917
|
|
934
918
|
- func: cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
935
|
-
supports_named_tensor: True
|
936
919
|
|
937
920
|
- func: cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
938
|
-
supports_named_tensor: True
|
939
921
|
variants: function, method
|
940
922
|
|
941
923
|
- func: cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
942
|
-
supports_named_tensor: True
|
943
924
|
|
944
925
|
- func: _cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
945
926
|
variants: function
|
@@ -948,45 +929,40 @@
|
|
948
929
|
CUDA: cummin_helper_cuda
|
949
930
|
|
950
931
|
- func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
951
|
-
supports_named_tensor: True
|
952
932
|
variants: function, method
|
953
933
|
|
954
934
|
- func: cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
955
|
-
supports_named_tensor: True
|
956
935
|
|
957
936
|
- func: cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
958
|
-
supports_named_tensor: True
|
959
937
|
variants: function, method
|
960
938
|
|
961
939
|
- func: cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
962
|
-
supports_named_tensor: True
|
963
940
|
|
964
941
|
- func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
965
|
-
supports_named_tensor: True
|
966
942
|
variants: function, method
|
967
943
|
|
968
944
|
- func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
969
|
-
supports_named_tensor: True
|
970
945
|
|
971
946
|
- func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
972
|
-
supports_named_tensor: True
|
973
947
|
variants: function, method
|
974
948
|
|
975
949
|
- func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
976
|
-
supports_named_tensor: True
|
977
950
|
|
978
951
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
952
|
+
use_c10_dispatcher: full
|
979
953
|
|
980
954
|
# convenience function that converts to intlists for you
|
981
955
|
- func: ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
982
956
|
use_c10_dispatcher: full
|
983
957
|
|
984
958
|
- func: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
|
959
|
+
use_c10_dispatcher: full
|
985
960
|
dispatch:
|
986
961
|
CPU: ctc_loss_cpu
|
987
962
|
CUDA: ctc_loss_gpu
|
988
963
|
|
989
964
|
- func: _ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor
|
965
|
+
use_c10_dispatcher: full
|
990
966
|
dispatch:
|
991
967
|
CPU: ctc_loss_backward_cpu
|
992
968
|
CUDA: ctc_loss_backward_gpu
|
@@ -1004,12 +980,11 @@
|
|
1004
980
|
variants: function, method
|
1005
981
|
|
1006
982
|
- func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
|
983
|
+
use_c10_dispatcher: full
|
1007
984
|
variants: function, method
|
1008
|
-
supports_named_tensor: True
|
1009
985
|
|
1010
986
|
- func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a)
|
1011
987
|
variants: function, method
|
1012
|
-
supports_named_tensor: True
|
1013
988
|
|
1014
989
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
1015
990
|
variants: method
|
@@ -1022,7 +997,6 @@
|
|
1022
997
|
CUDA: div
|
1023
998
|
SparseCPU: div_sparse
|
1024
999
|
SparseCUDA: div_sparse
|
1025
|
-
supports_named_tensor: True
|
1026
1000
|
|
1027
1001
|
- func: div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1028
1002
|
variants: method
|
@@ -1031,7 +1005,6 @@
|
|
1031
1005
|
CUDA: div_
|
1032
1006
|
SparseCPU: div_sparse_
|
1033
1007
|
SparseCUDA: div_sparse_
|
1034
|
-
supports_named_tensor: True
|
1035
1008
|
|
1036
1009
|
- func: div.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1037
1010
|
dispatch:
|
@@ -1039,17 +1012,14 @@
|
|
1039
1012
|
CUDA: div_out
|
1040
1013
|
SparseCPU: div_out_sparse_zerodim
|
1041
1014
|
SparseCUDA: div_out_sparse_zerodim
|
1042
|
-
supports_named_tensor: True
|
1043
1015
|
|
1044
1016
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
1045
1017
|
- func: div.Scalar(Tensor self, Scalar other) -> Tensor
|
1046
1018
|
use_c10_dispatcher: full
|
1047
1019
|
variants: function, method
|
1048
|
-
supports_named_tensor: True
|
1049
1020
|
|
1050
1021
|
- func: div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1051
1022
|
variants: method
|
1052
|
-
supports_named_tensor: True
|
1053
1023
|
|
1054
1024
|
- func: dot(Tensor self, Tensor tensor) -> Tensor
|
1055
1025
|
use_c10_dispatcher: full
|
@@ -1057,12 +1027,11 @@
|
|
1057
1027
|
dispatch:
|
1058
1028
|
CPU: legacy::cpu::_th_dot
|
1059
1029
|
CUDA: legacy::cuda::_th_dot
|
1060
|
-
supports_named_tensor: True
|
1061
1030
|
|
1062
1031
|
- func: dot.out(Tensor self, Tensor tensor, *, Tensor(a!) out) -> Tensor(a!)
|
1063
|
-
supports_named_tensor: True
|
1064
1032
|
|
1065
1033
|
- func: einsum(str equation, Tensor[] tensors) -> Tensor
|
1034
|
+
use_c10_dispatcher: full
|
1066
1035
|
|
1067
1036
|
- func: embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor
|
1068
1037
|
use_c10_dispatcher: full
|
@@ -1115,6 +1084,8 @@
|
|
1115
1084
|
CPU: _embedding_bag_per_sample_weights_backward_cpu
|
1116
1085
|
CUDA: _embedding_bag_per_sample_weights_backward_cuda
|
1117
1086
|
|
1087
|
+
- func: empty_meta(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1088
|
+
|
1118
1089
|
- func: empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1119
1090
|
device_guard: False
|
1120
1091
|
|
@@ -1125,6 +1096,7 @@
|
|
1125
1096
|
MkldnnCPU: empty_mkldnn
|
1126
1097
|
SparseCPU: empty_sparse
|
1127
1098
|
SparseCUDA: empty_sparse
|
1099
|
+
Vulkan: empty_vulkan
|
1128
1100
|
|
1129
1101
|
- func: new_empty(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1130
1102
|
variants: method
|
@@ -1139,7 +1111,8 @@
|
|
1139
1111
|
- func: _empty_affine_quantized(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
1140
1112
|
dispatch:
|
1141
1113
|
CPU: empty_affine_quantized_other_backends_stub
|
1142
|
-
QuantizedCPU:
|
1114
|
+
QuantizedCPU: empty_affine_quantized
|
1115
|
+
QuantizedCUDA: empty_affine_quantized
|
1143
1116
|
|
1144
1117
|
# it's a factory function receiving a tensor argument, thus overriding explicitly
|
1145
1118
|
# other overrides are to provide a more helpful error message that dtype is required
|
@@ -1151,95 +1124,70 @@
|
|
1151
1124
|
|
1152
1125
|
- func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
1153
1126
|
manual_kernel_registration: True
|
1154
|
-
supports_named_tensor: True
|
1155
1127
|
variants: method
|
1156
1128
|
device_guard: False
|
1157
1129
|
|
1130
|
+
- func: empty_quantized(int[] size, Tensor qtensor) -> Tensor
|
1131
|
+
variants: function
|
1132
|
+
dispatch:
|
1133
|
+
QuantizedCPU: empty_quantized
|
1134
|
+
QuantizedCUDA: empty_quantized
|
1135
|
+
|
1158
1136
|
- func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
1159
1137
|
device_guard: False
|
1160
1138
|
|
1161
1139
|
- func: empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1162
1140
|
device_guard: False
|
1163
|
-
supports_named_tensor: True
|
1164
1141
|
|
1165
1142
|
- func: empty_strided(int[] size, int[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1166
1143
|
dispatch:
|
1167
1144
|
CPU: empty_strided_cpu
|
1168
1145
|
CUDA: empty_strided_cuda
|
1146
|
+
Vulkan: empty_strided_vulkan
|
1169
1147
|
|
1170
1148
|
- func: erf(Tensor self) -> Tensor
|
1171
1149
|
use_c10_dispatcher: full
|
1172
|
-
supports_named_tensor: True
|
1173
1150
|
variants: function, method
|
1174
1151
|
|
1175
1152
|
- func: erf_(Tensor(a!) self) -> Tensor(a!)
|
1176
|
-
supports_named_tensor: True
|
1177
1153
|
variants: function, method
|
1178
|
-
dispatch:
|
1179
|
-
CPU: _erf__cpu
|
1180
|
-
CUDA: _erf__cuda
|
1181
1154
|
|
1182
1155
|
- func: erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1183
|
-
supports_named_tensor: True
|
1184
|
-
dispatch:
|
1185
|
-
CPU: _erf_out_cpu
|
1186
|
-
CUDA: _erf_out_cuda
|
1187
1156
|
|
1188
1157
|
- func: erfc(Tensor self) -> Tensor
|
1189
1158
|
use_c10_dispatcher: full
|
1190
|
-
supports_named_tensor: True
|
1191
1159
|
variants: function, method
|
1192
1160
|
|
1193
1161
|
- func: erfc_(Tensor(a!) self) -> Tensor(a!)
|
1194
|
-
supports_named_tensor: True
|
1195
1162
|
variants: function, method
|
1196
|
-
dispatch:
|
1197
|
-
CPU: _erfc__cpu
|
1198
|
-
CUDA: _erfc__cuda
|
1199
1163
|
|
1200
1164
|
- func: erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1201
|
-
supports_named_tensor: True
|
1202
|
-
dispatch:
|
1203
|
-
CPU: _erfc_out_cpu
|
1204
|
-
CUDA: _erfc_out_cuda
|
1205
1165
|
|
1206
1166
|
- func: exp(Tensor self) -> Tensor
|
1207
1167
|
use_c10_dispatcher: full
|
1208
|
-
supports_named_tensor: True
|
1209
1168
|
variants: function, method
|
1210
1169
|
|
1211
1170
|
- func: exp_(Tensor(a!) self) -> Tensor(a!)
|
1212
|
-
supports_named_tensor: True
|
1213
1171
|
variants: function, method
|
1214
|
-
dispatch:
|
1215
|
-
CPU: _exp__cpu
|
1216
|
-
CUDA: _exp__cuda
|
1217
1172
|
|
1218
1173
|
- func: exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1219
|
-
supports_named_tensor: True
|
1220
|
-
dispatch:
|
1221
|
-
CPU: _exp_out_cpu
|
1222
|
-
CUDA: _exp_out_cuda
|
1223
1174
|
|
1224
1175
|
- func: expm1(Tensor self) -> Tensor
|
1225
1176
|
use_c10_dispatcher: full
|
1226
|
-
supports_named_tensor: True
|
1227
1177
|
variants: function, method
|
1228
1178
|
|
1229
1179
|
- func: expm1_(Tensor(a!) self) -> Tensor(a!)
|
1230
|
-
supports_named_tensor: True
|
1231
1180
|
variants: function, method
|
1232
1181
|
|
1233
1182
|
- func: expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1234
|
-
supports_named_tensor: True
|
1235
1183
|
dispatch:
|
1236
1184
|
CPU: expm1_out
|
1237
1185
|
CUDA: expm1_out
|
1238
1186
|
|
1239
1187
|
- func: expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a)
|
1188
|
+
use_c10_dispatcher: full
|
1240
1189
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
1241
1190
|
device_guard: False
|
1242
|
-
supports_named_tensor: True
|
1243
1191
|
|
1244
1192
|
- func: expand_as(Tensor self, Tensor other) -> Tensor
|
1245
1193
|
use_c10_dispatcher: full
|
@@ -1263,51 +1211,42 @@
|
|
1263
1211
|
- func: flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> Tensor
|
1264
1212
|
use_c10_dispatcher: full
|
1265
1213
|
variants: function, method
|
1266
|
-
supports_named_tensor: True
|
1267
1214
|
|
1268
1215
|
- func: flatten.named_out_dim(Tensor self, int start_dim, int end_dim, Dimname out_dim) -> Tensor
|
1269
1216
|
variants: function, method
|
1270
|
-
supports_named_tensor: True
|
1271
1217
|
|
1272
1218
|
- func: flatten.using_names(Tensor self, Dimname start_dim, Dimname end_dim, Dimname out_dim) -> Tensor
|
1273
1219
|
variants: function, method
|
1274
|
-
supports_named_tensor: True
|
1275
1220
|
|
1276
1221
|
- func: flatten.DimnameList(Tensor self, Dimname[] dims, Dimname out_dim) -> Tensor
|
1277
1222
|
variants: function, method
|
1278
|
-
supports_named_tensor: True
|
1279
1223
|
|
1280
1224
|
- func: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)
|
1281
|
-
supports_named_tensor: True
|
1282
1225
|
variants: function, method
|
1283
1226
|
|
1284
1227
|
- func: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)
|
1285
|
-
supports_named_tensor: True
|
1286
1228
|
variants: function, method
|
1287
1229
|
|
1288
1230
|
- func: floor(Tensor self) -> Tensor
|
1289
1231
|
use_c10_dispatcher: full
|
1290
|
-
supports_named_tensor: True
|
1291
1232
|
variants: function, method
|
1292
1233
|
|
1293
1234
|
- func: floor_(Tensor(a!) self) -> Tensor(a!)
|
1294
|
-
supports_named_tensor: True
|
1295
1235
|
variants: function, method
|
1296
1236
|
|
1297
1237
|
- func: floor.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1298
|
-
supports_named_tensor: True
|
1299
1238
|
dispatch:
|
1300
1239
|
CPU: floor_out
|
1301
1240
|
CUDA: floor_out
|
1302
1241
|
|
1303
1242
|
- func: floor_divide(Tensor self, Tensor other) -> Tensor
|
1243
|
+
use_c10_dispatcher: full
|
1304
1244
|
variants: function, method
|
1305
1245
|
dispatch:
|
1306
1246
|
CPU: floor_divide
|
1307
1247
|
CUDA: floor_divide
|
1308
1248
|
SparseCPU: floor_divide_sparse
|
1309
1249
|
SparseCUDA: floor_divide_sparse
|
1310
|
-
supports_named_tensor: True
|
1311
1250
|
|
1312
1251
|
- func: floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1313
1252
|
variants: method
|
@@ -1316,7 +1255,6 @@
|
|
1316
1255
|
CUDA: floor_divide_
|
1317
1256
|
SparseCPU: floor_divide_sparse_
|
1318
1257
|
SparseCUDA: floor_divide_sparse_
|
1319
|
-
supports_named_tensor: True
|
1320
1258
|
|
1321
1259
|
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1322
1260
|
dispatch:
|
@@ -1324,27 +1262,22 @@
|
|
1324
1262
|
CUDA: floor_divide_out
|
1325
1263
|
SparseCPU: floor_divide_out_sparse_zerodim
|
1326
1264
|
SparseCUDA: floor_divide_out_sparse_zerodim
|
1327
|
-
supports_named_tensor: True
|
1328
1265
|
|
1329
1266
|
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
1267
|
+
use_c10_dispatcher: full
|
1330
1268
|
variants: function, method
|
1331
|
-
supports_named_tensor: True
|
1332
1269
|
|
1333
1270
|
- func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1334
1271
|
variants: method
|
1335
|
-
supports_named_tensor: True
|
1336
1272
|
|
1337
1273
|
- func: frac(Tensor self) -> Tensor
|
1338
1274
|
use_c10_dispatcher: full
|
1339
|
-
supports_named_tensor: True
|
1340
1275
|
variants: function, method
|
1341
1276
|
|
1342
1277
|
- func: frac_(Tensor(a!) self) -> Tensor(a!)
|
1343
|
-
supports_named_tensor: True
|
1344
1278
|
variants: function, method
|
1345
1279
|
|
1346
1280
|
- func: frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1347
|
-
supports_named_tensor: True
|
1348
1281
|
|
1349
1282
|
- func: full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1350
1283
|
device_guard: False
|
@@ -1354,7 +1287,6 @@
|
|
1354
1287
|
- func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)
|
1355
1288
|
|
1356
1289
|
- func: full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1357
|
-
supports_named_tensor: True
|
1358
1290
|
|
1359
1291
|
- func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1360
1292
|
dispatch:
|
@@ -1381,6 +1313,7 @@
|
|
1381
1313
|
CUDA: grid_sampler_2d_cuda
|
1382
1314
|
|
1383
1315
|
- func: grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1316
|
+
use_c10_dispatcher: full
|
1384
1317
|
dispatch:
|
1385
1318
|
CPU: grid_sampler_2d_backward_cpu
|
1386
1319
|
CUDA: grid_sampler_2d_backward_cuda
|
@@ -1392,6 +1325,7 @@
|
|
1392
1325
|
CUDA: grid_sampler_3d_cuda
|
1393
1326
|
|
1394
1327
|
- func: grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1328
|
+
use_c10_dispatcher: full
|
1395
1329
|
dispatch:
|
1396
1330
|
CPU: grid_sampler_3d_backward_cpu
|
1397
1331
|
CUDA: grid_sampler_3d_backward_cuda
|
@@ -1419,6 +1353,16 @@
|
|
1419
1353
|
|
1420
1354
|
- func: group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor
|
1421
1355
|
|
1356
|
+
- func: native_group_norm(Tensor input, Tensor? weight, Tensor? bias, int N, int C, int HxW, int group, float eps) -> (Tensor, Tensor, Tensor)
|
1357
|
+
dispatch:
|
1358
|
+
CPU: native_group_norm
|
1359
|
+
CUDA: native_group_norm
|
1360
|
+
|
1361
|
+
- func: native_group_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int N, int C, int HxW, int group, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1362
|
+
dispatch:
|
1363
|
+
CPU: native_group_norm_backward
|
1364
|
+
CUDA: native_group_norm_backward
|
1365
|
+
|
1422
1366
|
# FFT
|
1423
1367
|
|
1424
1368
|
- func: fft(Tensor self, int signal_ndim, bool normalized=False) -> Tensor
|
@@ -1434,9 +1378,11 @@
|
|
1434
1378
|
variants: function, method
|
1435
1379
|
|
1436
1380
|
- func: irfft(Tensor self, int signal_ndim, bool normalized=False, bool onesided=True, int[] signal_sizes=[]) -> Tensor
|
1381
|
+
use_c10_dispatcher: full
|
1437
1382
|
variants: function, method
|
1438
1383
|
|
1439
1384
|
- func: _fft_with_size(Tensor self, int signal_ndim, bool complex_input, bool complex_output, bool inverse, int[] checked_signal_sizes, bool normalized, bool onesided, int[] output_sizes) -> Tensor
|
1385
|
+
use_c10_dispatcher: full
|
1440
1386
|
variants: function
|
1441
1387
|
dispatch:
|
1442
1388
|
CPU: _fft_mkl
|
@@ -1449,10 +1395,10 @@
|
|
1449
1395
|
use_c10_dispatcher: full
|
1450
1396
|
|
1451
1397
|
- func: _cufft_set_plan_cache_max_size(int device_index, int max_size) -> ()
|
1452
|
-
use_c10_dispatcher:
|
1398
|
+
use_c10_dispatcher: full
|
1453
1399
|
|
1454
1400
|
- func: _cufft_clear_plan_cache(int device_index) -> ()
|
1455
|
-
use_c10_dispatcher:
|
1401
|
+
use_c10_dispatcher: full
|
1456
1402
|
|
1457
1403
|
- func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
1458
1404
|
variants: function, method
|
@@ -1510,9 +1456,8 @@
|
|
1510
1456
|
|
1511
1457
|
- func: isnan(Tensor self) -> Tensor
|
1512
1458
|
use_c10_dispatcher: full
|
1513
|
-
variants: function
|
1459
|
+
variants: function, method
|
1514
1460
|
device_guard: False
|
1515
|
-
supports_named_tensor: True
|
1516
1461
|
dispatch:
|
1517
1462
|
CPU: isnan
|
1518
1463
|
CUDA: isnan
|
@@ -1528,57 +1473,49 @@
|
|
1528
1473
|
use_c10_dispatcher: full
|
1529
1474
|
variants: function, method
|
1530
1475
|
device_guard: False
|
1531
|
-
supports_named_tensor: True
|
1532
1476
|
|
1533
1477
|
- func: is_complex(Tensor self) -> bool
|
1534
1478
|
use_c10_dispatcher: full
|
1535
1479
|
variants: function, method
|
1536
1480
|
device_guard: False
|
1537
|
-
supports_named_tensor: True
|
1538
1481
|
|
1539
1482
|
- func: is_nonzero(Tensor self) -> bool
|
1540
1483
|
use_c10_dispatcher: full
|
1541
1484
|
variants: function, method
|
1542
1485
|
device_guard: False
|
1543
|
-
supports_named_tensor: True
|
1544
1486
|
|
1545
1487
|
- func: is_same_size(Tensor self, Tensor other) -> bool
|
1546
1488
|
use_c10_dispatcher: full
|
1547
1489
|
variants: function, method
|
1548
1490
|
device_guard: False
|
1549
|
-
supports_named_tensor: True
|
1550
1491
|
|
1551
1492
|
- func: is_signed(Tensor self) -> bool
|
1552
1493
|
use_c10_dispatcher: full
|
1553
1494
|
variants: function, method
|
1554
1495
|
device_guard: False
|
1555
|
-
supports_named_tensor: True
|
1556
1496
|
|
1557
|
-
- func: kl_div(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
1497
|
+
- func: kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor
|
1558
1498
|
use_c10_dispatcher: full
|
1559
1499
|
|
1560
|
-
- func: kl_div_backward(Tensor grad_output, Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
1500
|
+
- func: kl_div_backward(Tensor grad_output, Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor
|
1561
1501
|
use_c10_dispatcher: full
|
1562
1502
|
dispatch:
|
1563
1503
|
CPU: kl_div_backward_cpu
|
1564
1504
|
CUDA: kl_div_backward_cuda
|
1565
1505
|
|
1566
1506
|
- func: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1567
|
-
|
1507
|
+
use_c10_dispatcher: full
|
1568
1508
|
variants: function, method
|
1569
1509
|
|
1570
1510
|
- func: kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1571
|
-
supports_named_tensor: True
|
1572
1511
|
dispatch:
|
1573
1512
|
CPU: kthvalue_out_cpu
|
1574
1513
|
CUDA: kthvalue_out_cuda
|
1575
1514
|
|
1576
1515
|
- func: kthvalue.dimname(Tensor self, int k, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1577
|
-
supports_named_tensor: True
|
1578
1516
|
variants: function, method
|
1579
1517
|
|
1580
1518
|
- func: kthvalue.dimname_out(Tensor self, int k, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1581
|
-
supports_named_tensor: True
|
1582
1519
|
|
1583
1520
|
- func: layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor
|
1584
1521
|
|
@@ -1601,16 +1538,19 @@
|
|
1601
1538
|
MkldnnCPU: mkldnn_linear
|
1602
1539
|
|
1603
1540
|
- func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1541
|
+
use_c10_dispatcher: full
|
1604
1542
|
|
1605
1543
|
- func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1606
1544
|
use_c10_dispatcher: full
|
1607
1545
|
|
1608
1546
|
- func: fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int)
|
1547
|
+
use_c10_dispatcher: full
|
1609
1548
|
|
1610
1549
|
- func: fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor
|
1611
1550
|
use_c10_dispatcher: full
|
1612
1551
|
|
1613
1552
|
- func: fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1553
|
+
use_c10_dispatcher: full
|
1614
1554
|
|
1615
1555
|
- func: fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1616
1556
|
use_c10_dispatcher: full
|
@@ -1630,41 +1570,33 @@
|
|
1630
1570
|
|
1631
1571
|
- func: log(Tensor self) -> Tensor
|
1632
1572
|
use_c10_dispatcher: full
|
1633
|
-
supports_named_tensor: True
|
1634
1573
|
variants: function, method
|
1635
1574
|
|
1636
1575
|
- func: log_(Tensor(a!) self) -> Tensor(a!)
|
1637
|
-
supports_named_tensor: True
|
1638
1576
|
variants: function, method
|
1639
1577
|
|
1640
1578
|
- func: log.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1641
|
-
supports_named_tensor: True
|
1642
1579
|
dispatch:
|
1643
1580
|
CPU: log_out
|
1644
1581
|
CUDA: log_out
|
1645
1582
|
|
1646
1583
|
- func: log10(Tensor self) -> Tensor
|
1647
1584
|
use_c10_dispatcher: full
|
1648
|
-
supports_named_tensor: True
|
1649
1585
|
variants: function, method
|
1650
1586
|
|
1651
1587
|
- func: log10_(Tensor(a!) self) -> Tensor(a!)
|
1652
|
-
supports_named_tensor: True
|
1653
1588
|
variants: function, method
|
1654
1589
|
|
1655
1590
|
- func: log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1656
|
-
supports_named_tensor: True
|
1657
1591
|
dispatch:
|
1658
1592
|
CPU: log10_out
|
1659
1593
|
CUDA: log10_out
|
1660
1594
|
|
1661
1595
|
- func: log1p(Tensor self) -> Tensor
|
1662
1596
|
use_c10_dispatcher: full
|
1663
|
-
supports_named_tensor: True
|
1664
1597
|
variants: function, method
|
1665
1598
|
|
1666
1599
|
- func: log1p_(Tensor(a!) self) -> Tensor(a!)
|
1667
|
-
supports_named_tensor: True
|
1668
1600
|
variants: function, method
|
1669
1601
|
dispatch:
|
1670
1602
|
CPU: log1p_
|
@@ -1673,7 +1605,6 @@
|
|
1673
1605
|
SparseCUDA: log1p_sparse_
|
1674
1606
|
|
1675
1607
|
- func: log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1676
|
-
supports_named_tensor: True
|
1677
1608
|
dispatch:
|
1678
1609
|
CPU: log1p_out
|
1679
1610
|
CUDA: log1p_out
|
@@ -1682,19 +1613,28 @@
|
|
1682
1613
|
|
1683
1614
|
- func: log2(Tensor self) -> Tensor
|
1684
1615
|
use_c10_dispatcher: full
|
1685
|
-
supports_named_tensor: True
|
1686
1616
|
variants: function, method
|
1687
1617
|
|
1688
1618
|
- func: log2_(Tensor(a!) self) -> Tensor(a!)
|
1689
|
-
supports_named_tensor: True
|
1690
1619
|
variants: function, method
|
1691
1620
|
|
1692
1621
|
- func: log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1693
|
-
supports_named_tensor: True
|
1694
1622
|
dispatch:
|
1695
1623
|
CPU: log2_out
|
1696
1624
|
CUDA: log2_out
|
1697
1625
|
|
1626
|
+
- func: logaddexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1627
|
+
|
1628
|
+
- func: logaddexp(Tensor self, Tensor other) -> Tensor
|
1629
|
+
use_c10_dispatcher: full
|
1630
|
+
variants: method, function
|
1631
|
+
|
1632
|
+
- func: logaddexp2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1633
|
+
|
1634
|
+
- func: logaddexp2(Tensor self, Tensor other) -> Tensor
|
1635
|
+
use_c10_dispatcher: full
|
1636
|
+
variants: method, function
|
1637
|
+
|
1698
1638
|
- func: logdet(Tensor self) -> Tensor
|
1699
1639
|
use_c10_dispatcher: full
|
1700
1640
|
variants: function, method
|
@@ -1709,11 +1649,9 @@
|
|
1709
1649
|
# log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
1710
1650
|
- func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
1711
1651
|
variants: function, method
|
1712
|
-
supports_named_tensor: True
|
1713
1652
|
|
1714
1653
|
- func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1715
1654
|
variants: function, method
|
1716
|
-
supports_named_tensor: True
|
1717
1655
|
|
1718
1656
|
- func: _log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
1719
1657
|
use_c10_dispatcher: full
|
@@ -1727,19 +1665,37 @@
|
|
1727
1665
|
CPU: log_softmax_backward_cpu
|
1728
1666
|
CUDA: log_softmax_backward_cuda
|
1729
1667
|
|
1668
|
+
- func: _logcumsumexp(Tensor self, int dim) -> Tensor
|
1669
|
+
use_c10_dispatcher: full
|
1670
|
+
dispatch:
|
1671
|
+
CPU: _logcumsumexp_cpu
|
1672
|
+
CUDA: _logcumsumexp_cuda
|
1673
|
+
|
1674
|
+
- func: _logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
1675
|
+
dispatch:
|
1676
|
+
CPU: _logcumsumexp_out_cpu
|
1677
|
+
CUDA: _logcumsumexp_out_cuda
|
1678
|
+
|
1679
|
+
- func: logcumsumexp(Tensor self, int dim) -> Tensor
|
1680
|
+
variants: function, method
|
1681
|
+
|
1682
|
+
- func: logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
1683
|
+
|
1684
|
+
- func: logcumsumexp.dimname(Tensor self, Dimname dim) -> Tensor
|
1685
|
+
variants: function, method
|
1686
|
+
|
1687
|
+
- func: logcumsumexp.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
|
1688
|
+
|
1730
1689
|
- func: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1731
|
-
|
1690
|
+
use_c10_dispatcher: full
|
1732
1691
|
variants: function, method
|
1733
1692
|
|
1734
1693
|
- func: logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
1735
|
-
supports_named_tensor: True
|
1736
1694
|
|
1737
1695
|
- func: logsumexp.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor
|
1738
|
-
supports_named_tensor: True
|
1739
1696
|
variants: function, method
|
1740
1697
|
|
1741
1698
|
- func: logsumexp.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
1742
|
-
supports_named_tensor: True
|
1743
1699
|
|
1744
1700
|
- func: margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor
|
1745
1701
|
use_c10_dispatcher: full
|
@@ -1747,10 +1703,8 @@
|
|
1747
1703
|
- func: matmul(Tensor self, Tensor other) -> Tensor
|
1748
1704
|
use_c10_dispatcher: full
|
1749
1705
|
variants: function, method
|
1750
|
-
supports_named_tensor: True
|
1751
1706
|
|
1752
1707
|
- func: matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1753
|
-
supports_named_tensor: True
|
1754
1708
|
|
1755
1709
|
- func: matrix_rank.tol(Tensor self, float tol, bool symmetric=False) -> Tensor
|
1756
1710
|
use_c10_dispatcher: full
|
@@ -1763,53 +1717,52 @@
|
|
1763
1717
|
variants: function, method
|
1764
1718
|
|
1765
1719
|
- func: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1720
|
+
use_c10_dispatcher: full
|
1766
1721
|
variants: function, method
|
1767
|
-
supports_named_tensor: True
|
1768
1722
|
|
1769
1723
|
- func: max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
|
1770
|
-
supports_named_tensor: True
|
1771
1724
|
|
1772
1725
|
- func: max_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1726
|
+
use_c10_dispatcher: full
|
1773
1727
|
variants: function, method
|
1774
1728
|
|
1775
1729
|
- func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1776
1730
|
variants: function, method
|
1777
|
-
supports_named_tensor: True
|
1778
1731
|
|
1779
1732
|
- func: max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
|
1780
|
-
supports_named_tensor: True
|
1781
1733
|
|
1782
1734
|
- func: max_values.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor
|
1783
1735
|
variants: function, method
|
1784
1736
|
|
1785
1737
|
# Return: (Tensor output, Tensor indices)
|
1786
1738
|
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
1787
|
-
|
1739
|
+
use_c10_dispatcher: full
|
1788
1740
|
|
1789
1741
|
- func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor
|
1790
|
-
|
1742
|
+
use_c10_dispatcher: full
|
1791
1743
|
|
1792
1744
|
- func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1793
|
-
|
1745
|
+
use_c10_dispatcher: full
|
1794
1746
|
|
1795
1747
|
- func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1748
|
+
use_c10_dispatcher: full
|
1796
1749
|
requires_tensor: True
|
1797
1750
|
dispatch:
|
1798
1751
|
MkldnnCPU: mkldnn_max_pool2d
|
1799
1752
|
|
1800
1753
|
- func: quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1754
|
+
use_c10_dispatcher: full
|
1801
1755
|
requires_tensor: True
|
1802
1756
|
dispatch:
|
1803
1757
|
QuantizedCPU: quantized_max_pool2d
|
1804
1758
|
|
1805
1759
|
- func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
1806
|
-
|
1760
|
+
use_c10_dispatcher: full
|
1807
1761
|
|
1808
1762
|
# The CPU and GPU dispatch variants are named weirdly here because otherwise there
|
1809
1763
|
# are namespacing issues in C++
|
1810
1764
|
- func: mean(Tensor self, *, ScalarType? dtype=None) -> Tensor
|
1811
1765
|
variants: function, method
|
1812
|
-
supports_named_tensor: True
|
1813
1766
|
dispatch:
|
1814
1767
|
CPU: mean_cpu_gpu
|
1815
1768
|
CUDA: mean_cpu_gpu
|
@@ -1817,14 +1770,13 @@
|
|
1817
1770
|
|
1818
1771
|
- func: mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
1819
1772
|
variants: function, method
|
1820
|
-
supports_named_tensor: True
|
1821
1773
|
dispatch:
|
1822
1774
|
CPU: mean_cpu_gpu
|
1823
1775
|
CUDA: mean_cpu_gpu
|
1824
1776
|
QuantizedCPU: quantized_mean_cpu
|
1777
|
+
Vulkan: mean_vulkan
|
1825
1778
|
|
1826
1779
|
- func: mean.out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1827
|
-
supports_named_tensor: True
|
1828
1780
|
dispatch:
|
1829
1781
|
CPU: mean_out_cpu_gpu
|
1830
1782
|
CUDA: mean_out_cpu_gpu
|
@@ -1832,41 +1784,34 @@
|
|
1832
1784
|
|
1833
1785
|
- func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
1834
1786
|
variants: function, method
|
1835
|
-
supports_named_tensor: True
|
1836
1787
|
|
1837
1788
|
- func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1838
|
-
supports_named_tensor: True
|
1839
1789
|
|
1840
1790
|
- func: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1841
|
-
|
1791
|
+
use_c10_dispatcher: full
|
1842
1792
|
variants: function, method
|
1843
1793
|
|
1844
1794
|
- func: median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1845
|
-
supports_named_tensor: True
|
1846
1795
|
|
1847
1796
|
- func: median.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1848
|
-
supports_named_tensor: True
|
1849
1797
|
variants: function, method
|
1850
1798
|
|
1851
1799
|
- func: median.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1852
|
-
supports_named_tensor: True
|
1853
1800
|
|
1854
1801
|
- func: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1802
|
+
use_c10_dispatcher: full
|
1855
1803
|
variants: function, method
|
1856
|
-
supports_named_tensor: True
|
1857
1804
|
|
1858
1805
|
- func: min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1859
|
-
supports_named_tensor: True
|
1860
1806
|
|
1861
1807
|
- func: min_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1808
|
+
use_c10_dispatcher: full
|
1862
1809
|
variants: function, method
|
1863
1810
|
|
1864
1811
|
- func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1865
1812
|
variants: function, method
|
1866
|
-
supports_named_tensor: True
|
1867
1813
|
|
1868
1814
|
- func: min.names_dim_min(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1869
|
-
supports_named_tensor: True
|
1870
1815
|
|
1871
1816
|
- func: min_values.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor
|
1872
1817
|
variants: function, method
|
@@ -1874,10 +1819,13 @@
|
|
1874
1819
|
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> Tensor
|
1875
1820
|
|
1876
1821
|
- func: mkldnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> Tensor
|
1822
|
+
use_c10_dispatcher: full
|
1877
1823
|
|
1878
1824
|
- func: mkldnn_convolution_backward_weights(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> (Tensor, Tensor)
|
1825
|
+
use_c10_dispatcher: full
|
1879
1826
|
|
1880
1827
|
- func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1828
|
+
use_c10_dispatcher: full
|
1881
1829
|
|
1882
1830
|
- func: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)
|
1883
1831
|
dispatch:
|
@@ -1892,10 +1840,12 @@
|
|
1892
1840
|
CUDA: miopen_convolution
|
1893
1841
|
|
1894
1842
|
- func: miopen_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1843
|
+
use_c10_dispatcher: full
|
1895
1844
|
dispatch:
|
1896
1845
|
CUDA: miopen_convolution_backward_input
|
1897
1846
|
|
1898
1847
|
- func: miopen_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1848
|
+
use_c10_dispatcher: full
|
1899
1849
|
dispatch:
|
1900
1850
|
CUDA: miopen_convolution_backward
|
1901
1851
|
|
@@ -1905,6 +1855,7 @@
|
|
1905
1855
|
CUDA: miopen_convolution_backward_bias
|
1906
1856
|
|
1907
1857
|
- func: miopen_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1858
|
+
use_c10_dispatcher: full
|
1908
1859
|
dispatch:
|
1909
1860
|
CUDA: miopen_convolution_backward_weight
|
1910
1861
|
|
@@ -1915,14 +1866,17 @@
|
|
1915
1866
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
1916
1867
|
# backwards
|
1917
1868
|
- func: miopen_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1869
|
+
use_c10_dispatcher: full
|
1918
1870
|
dispatch:
|
1919
1871
|
CUDA: miopen_convolution_transpose_backward
|
1920
1872
|
|
1921
1873
|
- func: miopen_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1874
|
+
use_c10_dispatcher: full
|
1922
1875
|
dispatch:
|
1923
1876
|
CUDA: miopen_convolution_transpose_backward_input
|
1924
1877
|
|
1925
1878
|
- func: miopen_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1879
|
+
use_c10_dispatcher: full
|
1926
1880
|
dispatch:
|
1927
1881
|
CUDA: miopen_convolution_transpose_backward_weight
|
1928
1882
|
|
@@ -1931,14 +1885,17 @@
|
|
1931
1885
|
CUDA: miopen_depthwise_convolution
|
1932
1886
|
|
1933
1887
|
- func: miopen_depthwise_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1888
|
+
use_c10_dispatcher: full
|
1934
1889
|
dispatch:
|
1935
1890
|
CUDA: miopen_depthwise_convolution_backward_input
|
1936
1891
|
|
1937
1892
|
- func: miopen_depthwise_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1893
|
+
use_c10_dispatcher: full
|
1938
1894
|
dispatch:
|
1939
1895
|
CUDA: miopen_depthwise_convolution_backward
|
1940
1896
|
|
1941
1897
|
- func: miopen_depthwise_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1898
|
+
use_c10_dispatcher: full
|
1942
1899
|
dispatch:
|
1943
1900
|
CUDA: miopen_depthwise_convolution_backward_weight
|
1944
1901
|
|
@@ -1955,35 +1912,30 @@
|
|
1955
1912
|
variants: function, method
|
1956
1913
|
dispatch:
|
1957
1914
|
CPU: mm_cpu
|
1958
|
-
CUDA:
|
1915
|
+
CUDA: mm_cuda
|
1959
1916
|
SparseCPU: _sparse_mm
|
1960
1917
|
SparseCUDA: _sparse_mm
|
1961
|
-
supports_named_tensor: True
|
1962
1918
|
|
1963
1919
|
- func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
1964
1920
|
dispatch:
|
1965
1921
|
CPU: mm_cpu_out
|
1966
|
-
CUDA:
|
1922
|
+
CUDA: mm_out_cuda
|
1967
1923
|
SparseCPU: _sparse_mm_out
|
1968
1924
|
SparseCUDA: _sparse_mm_out
|
1969
|
-
supports_named_tensor: True
|
1970
1925
|
|
1971
1926
|
- func: _sparse_mm(Tensor sparse, Tensor dense) -> Tensor
|
1972
1927
|
use_c10_dispatcher: full
|
1973
1928
|
|
1974
1929
|
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1975
|
-
|
1930
|
+
use_c10_dispatcher: full
|
1976
1931
|
variants: function, method
|
1977
1932
|
|
1978
1933
|
- func: mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1979
|
-
supports_named_tensor: True
|
1980
1934
|
|
1981
1935
|
- func: mode.dimname(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1982
1936
|
variants: function, method
|
1983
|
-
supports_named_tensor: True
|
1984
1937
|
|
1985
1938
|
- func: mode.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
1986
|
-
supports_named_tensor: True
|
1987
1939
|
|
1988
1940
|
- func: mul.Tensor(Tensor self, Tensor other) -> Tensor
|
1989
1941
|
use_c10_dispatcher: full
|
@@ -1994,7 +1946,6 @@
|
|
1994
1946
|
SparseCPU: mul_sparse
|
1995
1947
|
SparseCUDA: mul_sparse
|
1996
1948
|
MkldnnCPU: mkldnn_mul
|
1997
|
-
supports_named_tensor: True
|
1998
1949
|
|
1999
1950
|
- func: mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
2000
1951
|
variants: method
|
@@ -2004,7 +1955,6 @@
|
|
2004
1955
|
SparseCPU: mul_sparse_
|
2005
1956
|
SparseCUDA: mul_sparse_
|
2006
1957
|
MkldnnCPU: mkldnn_mul_
|
2007
|
-
supports_named_tensor: True
|
2008
1958
|
|
2009
1959
|
- func: mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
2010
1960
|
dispatch:
|
@@ -2013,7 +1963,6 @@
|
|
2013
1963
|
SparseCPU: mul_out_sparse_cpu
|
2014
1964
|
SparseCUDA: mul_out_sparse_cuda
|
2015
1965
|
MkldnnCPU: mkldnn_mul_out
|
2016
|
-
supports_named_tensor: True
|
2017
1966
|
|
2018
1967
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
2019
1968
|
- func: mul.Scalar(Tensor self, Scalar other) -> Tensor
|
@@ -2027,15 +1976,12 @@
|
|
2027
1976
|
use_c10_dispatcher: full
|
2028
1977
|
variants: function, method
|
2029
1978
|
dispatch:
|
2030
|
-
CPU:
|
2031
|
-
CUDA:
|
2032
|
-
|
1979
|
+
CPU: mv
|
1980
|
+
CUDA: mv
|
1981
|
+
SparseCPU: mv_sparse
|
1982
|
+
SparseCUDA: mv_sparse
|
2033
1983
|
|
2034
|
-
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
2035
|
-
dispatch:
|
2036
|
-
CPU: mv_cpu_out
|
2037
|
-
CUDA: legacy::cuda::_th_mv_out
|
2038
|
-
supports_named_tensor: True
|
1984
|
+
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
2039
1985
|
|
2040
1986
|
- func: mvlgamma(Tensor self, int p) -> Tensor
|
2041
1987
|
use_c10_dispatcher: full
|
@@ -2054,14 +2000,14 @@
|
|
2054
2000
|
SparseCUDA: narrow_copy_sparse
|
2055
2001
|
|
2056
2002
|
- func: narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)
|
2003
|
+
use_c10_dispatcher: full
|
2057
2004
|
variants: function, method
|
2058
2005
|
device_guard: False
|
2059
|
-
supports_named_tensor: True
|
2060
2006
|
|
2061
2007
|
- func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)
|
2008
|
+
use_c10_dispatcher: full
|
2062
2009
|
variants: function, method
|
2063
2010
|
device_guard: False
|
2064
|
-
supports_named_tensor: True
|
2065
2011
|
|
2066
2012
|
- func: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)
|
2067
2013
|
dispatch:
|
@@ -2074,6 +2020,7 @@
|
|
2074
2020
|
CUDA: batch_norm_cuda_out
|
2075
2021
|
|
2076
2022
|
- func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)
|
2023
|
+
use_c10_dispatcher: full
|
2077
2024
|
dispatch:
|
2078
2025
|
CUDA: batch_norm_stats_cuda
|
2079
2026
|
|
@@ -2090,7 +2037,7 @@
|
|
2090
2037
|
dispatch:
|
2091
2038
|
CUDA: batch_norm_gather_stats_cuda
|
2092
2039
|
|
2093
|
-
- func: batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps,
|
2040
|
+
- func: batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor)
|
2094
2041
|
dispatch:
|
2095
2042
|
CUDA: batch_norm_gather_stats_with_counts_cuda
|
2096
2043
|
|
@@ -2112,6 +2059,9 @@
|
|
2112
2059
|
CPU: batch_norm_update_stats_cpu
|
2113
2060
|
CUDA: batch_norm_update_stats_cuda
|
2114
2061
|
|
2062
|
+
- func: is_vulkan_available() -> bool
|
2063
|
+
use_c10_dispatcher: full
|
2064
|
+
|
2115
2065
|
- func: _nnpack_available() -> bool
|
2116
2066
|
use_c10_dispatcher: full
|
2117
2067
|
|
@@ -2119,12 +2069,15 @@
|
|
2119
2069
|
variants: function
|
2120
2070
|
|
2121
2071
|
- func: _nnpack_spatial_convolution_backward(Tensor input, Tensor grad_output, Tensor weight, int[2] padding, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
2072
|
+
use_c10_dispatcher: full
|
2122
2073
|
variants: function
|
2123
2074
|
|
2124
2075
|
- func: _nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int[2] padding) -> Tensor
|
2076
|
+
use_c10_dispatcher: full
|
2125
2077
|
variants: function
|
2126
2078
|
|
2127
2079
|
- func: _nnpack_spatial_convolution_backward_weight(Tensor input, int[] weightsize, Tensor grad_output, int[2] padding) -> Tensor
|
2080
|
+
use_c10_dispatcher: full
|
2128
2081
|
variants: function
|
2129
2082
|
|
2130
2083
|
- func: ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2135,17 +2088,18 @@
|
|
2135
2088
|
- func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2136
2089
|
|
2137
2090
|
- func: ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2138
|
-
supports_named_tensor: True
|
2139
2091
|
|
2140
2092
|
- func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor
|
2141
2093
|
use_c10_dispatcher: full
|
2142
2094
|
|
2143
2095
|
- func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
|
2144
|
-
|
2096
|
+
use_c10_dispatcher: full
|
2097
|
+
|
2098
|
+
- func: _euclidean_dist(Tensor x1, Tensor x2) -> Tensor
|
2099
|
+
use_c10_dispatcher: full
|
2145
2100
|
|
2146
2101
|
- func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor
|
2147
2102
|
use_c10_dispatcher: full
|
2148
|
-
supports_named_tensor: True
|
2149
2103
|
|
2150
2104
|
- func: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor
|
2151
2105
|
use_c10_dispatcher: full
|
@@ -2164,6 +2118,7 @@
|
|
2164
2118
|
variants: function
|
2165
2119
|
|
2166
2120
|
- func: permute(Tensor(a) self, int[] dims) -> Tensor(a)
|
2121
|
+
use_c10_dispatcher: full
|
2167
2122
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2168
2123
|
|
2169
2124
|
# Only exposed from C++ -- in Python,
|
@@ -2174,15 +2129,21 @@
|
|
2174
2129
|
# behavior on Windows, for reasons I don't understand
|
2175
2130
|
# (maybe related to capital letter collation somehow...)
|
2176
2131
|
- func: numpy_T(Tensor(a) self) -> Tensor(a)
|
2132
|
+
use_c10_dispatcher: full
|
2177
2133
|
variants: method
|
2178
2134
|
|
2179
2135
|
- func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor
|
2180
2136
|
use_c10_dispatcher: full
|
2181
2137
|
|
2138
|
+
- func: channel_shuffle(Tensor self, int groups) -> Tensor
|
2139
|
+
use_c10_dispatcher: full
|
2140
|
+
dispatch:
|
2141
|
+
CPU: channel_shuffle
|
2142
|
+
QuantizedCPU: quantized_channel_shuffle
|
2143
|
+
|
2182
2144
|
- func: is_pinned(Tensor self) -> bool
|
2183
2145
|
use_c10_dispatcher: full
|
2184
2146
|
variants: method
|
2185
|
-
supports_named_tensor: True
|
2186
2147
|
|
2187
2148
|
- func: pin_memory(Tensor self) -> Tensor
|
2188
2149
|
use_c10_dispatcher: full
|
@@ -2196,6 +2157,30 @@
|
|
2196
2157
|
use_c10_dispatcher: full
|
2197
2158
|
variants: function
|
2198
2159
|
|
2160
|
+
- func: rad2deg(Tensor self) -> Tensor
|
2161
|
+
use_c10_dispatcher: full
|
2162
|
+
variants: function, method
|
2163
|
+
supports_named_tensor: True
|
2164
|
+
|
2165
|
+
- func: rad2deg_(Tensor(a!) self) -> Tensor(a!)
|
2166
|
+
variants: function, method
|
2167
|
+
supports_named_tensor: True
|
2168
|
+
|
2169
|
+
- func: rad2deg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2170
|
+
supports_named_tensor: True
|
2171
|
+
|
2172
|
+
- func: deg2rad(Tensor self) -> Tensor
|
2173
|
+
use_c10_dispatcher: full
|
2174
|
+
variants: function, method
|
2175
|
+
supports_named_tensor: True
|
2176
|
+
|
2177
|
+
- func: deg2rad_(Tensor(a!) self) -> Tensor(a!)
|
2178
|
+
variants: function, method
|
2179
|
+
supports_named_tensor: True
|
2180
|
+
|
2181
|
+
- func: deg2rad.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2182
|
+
supports_named_tensor: True
|
2183
|
+
|
2199
2184
|
- func: scalar_tensor(Scalar s, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2200
2185
|
|
2201
2186
|
- func: rand.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2213,7 +2198,6 @@
|
|
2213
2198
|
- func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2214
2199
|
|
2215
2200
|
- func: rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2216
|
-
supports_named_tensor: True
|
2217
2201
|
|
2218
2202
|
- func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2219
2203
|
|
@@ -2250,7 +2234,6 @@
|
|
2250
2234
|
- func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2251
2235
|
|
2252
2236
|
- func: randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2253
|
-
supports_named_tensor: True
|
2254
2237
|
|
2255
2238
|
- func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2256
2239
|
|
@@ -2274,32 +2257,27 @@
|
|
2274
2257
|
|
2275
2258
|
- func: reciprocal(Tensor self) -> Tensor
|
2276
2259
|
use_c10_dispatcher: full
|
2277
|
-
supports_named_tensor: True
|
2278
2260
|
variants: function, method
|
2279
2261
|
|
2280
2262
|
- func: reciprocal_(Tensor(a!) self) -> Tensor(a!)
|
2281
|
-
supports_named_tensor: True
|
2282
2263
|
variants: function, method
|
2283
2264
|
|
2284
2265
|
- func: reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2285
|
-
supports_named_tensor: True
|
2286
2266
|
|
2287
2267
|
- func: neg(Tensor self) -> Tensor
|
2288
2268
|
use_c10_dispatcher: full
|
2289
|
-
supports_named_tensor: True
|
2290
2269
|
variants: function, method
|
2291
2270
|
|
2292
2271
|
- func: neg_(Tensor(a!) self) -> Tensor(a!)
|
2293
|
-
supports_named_tensor: True
|
2294
2272
|
variants: function, method
|
2295
2273
|
|
2296
2274
|
- func: neg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2297
|
-
supports_named_tensor: True
|
2298
2275
|
dispatch:
|
2299
2276
|
CPU: neg_out
|
2300
2277
|
CUDA: neg_out
|
2301
2278
|
|
2302
2279
|
- func: repeat(Tensor self, int[] repeats) -> Tensor
|
2280
|
+
use_c10_dispatcher: full
|
2303
2281
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2304
2282
|
|
2305
2283
|
- func: repeat_interleave.Tensor(Tensor repeats) -> Tensor
|
@@ -2318,11 +2296,12 @@
|
|
2318
2296
|
variants: function, method
|
2319
2297
|
|
2320
2298
|
- func: reshape(Tensor self, int[] shape) -> Tensor
|
2299
|
+
use_c10_dispatcher: full
|
2321
2300
|
variants: function, method
|
2322
2301
|
device_guard: False
|
2323
|
-
supports_named_tensor: True
|
2324
2302
|
|
2325
2303
|
- func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor
|
2304
|
+
use_c10_dispatcher: full
|
2326
2305
|
device_guard: False
|
2327
2306
|
requires_tensor: True
|
2328
2307
|
dispatch:
|
@@ -2335,15 +2314,12 @@
|
|
2335
2314
|
|
2336
2315
|
- func: round(Tensor self) -> Tensor
|
2337
2316
|
use_c10_dispatcher: full
|
2338
|
-
supports_named_tensor: True
|
2339
2317
|
variants: function, method
|
2340
2318
|
|
2341
2319
|
- func: round_(Tensor(a!) self) -> Tensor(a!)
|
2342
|
-
supports_named_tensor: True
|
2343
2320
|
variants: function, method
|
2344
2321
|
|
2345
2322
|
- func: round.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2346
|
-
supports_named_tensor: True
|
2347
2323
|
dispatch:
|
2348
2324
|
CPU: round_out
|
2349
2325
|
CUDA: round_out
|
@@ -2360,10 +2336,8 @@
|
|
2360
2336
|
CUDA: relu
|
2361
2337
|
MkldnnCPU: mkldnn_relu
|
2362
2338
|
QuantizedCPU: quantized_relu
|
2363
|
-
supports_named_tensor: True
|
2364
2339
|
|
2365
2340
|
- func: relu_(Tensor(a!) self) -> Tensor(a!)
|
2366
|
-
supports_named_tensor: True
|
2367
2341
|
variants: function, method
|
2368
2342
|
dispatch:
|
2369
2343
|
CPU: relu_
|
@@ -2379,6 +2353,7 @@
|
|
2379
2353
|
CUDA: prelu_cuda
|
2380
2354
|
|
2381
2355
|
- func: prelu_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor)
|
2356
|
+
use_c10_dispatcher: full
|
2382
2357
|
variants: function, method
|
2383
2358
|
dispatch:
|
2384
2359
|
CPU: prelu_backward_cpu
|
@@ -2408,15 +2383,12 @@
|
|
2408
2383
|
|
2409
2384
|
- func: rsqrt(Tensor self) -> Tensor
|
2410
2385
|
use_c10_dispatcher: full
|
2411
|
-
supports_named_tensor: True
|
2412
2386
|
variants: function, method
|
2413
2387
|
|
2414
2388
|
- func: rsqrt_(Tensor(a!) self) -> Tensor(a!)
|
2415
|
-
supports_named_tensor: True
|
2416
2389
|
variants: function, method
|
2417
2390
|
|
2418
2391
|
- func: rsqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2419
|
-
supports_named_tensor: True
|
2420
2392
|
dispatch:
|
2421
2393
|
CPU: rsqrt_out
|
2422
2394
|
CUDA: rsqrt_out
|
@@ -2424,12 +2396,11 @@
|
|
2424
2396
|
- func: select.Dimname(Tensor(a) self, Dimname dim, int index) -> Tensor(a)
|
2425
2397
|
variants: function, method
|
2426
2398
|
device_guard: False
|
2427
|
-
supports_named_tensor: True
|
2428
2399
|
|
2429
2400
|
- func: select.int(Tensor(a) self, int dim, int index) -> Tensor(a)
|
2401
|
+
use_c10_dispatcher: full
|
2430
2402
|
variants: function, method
|
2431
2403
|
device_guard: False
|
2432
|
-
supports_named_tensor: True
|
2433
2404
|
|
2434
2405
|
- func: selu(Tensor self) -> Tensor
|
2435
2406
|
use_c10_dispatcher: full
|
@@ -2441,10 +2412,8 @@
|
|
2441
2412
|
|
2442
2413
|
- func: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)
|
2443
2414
|
|
2444
|
-
|
2445
2415
|
- func: sigmoid(Tensor self) -> Tensor
|
2446
2416
|
use_c10_dispatcher: full
|
2447
|
-
supports_named_tensor: True
|
2448
2417
|
variants: function, method
|
2449
2418
|
dispatch:
|
2450
2419
|
CPU: sigmoid
|
@@ -2453,7 +2422,6 @@
|
|
2453
2422
|
MkldnnCPU: mkldnn_sigmoid
|
2454
2423
|
|
2455
2424
|
- func: sigmoid_(Tensor(a!) self) -> Tensor(a!)
|
2456
|
-
supports_named_tensor: True
|
2457
2425
|
variants: function, method
|
2458
2426
|
dispatch:
|
2459
2427
|
CPU: sigmoid_
|
@@ -2461,34 +2429,27 @@
|
|
2461
2429
|
MkldnnCPU: mkldnn_sigmoid_
|
2462
2430
|
|
2463
2431
|
- func: sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2464
|
-
supports_named_tensor: True
|
2465
2432
|
|
2466
2433
|
- func: sin(Tensor self) -> Tensor
|
2467
2434
|
use_c10_dispatcher: full
|
2468
|
-
supports_named_tensor: True
|
2469
2435
|
variants: function, method
|
2470
2436
|
|
2471
2437
|
- func: sin_(Tensor(a!) self) -> Tensor(a!)
|
2472
|
-
supports_named_tensor: True
|
2473
2438
|
variants: function, method
|
2474
2439
|
|
2475
2440
|
- func: sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2476
|
-
supports_named_tensor: True
|
2477
2441
|
dispatch:
|
2478
2442
|
CPU: sin_out
|
2479
2443
|
CUDA: sin_out
|
2480
2444
|
|
2481
2445
|
- func: sinh(Tensor self) -> Tensor
|
2482
2446
|
use_c10_dispatcher: full
|
2483
|
-
supports_named_tensor: True
|
2484
2447
|
variants: function, method
|
2485
2448
|
|
2486
2449
|
- func: sinh_(Tensor(a!) self) -> Tensor(a!)
|
2487
|
-
supports_named_tensor: True
|
2488
2450
|
variants: function, method
|
2489
2451
|
|
2490
2452
|
- func: sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2491
|
-
supports_named_tensor: True
|
2492
2453
|
|
2493
2454
|
# Returns a copy of this `Variable` that is detached from its autograd graph.
|
2494
2455
|
# This method is OK to call if the `Variable` is a view.
|
@@ -2504,7 +2465,6 @@
|
|
2504
2465
|
- func: detach(Tensor self) -> Tensor
|
2505
2466
|
use_c10_dispatcher: full
|
2506
2467
|
manual_kernel_registration: True
|
2507
|
-
supports_named_tensor: True
|
2508
2468
|
variants: function, method
|
2509
2469
|
|
2510
2470
|
# Like `detach()`, but modifies this `Variable` in-place. This method may
|
@@ -2512,26 +2472,24 @@
|
|
2512
2472
|
# this. If this `Variable` is a view, throws an `std::runtime_error()`.
|
2513
2473
|
- func: detach_(Tensor(a!) self) -> Tensor(a!)
|
2514
2474
|
manual_kernel_registration: True
|
2515
|
-
supports_named_tensor: True
|
2516
2475
|
variants: function, method
|
2517
2476
|
|
2518
2477
|
- func: size.int(Tensor self, int dim) -> int
|
2519
2478
|
use_c10_dispatcher: full
|
2520
2479
|
variants: function, method
|
2521
2480
|
device_guard: False
|
2522
|
-
supports_named_tensor: True
|
2523
2481
|
|
2524
2482
|
- func: size.Dimname(Tensor self, Dimname dim) -> int
|
2525
2483
|
variants: function, method
|
2526
2484
|
device_guard: False
|
2527
|
-
supports_named_tensor: True
|
2528
2485
|
|
2529
2486
|
- func: slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> Tensor(a)
|
2487
|
+
use_c10_dispatcher: full
|
2530
2488
|
variants: function, method
|
2531
2489
|
device_guard: False
|
2532
|
-
supports_named_tensor: True
|
2533
2490
|
|
2534
2491
|
- func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
|
2492
|
+
use_c10_dispatcher: full
|
2535
2493
|
variants: function, method
|
2536
2494
|
|
2537
2495
|
- func: smm(Tensor self, Tensor mat2) -> Tensor
|
@@ -2541,11 +2499,9 @@
|
|
2541
2499
|
# softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
2542
2500
|
- func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
2543
2501
|
variants: function, method
|
2544
|
-
supports_named_tensor: True
|
2545
2502
|
|
2546
2503
|
- func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
2547
2504
|
variants: function, method
|
2548
|
-
supports_named_tensor: True
|
2549
2505
|
|
2550
2506
|
- func: _softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
2551
2507
|
use_c10_dispatcher: full
|
@@ -2561,27 +2517,26 @@
|
|
2561
2517
|
CUDA: softmax_backward_cuda
|
2562
2518
|
|
2563
2519
|
- func: split.Tensor(Tensor(a) self, int split_size, int dim=0) -> Tensor(a)[]
|
2520
|
+
use_c10_dispatcher: full
|
2564
2521
|
variants: function, method
|
2565
2522
|
device_guard: False
|
2566
|
-
supports_named_tensor: True
|
2567
2523
|
|
2568
2524
|
- func: split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[]
|
2525
|
+
use_c10_dispatcher: full
|
2569
2526
|
variants: function, method
|
2570
2527
|
device_guard: False
|
2571
|
-
supports_named_tensor: True
|
2572
2528
|
|
2573
2529
|
- func: squeeze(Tensor(a) self) -> Tensor(a)
|
2574
|
-
|
2530
|
+
use_c10_dispatcher: full
|
2575
2531
|
variants: function, method
|
2576
2532
|
device_guard: False
|
2577
2533
|
|
2578
2534
|
- func: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)
|
2579
|
-
|
2535
|
+
use_c10_dispatcher: full
|
2580
2536
|
variants: function, method
|
2581
2537
|
device_guard: False
|
2582
2538
|
|
2583
2539
|
- func: squeeze.dimname(Tensor(a) self, Dimname dim) -> Tensor(a)
|
2584
|
-
supports_named_tensor: True
|
2585
2540
|
variants: function, method
|
2586
2541
|
device_guard: False
|
2587
2542
|
|
@@ -2609,6 +2564,7 @@
|
|
2609
2564
|
SparseCUDA: _sspaddmm_out_cuda
|
2610
2565
|
|
2611
2566
|
- func: stack(Tensor[] tensors, int dim=0) -> Tensor
|
2567
|
+
use_c10_dispatcher: full
|
2612
2568
|
|
2613
2569
|
- func: stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
2614
2570
|
|
@@ -2619,114 +2575,95 @@
|
|
2619
2575
|
- func: stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool onesided=True) -> Tensor
|
2620
2576
|
variants: function, method
|
2621
2577
|
|
2578
|
+
- func: istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool onesided=True, int? length=None) -> Tensor
|
2579
|
+
variants: function, method
|
2580
|
+
|
2622
2581
|
- func: stride.int(Tensor self, int dim) -> int
|
2623
2582
|
use_c10_dispatcher: full
|
2624
2583
|
variants: function, method
|
2625
2584
|
device_guard: False
|
2626
|
-
supports_named_tensor: True
|
2627
2585
|
|
2628
2586
|
- func: stride.Dimname(Tensor self, Dimname dim) -> int
|
2629
2587
|
variants: function, method
|
2630
2588
|
device_guard: False
|
2631
|
-
supports_named_tensor: True
|
2632
2589
|
|
2633
2590
|
- func: sum(Tensor self, *, ScalarType? dtype=None) -> Tensor
|
2634
2591
|
variants: function, method
|
2635
|
-
supports_named_tensor: True
|
2636
2592
|
|
2637
2593
|
- func: sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2638
2594
|
variants: function, method
|
2639
|
-
supports_named_tensor: True
|
2640
2595
|
|
2641
2596
|
- func: sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2642
2597
|
variants: function, method
|
2643
|
-
supports_named_tensor: True
|
2644
2598
|
|
2645
2599
|
- func: sum.IntList_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2646
|
-
supports_named_tensor: True
|
2647
2600
|
|
2648
2601
|
- func: sum.DimnameList_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2649
|
-
supports_named_tensor: True
|
2650
2602
|
|
2651
2603
|
- func: sum_to_size(Tensor self, int[] size) -> Tensor
|
2604
|
+
use_c10_dispatcher: full
|
2652
2605
|
variants: method
|
2653
2606
|
device_guard: False
|
2654
2607
|
|
2655
2608
|
- func: sqrt(Tensor self) -> Tensor
|
2656
2609
|
use_c10_dispatcher: full
|
2657
|
-
supports_named_tensor: True
|
2658
2610
|
variants: function, method
|
2659
2611
|
|
2660
2612
|
- func: sqrt_(Tensor(a!) self) -> Tensor(a!)
|
2661
|
-
supports_named_tensor: True
|
2662
2613
|
variants: function, method
|
2663
2614
|
|
2664
2615
|
- func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2665
|
-
supports_named_tensor: True
|
2666
2616
|
|
2667
2617
|
- func: square(Tensor self) -> Tensor
|
2668
2618
|
use_c10_dispatcher: full
|
2669
|
-
supports_named_tensor: True
|
2670
2619
|
variants: function, method
|
2671
2620
|
|
2672
2621
|
- func: square_(Tensor(a!) self) -> Tensor(a!)
|
2673
|
-
supports_named_tensor: True
|
2674
2622
|
variants: function, method
|
2675
2623
|
|
2676
2624
|
- func: std(Tensor self, bool unbiased=True) -> Tensor
|
2677
2625
|
use_c10_dispatcher: full
|
2678
2626
|
variants: function, method
|
2679
|
-
supports_named_tensor: True
|
2680
2627
|
|
2681
2628
|
- func: std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2629
|
+
use_c10_dispatcher: full
|
2682
2630
|
variants: function, method
|
2683
|
-
supports_named_tensor: True
|
2684
2631
|
|
2685
2632
|
- func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2633
|
+
use_c10_dispatcher: full
|
2686
2634
|
variants: function
|
2687
|
-
supports_named_tensor: True
|
2688
2635
|
|
2689
2636
|
- func: std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2637
|
+
use_c10_dispatcher: full
|
2690
2638
|
variants: function
|
2691
|
-
supports_named_tensor: True
|
2692
2639
|
|
2693
2640
|
- func: std_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2694
2641
|
variants: function
|
2695
|
-
supports_named_tensor: True
|
2696
2642
|
|
2697
2643
|
- func: std.out(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
2698
|
-
supports_named_tensor: True
|
2699
2644
|
|
2700
2645
|
- func: std.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2701
2646
|
variants: function, method
|
2702
|
-
supports_named_tensor: True
|
2703
2647
|
|
2704
2648
|
- func: std.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
2705
|
-
supports_named_tensor: True
|
2706
2649
|
|
2707
2650
|
- func: prod(Tensor self, *, ScalarType? dtype=None) -> Tensor
|
2708
2651
|
variants: function, method
|
2709
|
-
supports_named_tensor: True
|
2710
2652
|
|
2711
2653
|
- func: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2712
2654
|
variants: function, method
|
2713
|
-
supports_named_tensor: True
|
2714
2655
|
|
2715
2656
|
- func: prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2716
|
-
supports_named_tensor: True
|
2717
2657
|
|
2718
2658
|
- func: prod.dim_Dimname(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2719
2659
|
variants: function, method
|
2720
|
-
supports_named_tensor: True
|
2721
2660
|
|
2722
2661
|
- func: prod.Dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2723
|
-
supports_named_tensor: True
|
2724
|
-
|
2725
2662
|
|
2726
2663
|
- func: t(Tensor(a) self) -> Tensor(a)
|
2664
|
+
use_c10_dispatcher: full
|
2727
2665
|
device_guard: False
|
2728
2666
|
variants: function, method
|
2729
|
-
supports_named_tensor: True
|
2730
2667
|
|
2731
2668
|
- func: t_(Tensor(a!) self) -> Tensor(a!)
|
2732
2669
|
device_guard: False
|
@@ -2734,25 +2671,15 @@
|
|
2734
2671
|
|
2735
2672
|
- func: tan(Tensor self) -> Tensor
|
2736
2673
|
use_c10_dispatcher: full
|
2737
|
-
supports_named_tensor: True
|
2738
2674
|
variants: function, method
|
2739
2675
|
|
2740
2676
|
- func: tan_(Tensor(a!) self) -> Tensor(a!)
|
2741
|
-
supports_named_tensor: True
|
2742
2677
|
variants: function, method
|
2743
|
-
dispatch:
|
2744
|
-
CPU: _tan__cpu
|
2745
|
-
CUDA: _tan__cuda
|
2746
2678
|
|
2747
2679
|
- func: tan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2748
|
-
supports_named_tensor: True
|
2749
|
-
dispatch:
|
2750
|
-
CPU: _tan_out_cpu
|
2751
|
-
CUDA: _tan_out_cuda
|
2752
2680
|
|
2753
2681
|
- func: tanh(Tensor self) -> Tensor
|
2754
2682
|
use_c10_dispatcher: full
|
2755
|
-
supports_named_tensor: True
|
2756
2683
|
variants: function, method
|
2757
2684
|
dispatch:
|
2758
2685
|
CPU: tanh
|
@@ -2760,39 +2687,30 @@
|
|
2760
2687
|
QuantizedCPU: quantized_tanh
|
2761
2688
|
|
2762
2689
|
- func: tanh_(Tensor(a!) self) -> Tensor(a!)
|
2763
|
-
supports_named_tensor: True
|
2764
2690
|
variants: function, method
|
2765
|
-
dispatch:
|
2766
|
-
CPU: _tanh__cpu
|
2767
|
-
CUDA: _tanh__cuda
|
2768
2691
|
|
2769
2692
|
- func: tanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2770
|
-
supports_named_tensor: True
|
2771
|
-
dispatch:
|
2772
|
-
CPU: _tanh_out_cpu
|
2773
|
-
CUDA: _tanh_out_cuda
|
2774
2693
|
|
2775
2694
|
- func: tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor
|
2695
|
+
use_c10_dispatcher: full
|
2776
2696
|
variants: function
|
2777
2697
|
|
2778
2698
|
# TODO: namespace threshold in 'nn'
|
2779
2699
|
- func: threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor
|
2780
2700
|
use_c10_dispatcher: full
|
2781
2701
|
variants: function
|
2782
|
-
supports_named_tensor: True
|
2783
2702
|
dispatch:
|
2784
2703
|
CPU: threshold
|
2785
2704
|
CUDA: threshold_cuda
|
2705
|
+
QuantizedCPU: quantized_threshold
|
2786
2706
|
|
2787
2707
|
- func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)
|
2788
2708
|
variants: function
|
2789
|
-
supports_named_tensor: True
|
2790
2709
|
dispatch:
|
2791
2710
|
CPU: threshold_
|
2792
2711
|
CUDA: threshold__cuda
|
2793
2712
|
|
2794
2713
|
- func: threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
|
2795
|
-
supports_named_tensor: True
|
2796
2714
|
dispatch:
|
2797
2715
|
CPU: threshold_out
|
2798
2716
|
CUDA: threshold_out_cuda
|
@@ -2805,14 +2723,13 @@
|
|
2805
2723
|
CUDA: threshold_backward_cuda
|
2806
2724
|
|
2807
2725
|
- func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)
|
2726
|
+
use_c10_dispatcher: full
|
2808
2727
|
variants: function, method
|
2809
2728
|
device_guard: False
|
2810
|
-
supports_named_tensor: True
|
2811
2729
|
|
2812
2730
|
- func: transpose.Dimname(Tensor(a) self, Dimname dim0, Dimname dim1) -> Tensor(a)
|
2813
2731
|
variants: function, method
|
2814
2732
|
device_guard: False
|
2815
|
-
supports_named_tensor: True
|
2816
2733
|
|
2817
2734
|
- func: _mkldnn_transpose(Tensor self, int dim0, int dim1) -> Tensor
|
2818
2735
|
use_c10_dispatcher: full
|
@@ -2837,12 +2754,22 @@
|
|
2837
2754
|
variants: function
|
2838
2755
|
|
2839
2756
|
- func: flip(Tensor self, int[] dims) -> Tensor
|
2757
|
+
use_c10_dispatcher: full
|
2840
2758
|
variants: function, method
|
2841
2759
|
dispatch:
|
2842
2760
|
CPU: flip_cpu
|
2843
2761
|
CUDA: flip_cuda
|
2844
2762
|
|
2763
|
+
- func: fliplr(Tensor self) -> Tensor
|
2764
|
+
use_c10_dispatcher: full
|
2765
|
+
variants: function, method
|
2766
|
+
|
2767
|
+
- func: flipud(Tensor self) -> Tensor
|
2768
|
+
use_c10_dispatcher: full
|
2769
|
+
variants: function, method
|
2770
|
+
|
2845
2771
|
- func: roll(Tensor self, int[1] shifts, int[1] dims=[]) -> Tensor
|
2772
|
+
use_c10_dispatcher: full
|
2846
2773
|
variants: function, method
|
2847
2774
|
dispatch:
|
2848
2775
|
CPU: roll_cpu
|
@@ -2851,6 +2778,7 @@
|
|
2851
2778
|
# default int[] value [0,1] should not add space after comma, since native_parse.py uses ', ' to split args
|
2852
2779
|
|
2853
2780
|
- func: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor
|
2781
|
+
use_c10_dispatcher: full
|
2854
2782
|
variants: function, method
|
2855
2783
|
|
2856
2784
|
- func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
@@ -2860,6 +2788,7 @@
|
|
2860
2788
|
use_c10_dispatcher: full
|
2861
2789
|
|
2862
2790
|
- func: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor
|
2791
|
+
use_c10_dispatcher: full
|
2863
2792
|
|
2864
2793
|
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor
|
2865
2794
|
use_c10_dispatcher: full
|
@@ -2872,7 +2801,6 @@
|
|
2872
2801
|
CUDA: true_divide
|
2873
2802
|
SparseCPU: true_divide_sparse
|
2874
2803
|
SparseCUDA: true_divide_sparse
|
2875
|
-
supports_named_tensor: True
|
2876
2804
|
|
2877
2805
|
- func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
2878
2806
|
variants: method
|
@@ -2881,7 +2809,6 @@
|
|
2881
2809
|
CUDA: true_divide_
|
2882
2810
|
SparseCPU: true_divide_sparse_
|
2883
2811
|
SparseCUDA: true_divide_sparse_
|
2884
|
-
supports_named_tensor: True
|
2885
2812
|
|
2886
2813
|
- func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
2887
2814
|
dispatch:
|
@@ -2889,28 +2816,22 @@
|
|
2889
2816
|
CUDA: true_divide_out
|
2890
2817
|
SparseCPU: true_divide_out_sparse_zerodim
|
2891
2818
|
SparseCUDA: true_divide_out_sparse_zerodim
|
2892
|
-
supports_named_tensor: True
|
2893
2819
|
|
2894
2820
|
- func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
2895
2821
|
use_c10_dispatcher: full
|
2896
2822
|
variants: function, method
|
2897
|
-
supports_named_tensor: True
|
2898
2823
|
|
2899
2824
|
- func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
2900
2825
|
variants: method
|
2901
|
-
supports_named_tensor: True
|
2902
2826
|
|
2903
2827
|
- func: trunc(Tensor self) -> Tensor
|
2904
2828
|
use_c10_dispatcher: full
|
2905
|
-
supports_named_tensor: True
|
2906
2829
|
variants: function, method
|
2907
2830
|
|
2908
2831
|
- func: trunc_(Tensor(a!) self) -> Tensor(a!)
|
2909
|
-
supports_named_tensor: True
|
2910
2832
|
variants: function, method
|
2911
2833
|
|
2912
2834
|
- func: trunc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2913
|
-
supports_named_tensor: True
|
2914
2835
|
dispatch:
|
2915
2836
|
CPU: trunc_out
|
2916
2837
|
CUDA: trunc_out
|
@@ -2924,24 +2845,28 @@
|
|
2924
2845
|
variants: function
|
2925
2846
|
|
2926
2847
|
- func: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)
|
2848
|
+
use_c10_dispatcher: full
|
2927
2849
|
variants: function
|
2928
2850
|
dispatch:
|
2929
2851
|
CPU: _unique_cpu
|
2930
2852
|
CUDA: _unique_cuda
|
2931
2853
|
|
2932
2854
|
- func: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2855
|
+
use_c10_dispatcher: full
|
2933
2856
|
variants: function
|
2934
2857
|
dispatch:
|
2935
2858
|
CPU: unique_dim_cpu
|
2936
2859
|
CUDA: unique_dim_cuda
|
2937
2860
|
|
2938
2861
|
- func: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)
|
2862
|
+
use_c10_dispatcher: full
|
2939
2863
|
variants: function
|
2940
2864
|
dispatch:
|
2941
2865
|
CPU: unique_consecutive_cpu
|
2942
2866
|
CUDA: unique_consecutive_cuda
|
2943
2867
|
|
2944
2868
|
- func: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2869
|
+
use_c10_dispatcher: full
|
2945
2870
|
variants: function
|
2946
2871
|
dispatch:
|
2947
2872
|
CPU: unique_dim_consecutive_cpu
|
@@ -2952,14 +2877,17 @@
|
|
2952
2877
|
# Please don't rely on these two operators, they will be removed soon
|
2953
2878
|
|
2954
2879
|
- func: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2880
|
+
use_c10_dispatcher: full
|
2955
2881
|
variants: function
|
2956
2882
|
dispatch:
|
2957
2883
|
CPU: _unique2_cpu
|
2958
2884
|
CUDA: _unique2_cuda
|
2959
2885
|
|
2960
2886
|
- func: _unsafe_view(Tensor self, int[] size) -> Tensor
|
2887
|
+
use_c10_dispatcher: full
|
2961
2888
|
|
2962
2889
|
- func: unsqueeze(Tensor(a) self, int dim) -> Tensor(a)
|
2890
|
+
use_c10_dispatcher: full
|
2963
2891
|
variants: function, method
|
2964
2892
|
device_guard: False
|
2965
2893
|
|
@@ -2967,36 +2895,34 @@
|
|
2967
2895
|
variants: method
|
2968
2896
|
device_guard: False
|
2969
2897
|
|
2898
|
+
- func: vander(Tensor x, int? N=None, bool increasing=False) -> Tensor
|
2899
|
+
use_c10_dispatcher: full
|
2900
|
+
|
2970
2901
|
- func: var(Tensor self, bool unbiased=True) -> Tensor
|
2971
2902
|
use_c10_dispatcher: full
|
2972
2903
|
variants: function, method
|
2973
|
-
supports_named_tensor: True
|
2974
2904
|
|
2975
2905
|
- func: var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2906
|
+
use_c10_dispatcher: full
|
2976
2907
|
variants: function, method
|
2977
|
-
supports_named_tensor: True
|
2978
2908
|
|
2979
2909
|
- func: var.out(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
2980
|
-
supports_named_tensor: True
|
2981
2910
|
|
2982
2911
|
- func: var.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2983
2912
|
variants: function, method
|
2984
|
-
supports_named_tensor: True
|
2985
2913
|
|
2986
2914
|
- func: var.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
2987
|
-
supports_named_tensor: True
|
2988
2915
|
|
2989
2916
|
- func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2917
|
+
use_c10_dispatcher: full
|
2990
2918
|
variants: function
|
2991
|
-
supports_named_tensor: True
|
2992
2919
|
|
2993
2920
|
- func: var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2921
|
+
use_c10_dispatcher: full
|
2994
2922
|
variants: function
|
2995
|
-
supports_named_tensor: True
|
2996
2923
|
|
2997
2924
|
- func: var_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2998
2925
|
variants: function
|
2999
|
-
supports_named_tensor: True
|
3000
2926
|
|
3001
2927
|
- func: view_as(Tensor self, Tensor other) -> Tensor
|
3002
2928
|
use_c10_dispatcher: full
|
@@ -3011,6 +2937,7 @@
|
|
3011
2937
|
variants: function, method
|
3012
2938
|
|
3013
2939
|
- func: where(Tensor condition) -> Tensor[]
|
2940
|
+
use_c10_dispatcher: full
|
3014
2941
|
variants: function
|
3015
2942
|
|
3016
2943
|
- func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor
|
@@ -3018,6 +2945,7 @@
|
|
3018
2945
|
variants: function
|
3019
2946
|
|
3020
2947
|
- func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor
|
2948
|
+
use_c10_dispatcher: full
|
3021
2949
|
variants: function
|
3022
2950
|
|
3023
2951
|
# VariableType::_weight_norm does not want to be given a gap in the autograd graph,
|
@@ -3027,16 +2955,19 @@
|
|
3027
2955
|
variants: function
|
3028
2956
|
|
3029
2957
|
- func: _weight_norm_cuda_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)
|
2958
|
+
use_c10_dispatcher: full
|
3030
2959
|
variants: function
|
3031
2960
|
dispatch:
|
3032
2961
|
CUDA: weight_norm_cuda
|
3033
2962
|
|
3034
2963
|
- func: _weight_norm_cuda_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2964
|
+
use_c10_dispatcher: full
|
3035
2965
|
variants: function
|
3036
2966
|
dispatch:
|
3037
2967
|
CUDA: weight_norm_cuda_backward
|
3038
2968
|
|
3039
2969
|
- func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2970
|
+
use_c10_dispatcher: full
|
3040
2971
|
variants: function
|
3041
2972
|
|
3042
2973
|
- func: zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -3047,7 +2978,6 @@
|
|
3047
2978
|
- func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
3048
2979
|
|
3049
2980
|
- func: zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
3050
|
-
supports_named_tensor: True
|
3051
2981
|
|
3052
2982
|
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
|
3053
2983
|
use_c10_dispatcher: full
|
@@ -3079,6 +3009,11 @@
|
|
3079
3009
|
CPU: _s_poisson_cpu
|
3080
3010
|
CUDA: _s_poisson_cuda
|
3081
3011
|
|
3012
|
+
- func: binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor
|
3013
|
+
dispatch:
|
3014
|
+
CPU: _s_binomial_cpu
|
3015
|
+
CUDA: _s_binomial_cuda
|
3016
|
+
|
3082
3017
|
# When more variants get ported to native, this dispatch will get more
|
3083
3018
|
# complicated
|
3084
3019
|
|
@@ -3095,14 +3030,46 @@
|
|
3095
3030
|
- func: _sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor
|
3096
3031
|
|
3097
3032
|
- func: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor
|
3033
|
+
use_c10_dispatcher: full
|
3098
3034
|
|
3099
3035
|
- func: _sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor
|
3100
3036
|
|
3101
3037
|
- func: _sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
|
3038
|
+
use_c10_dispatcher: full
|
3102
3039
|
dispatch:
|
3103
3040
|
SparseCPU: _sparse_sum_backward_cpu
|
3104
3041
|
SparseCUDA: _sparse_sum_backward_cuda
|
3105
3042
|
|
3043
|
+
- func: _sparse_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
3044
|
+
variants: function
|
3045
|
+
|
3046
|
+
- func: _sparse_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
3047
|
+
variants: function
|
3048
|
+
|
3049
|
+
- func: _sparse_softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
3050
|
+
use_c10_dispatcher: full
|
3051
|
+
dispatch:
|
3052
|
+
SparseCPU: softmax_sparse_cpu
|
3053
|
+
|
3054
|
+
- func: _sparse_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor
|
3055
|
+
dispatch:
|
3056
|
+
SparseCPU: softmax_backward_sparse_cpu
|
3057
|
+
|
3058
|
+
- func: _sparse_log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
3059
|
+
variants: function
|
3060
|
+
|
3061
|
+
- func: _sparse_log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
3062
|
+
variants: function
|
3063
|
+
|
3064
|
+
- func: _sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
3065
|
+
use_c10_dispatcher: full
|
3066
|
+
dispatch:
|
3067
|
+
SparseCPU: log_softmax_sparse_cpu
|
3068
|
+
|
3069
|
+
- func: _sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor
|
3070
|
+
dispatch:
|
3071
|
+
SparseCPU: log_softmax_backward_sparse_cpu
|
3072
|
+
|
3106
3073
|
- func: norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor
|
3107
3074
|
variants: function, method
|
3108
3075
|
|
@@ -3114,6 +3081,7 @@
|
|
3114
3081
|
variants: function, method
|
3115
3082
|
|
3116
3083
|
- func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor
|
3084
|
+
use_c10_dispatcher: full
|
3117
3085
|
variants: function, method
|
3118
3086
|
|
3119
3087
|
- func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
|
@@ -3135,6 +3103,7 @@
|
|
3135
3103
|
variants: function
|
3136
3104
|
|
3137
3105
|
- func: frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
3106
|
+
use_c10_dispatcher: full
|
3138
3107
|
variants: function
|
3139
3108
|
|
3140
3109
|
- func: frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -3148,6 +3117,7 @@
|
|
3148
3117
|
variants: function
|
3149
3118
|
|
3150
3119
|
- func: nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor
|
3120
|
+
use_c10_dispatcher: full
|
3151
3121
|
variants: function
|
3152
3122
|
|
3153
3123
|
- func: nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -3162,15 +3132,13 @@
|
|
3162
3132
|
SparseCUDA: clone_sparse
|
3163
3133
|
MkldnnCPU: mkldnn_clone
|
3164
3134
|
QuantizedCPU: quantized_clone
|
3165
|
-
|
3135
|
+
QuantizedCUDA: quantized_clone
|
3166
3136
|
|
3167
3137
|
- func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
3168
3138
|
manual_kernel_registration: True
|
3169
|
-
supports_named_tensor: True
|
3170
3139
|
variants: function, method
|
3171
3140
|
|
3172
3141
|
- func: pow.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!)
|
3173
|
-
supports_named_tensor: True
|
3174
3142
|
dispatch:
|
3175
3143
|
CPU: pow_out
|
3176
3144
|
CUDA: pow_out
|
@@ -3180,7 +3148,6 @@
|
|
3180
3148
|
- func: pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor
|
3181
3149
|
use_c10_dispatcher: full
|
3182
3150
|
variants: function, method
|
3183
|
-
supports_named_tensor: True
|
3184
3151
|
dispatch:
|
3185
3152
|
CPU: pow
|
3186
3153
|
CUDA: pow
|
@@ -3188,7 +3155,6 @@
|
|
3188
3155
|
SparseCUDA: pow_sparse_scalar
|
3189
3156
|
|
3190
3157
|
- func: zero_(Tensor(a!) self) -> Tensor(a!)
|
3191
|
-
supports_named_tensor: True
|
3192
3158
|
variants: method, function
|
3193
3159
|
dispatch:
|
3194
3160
|
CPU: zero_
|
@@ -3203,7 +3169,6 @@
|
|
3203
3169
|
CUDA: sub_out
|
3204
3170
|
SparseCPU: sub_out_sparse
|
3205
3171
|
SparseCUDA: sub_out_sparse
|
3206
|
-
supports_named_tensor: True
|
3207
3172
|
|
3208
3173
|
- func: sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
3209
3174
|
use_c10_dispatcher: full
|
@@ -3213,7 +3178,6 @@
|
|
3213
3178
|
CUDA: sub
|
3214
3179
|
SparseCPU: sub_sparse
|
3215
3180
|
SparseCUDA: sub_sparse
|
3216
|
-
supports_named_tensor: True
|
3217
3181
|
|
3218
3182
|
- func: sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
3219
3183
|
variants: method
|
@@ -3222,64 +3186,55 @@
|
|
3222
3186
|
CUDA: sub_
|
3223
3187
|
SparseCPU: sub_sparse_
|
3224
3188
|
SparseCUDA: sub_sparse_
|
3225
|
-
supports_named_tensor: True
|
3226
3189
|
|
3227
3190
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
3228
3191
|
- func: sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
|
3229
3192
|
use_c10_dispatcher: full
|
3230
3193
|
variants: function, method
|
3231
|
-
supports_named_tensor: True
|
3232
3194
|
|
3233
3195
|
- func: sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
3234
3196
|
variants: method
|
3235
|
-
supports_named_tensor: True
|
3236
3197
|
|
3237
3198
|
- func: rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
3238
3199
|
use_c10_dispatcher: full
|
3239
3200
|
variants: function
|
3240
|
-
supports_named_tensor: True
|
3241
3201
|
|
3242
3202
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
3243
3203
|
- func: rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
|
3244
3204
|
use_c10_dispatcher: full
|
3245
3205
|
variants: function
|
3246
|
-
supports_named_tensor: True
|
3247
3206
|
|
3248
3207
|
# Functionally the same as addmm, but we give it a different derivative formula
|
3249
3208
|
# that doesn't propagate gradients to non-present entries on sparse.
|
3250
3209
|
- func: _sparse_addmm(Tensor self, Tensor sparse, Tensor dense, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
3251
3210
|
use_c10_dispatcher: full
|
3252
|
-
named_guard: False
|
3253
3211
|
|
3254
3212
|
- func: addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
3255
3213
|
dispatch:
|
3256
|
-
CPU:
|
3257
|
-
CUDA:
|
3214
|
+
CPU: addmm_cpu_out
|
3215
|
+
CUDA: addmm_out_cuda
|
3258
3216
|
SparseCPU: addmm_out_sparse_dense_cpu
|
3259
3217
|
SparseCUDA: addmm_out_sparse_dense_cuda
|
3260
|
-
supports_named_tensor: True
|
3261
3218
|
|
3262
3219
|
- func: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
3263
3220
|
use_c10_dispatcher: full
|
3264
3221
|
variants: function, method
|
3265
3222
|
dispatch:
|
3266
|
-
CPU:
|
3267
|
-
CUDA:
|
3223
|
+
CPU: addmm_cpu
|
3224
|
+
CUDA: addmm_cuda
|
3268
3225
|
SparseCPU: addmm_sparse_dense_cpu
|
3269
3226
|
SparseCUDA: addmm_sparse_dense_cuda
|
3270
|
-
|
3227
|
+
Vulkan: vulkan_addmm
|
3271
3228
|
|
3272
3229
|
- func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
3273
3230
|
variants: method
|
3274
3231
|
dispatch:
|
3275
3232
|
CPU: legacy::cpu::_th_addmm_
|
3276
|
-
CUDA:
|
3233
|
+
CUDA: addmm__cuda
|
3277
3234
|
# Warning! For whatever reason, the inplace sparse addmm is NON
|
3278
3235
|
# broadcasting
|
3279
3236
|
SparseCPU: s_addmm_sparse_dense_cpu_
|
3280
3237
|
SparseCUDA: s_addmm_sparse_dense_cuda_
|
3281
|
-
supports_named_tensor: True
|
3282
|
-
|
3283
3238
|
|
3284
3239
|
# NOTE [ Sparse: autograd and API ]
|
3285
3240
|
#
|
@@ -3396,7 +3351,6 @@
|
|
3396
3351
|
# shared. In other words, their outputs are non-differentiable views of the
|
3397
3352
|
# sparse tensor.
|
3398
3353
|
|
3399
|
-
|
3400
3354
|
# FIXME: would be nicer if TensorOptions was optional based; not adding default arguments for options given
|
3401
3355
|
# the default would never make sense.
|
3402
3356
|
- func: sparse_coo_tensor.size(int[] size, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
@@ -3433,7 +3387,6 @@
|
|
3433
3387
|
SparseCUDA: sparse_resize_and_clear_
|
3434
3388
|
requires_tensor: True
|
3435
3389
|
|
3436
|
-
|
3437
3390
|
- func: sparse_mask(Tensor self, Tensor mask) -> Tensor
|
3438
3391
|
use_c10_dispatcher: full
|
3439
3392
|
variants: method
|
@@ -3442,7 +3395,6 @@
|
|
3442
3395
|
SparseCUDA: sparse_mask_cuda
|
3443
3396
|
requires_tensor: True
|
3444
3397
|
|
3445
|
-
|
3446
3398
|
- func: to_dense(Tensor self) -> Tensor
|
3447
3399
|
use_c10_dispatcher: full
|
3448
3400
|
variants: method
|
@@ -3474,7 +3426,6 @@
|
|
3474
3426
|
requires_tensor: True
|
3475
3427
|
device_guard: False
|
3476
3428
|
|
3477
|
-
|
3478
3429
|
- func: dense_dim(Tensor self) -> int
|
3479
3430
|
use_c10_dispatcher: full
|
3480
3431
|
variants: method
|
@@ -3494,7 +3445,6 @@
|
|
3494
3445
|
requires_tensor: True
|
3495
3446
|
device_guard: False
|
3496
3447
|
|
3497
|
-
|
3498
3448
|
- func: _nnz(Tensor self) -> int
|
3499
3449
|
use_c10_dispatcher: full
|
3500
3450
|
variants: method
|
@@ -3504,7 +3454,6 @@
|
|
3504
3454
|
requires_tensor: True
|
3505
3455
|
device_guard: False
|
3506
3456
|
|
3507
|
-
|
3508
3457
|
- func: coalesce(Tensor self) -> Tensor
|
3509
3458
|
use_c10_dispatcher: full
|
3510
3459
|
variants: method
|
@@ -3513,7 +3462,6 @@
|
|
3513
3462
|
SparseCUDA: coalesce_sparse_cuda
|
3514
3463
|
requires_tensor: True
|
3515
3464
|
|
3516
|
-
|
3517
3465
|
- func: is_coalesced(Tensor self) -> bool
|
3518
3466
|
use_c10_dispatcher: full
|
3519
3467
|
variants: method
|
@@ -3522,10 +3470,9 @@
|
|
3522
3470
|
SparseCUDA: is_coalesced_sparse
|
3523
3471
|
requires_tensor: True
|
3524
3472
|
device_guard: False
|
3525
|
-
supports_named_tensor: True
|
3526
|
-
|
3527
3473
|
|
3528
3474
|
- func: _indices(Tensor(a) self) -> Tensor(a)
|
3475
|
+
use_c10_dispatcher: full
|
3529
3476
|
variants: method
|
3530
3477
|
dispatch:
|
3531
3478
|
SparseCPU: _indices_sparse
|
@@ -3534,6 +3481,7 @@
|
|
3534
3481
|
device_guard: False
|
3535
3482
|
|
3536
3483
|
- func: _values(Tensor(a) self) -> Tensor(a)
|
3484
|
+
use_c10_dispatcher: full
|
3537
3485
|
variants: method
|
3538
3486
|
dispatch:
|
3539
3487
|
SparseCPU: _values_sparse
|
@@ -3553,6 +3501,7 @@
|
|
3553
3501
|
device_guard: False
|
3554
3502
|
|
3555
3503
|
- func: indices(Tensor(a) self) -> Tensor(a)
|
3504
|
+
use_c10_dispatcher: full
|
3556
3505
|
variants: method
|
3557
3506
|
dispatch:
|
3558
3507
|
SparseCPU: indices_sparse
|
@@ -3561,6 +3510,7 @@
|
|
3561
3510
|
device_guard: False
|
3562
3511
|
|
3563
3512
|
- func: values(Tensor(a) self) -> Tensor(a)
|
3513
|
+
use_c10_dispatcher: full
|
3564
3514
|
variants: method
|
3565
3515
|
dispatch:
|
3566
3516
|
SparseCPU: values_sparse
|
@@ -3568,7 +3518,6 @@
|
|
3568
3518
|
requires_tensor: True
|
3569
3519
|
device_guard: False
|
3570
3520
|
|
3571
|
-
|
3572
3521
|
- func: hspmm.out(Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
3573
3522
|
dispatch:
|
3574
3523
|
SparseCPU: hspmm_out_sparse_cpu
|
@@ -3590,12 +3539,11 @@
|
|
3590
3539
|
requires_tensor: True
|
3591
3540
|
|
3592
3541
|
- func: unbind.int(Tensor(a) self, int dim=0) -> Tensor(a)[]
|
3542
|
+
use_c10_dispatcher: full
|
3593
3543
|
variants: function, method
|
3594
|
-
supports_named_tensor: True
|
3595
3544
|
|
3596
3545
|
- func: unbind.Dimname(Tensor(a) self, Dimname dim) -> Tensor(a)[]
|
3597
3546
|
variants: function, method
|
3598
|
-
supports_named_tensor: True
|
3599
3547
|
|
3600
3548
|
- func: to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor
|
3601
3549
|
use_c10_dispatcher: full
|
@@ -3618,6 +3566,7 @@
|
|
3618
3566
|
CPU: dense_to_mkldnn
|
3619
3567
|
|
3620
3568
|
- func: mkldnn_reorder_conv2d_weight(Tensor self, int[2] padding=0, int[2] stride=1, int[2] dilation=1, int groups=1) -> Tensor
|
3569
|
+
use_c10_dispatcher: full
|
3621
3570
|
variants: function
|
3622
3571
|
python_module: nn
|
3623
3572
|
dispatch:
|
@@ -3629,42 +3578,60 @@
|
|
3629
3578
|
- func: quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor
|
3630
3579
|
variants: function
|
3631
3580
|
dispatch:
|
3632
|
-
CPU:
|
3581
|
+
CPU: quantize_per_tensor
|
3582
|
+
CUDA: quantize_per_tensor
|
3583
|
+
|
3584
|
+
- func: quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype) -> Tensor[]
|
3585
|
+
variants: function
|
3586
|
+
dispatch:
|
3587
|
+
CPU: quantize_per_tensor_list_cpu
|
3633
3588
|
|
3634
3589
|
- func: quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype) -> Tensor
|
3635
3590
|
variants: function
|
3636
3591
|
dispatch:
|
3637
3592
|
CPU: quantize_per_channel_cpu
|
3638
3593
|
|
3639
|
-
- func: dequantize(Tensor self) -> Tensor
|
3594
|
+
- func: dequantize.self(Tensor self) -> Tensor
|
3640
3595
|
use_c10_dispatcher: full
|
3641
3596
|
variants: function, method
|
3642
3597
|
dispatch:
|
3643
|
-
QuantizedCPU: dequantize_quant
|
3598
|
+
QuantizedCPU: dequantize_quant
|
3599
|
+
QuantizedCUDA: dequantize_quant
|
3600
|
+
|
3601
|
+
- func: dequantize.tensors(Tensor[] tensors) -> Tensor[]
|
3602
|
+
use_c10_dispatcher: full
|
3603
|
+
variants: function
|
3604
|
+
dispatch:
|
3605
|
+
QuantizedCPU: dequantize_tensors_quant
|
3644
3606
|
|
3645
3607
|
- func: q_scale(Tensor self) -> float
|
3646
3608
|
use_c10_dispatcher: full
|
3647
3609
|
variants: function, method
|
3648
3610
|
dispatch:
|
3649
3611
|
QuantizedCPU: q_scale_quant
|
3612
|
+
QuantizedCUDA: q_scale_quant
|
3650
3613
|
|
3651
3614
|
- func: q_zero_point(Tensor self) -> int
|
3652
3615
|
use_c10_dispatcher: full
|
3653
3616
|
variants: function, method
|
3654
3617
|
dispatch:
|
3655
3618
|
QuantizedCPU: q_zero_point_quant
|
3619
|
+
QuantizedCUDA: q_zero_point_quant
|
3656
3620
|
|
3657
3621
|
- func: q_per_channel_scales(Tensor self) -> Tensor
|
3622
|
+
use_c10_dispatcher: full
|
3658
3623
|
variants: function, method
|
3659
3624
|
dispatch:
|
3660
3625
|
QuantizedCPU: q_per_channel_scales_quant
|
3661
3626
|
|
3662
3627
|
- func: q_per_channel_zero_points(Tensor self) -> Tensor
|
3628
|
+
use_c10_dispatcher: full
|
3663
3629
|
variants: function, method
|
3664
3630
|
dispatch:
|
3665
3631
|
QuantizedCPU: q_per_channel_zero_points_quant
|
3666
3632
|
|
3667
3633
|
- func: q_per_channel_axis(Tensor self) -> int
|
3634
|
+
use_c10_dispatcher: full
|
3668
3635
|
variants: function, method
|
3669
3636
|
dispatch:
|
3670
3637
|
QuantizedCPU: q_per_channel_axis_quant
|
@@ -3673,14 +3640,17 @@
|
|
3673
3640
|
use_c10_dispatcher: full
|
3674
3641
|
variants: function, method
|
3675
3642
|
dispatch:
|
3676
|
-
QuantizedCPU:
|
3643
|
+
QuantizedCPU: int_repr_quant_cpu
|
3644
|
+
QuantizedCUDA: int_repr_quant_cuda
|
3677
3645
|
|
3678
3646
|
- func: _make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor
|
3679
3647
|
use_c10_dispatcher: full
|
3680
3648
|
dispatch:
|
3681
3649
|
CPU: make_per_tensor_quantized_tensor_cpu
|
3650
|
+
CUDA: make_per_tensor_quantized_tensor_cuda
|
3682
3651
|
|
3683
3652
|
- func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor
|
3653
|
+
use_c10_dispatcher: full
|
3684
3654
|
dispatch:
|
3685
3655
|
CPU: make_per_channel_quantized_tensor_cpu
|
3686
3656
|
|
@@ -3689,6 +3659,7 @@
|
|
3689
3659
|
variants: method
|
3690
3660
|
dispatch:
|
3691
3661
|
QuantizedCPU: qscheme_quant
|
3662
|
+
QuantizedCUDA: qscheme_quant
|
3692
3663
|
|
3693
3664
|
- func: fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor
|
3694
3665
|
use_c10_dispatcher: full
|
@@ -3706,31 +3677,34 @@
|
|
3706
3677
|
use_c10_dispatcher: full
|
3707
3678
|
variants: function
|
3708
3679
|
|
3680
|
+
- func: _choose_qparams_per_tensor(Tensor self, bool reduce_range=False) -> (float, int)
|
3681
|
+
use_c10_dispatcher: full
|
3682
|
+
variants: function
|
3683
|
+
|
3709
3684
|
# to(Device) must not exist because all constructors of Device also works for
|
3710
3685
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
3711
3686
|
# See NOTE [ TensorOptions Constructors ].
|
3712
3687
|
- func: to.dtype_layout(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3713
3688
|
variants: method
|
3714
3689
|
device_guard: False
|
3715
|
-
supports_named_tensor: True
|
3716
3690
|
|
3717
3691
|
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3718
3692
|
variants: method
|
3719
3693
|
device_guard: False
|
3720
|
-
supports_named_tensor: True
|
3721
3694
|
|
3722
3695
|
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3723
3696
|
variants: method
|
3724
3697
|
device_guard: False
|
3725
|
-
supports_named_tensor: True
|
3726
3698
|
|
3727
3699
|
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3728
3700
|
variants: method
|
3729
3701
|
device_guard: False
|
3730
3702
|
|
3731
3703
|
- func: meshgrid(Tensor[] tensors) -> Tensor[]
|
3704
|
+
use_c10_dispatcher: full
|
3732
3705
|
|
3733
3706
|
- func: cartesian_prod(Tensor[] tensors) -> Tensor
|
3707
|
+
use_c10_dispatcher: full
|
3734
3708
|
variants: function
|
3735
3709
|
|
3736
3710
|
- func: combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor
|
@@ -3740,7 +3714,6 @@
|
|
3740
3714
|
- func: item(Tensor self) -> Scalar
|
3741
3715
|
use_c10_dispatcher: full
|
3742
3716
|
variants: method
|
3743
|
-
supports_named_tensor: True
|
3744
3717
|
|
3745
3718
|
- func: result_type.Tensor(Tensor tensor, Tensor other) -> ScalarType
|
3746
3719
|
variants: function
|
@@ -3766,7 +3739,6 @@
|
|
3766
3739
|
CPU: _local_scalar_dense_cpu
|
3767
3740
|
CUDA: _local_scalar_dense_cuda
|
3768
3741
|
variants: function
|
3769
|
-
supports_named_tensor: True
|
3770
3742
|
|
3771
3743
|
# Fused RNN kernels
|
3772
3744
|
- func: _thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor)
|
@@ -3784,6 +3756,7 @@
|
|
3784
3756
|
CUDA: _thnn_fused_gru_cell_cuda
|
3785
3757
|
|
3786
3758
|
- func: _thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
3759
|
+
use_c10_dispatcher: full
|
3787
3760
|
dispatch:
|
3788
3761
|
CUDA: _thnn_fused_gru_cell_backward_cuda
|
3789
3762
|
|
@@ -3791,20 +3764,28 @@
|
|
3791
3764
|
|
3792
3765
|
# RNN cells and layers
|
3793
3766
|
- func: lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor)
|
3767
|
+
use_c10_dispatcher: full
|
3794
3768
|
|
3795
3769
|
- func: lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)
|
3770
|
+
use_c10_dispatcher: full
|
3796
3771
|
|
3797
3772
|
- func: gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3773
|
+
use_c10_dispatcher: full
|
3798
3774
|
|
3799
3775
|
- func: gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3776
|
+
use_c10_dispatcher: full
|
3800
3777
|
|
3801
3778
|
- func: rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3779
|
+
use_c10_dispatcher: full
|
3802
3780
|
|
3803
3781
|
- func: rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3782
|
+
use_c10_dispatcher: full
|
3804
3783
|
|
3805
3784
|
- func: rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3785
|
+
use_c10_dispatcher: full
|
3806
3786
|
|
3807
3787
|
- func: rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3788
|
+
use_c10_dispatcher: full
|
3808
3789
|
|
3809
3790
|
- func: lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)
|
3810
3791
|
|
@@ -3814,19 +3795,24 @@
|
|
3814
3795
|
|
3815
3796
|
- func: rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor
|
3816
3797
|
|
3798
|
+
# Quantized RNN layer registration has been moved to C10 dispatch in `RNN.cpp`
|
3799
|
+
|
3817
3800
|
# Quantized RNN layers
|
3818
|
-
- func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3801
|
+
# - func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3819
3802
|
|
3820
|
-
- func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3803
|
+
# - func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3821
3804
|
|
3822
3805
|
# Quantized GRU layers
|
3823
3806
|
|
3824
|
-
- func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3807
|
+
# - func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3808
|
+
# use_c10_dispatcher: full
|
3825
3809
|
|
3826
|
-
- func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3810
|
+
# - func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3811
|
+
# use_c10_dispatcher: full
|
3827
3812
|
|
3828
3813
|
# Quantized RNN cells
|
3829
3814
|
- func: quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)
|
3815
|
+
use_c10_dispatcher: full
|
3830
3816
|
|
3831
3817
|
- func: quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor
|
3832
3818
|
use_c10_dispatcher: full
|
@@ -3839,10 +3825,13 @@
|
|
3839
3825
|
|
3840
3826
|
# PackedSequence utilities
|
3841
3827
|
- func: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)
|
3828
|
+
use_c10_dispatcher: full
|
3842
3829
|
|
3843
3830
|
- func: _pack_padded_sequence_backward(Tensor grad, int[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor
|
3831
|
+
use_c10_dispatcher: full
|
3844
3832
|
|
3845
3833
|
- func: _pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)
|
3834
|
+
use_c10_dispatcher: full
|
3846
3835
|
|
3847
3836
|
# wrappers for legacy TH methods
|
3848
3837
|
|
@@ -3857,9 +3846,10 @@
|
|
3857
3846
|
variants: method
|
3858
3847
|
device_guard: False
|
3859
3848
|
dispatch:
|
3860
|
-
CPU:
|
3861
|
-
CUDA:
|
3862
|
-
QuantizedCPU:
|
3849
|
+
CPU: set_storage_cpu_
|
3850
|
+
CUDA: set_storage_cuda_
|
3851
|
+
QuantizedCPU: set_storage_quantized_
|
3852
|
+
QuantizedCUDA: set_storage_quantized_
|
3863
3853
|
|
3864
3854
|
- func: set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!)
|
3865
3855
|
variants: method
|
@@ -3878,6 +3868,7 @@
|
|
3878
3868
|
variants: method
|
3879
3869
|
dispatch:
|
3880
3870
|
QuantizedCPU: set_quantizer_
|
3871
|
+
QuantizedCUDA: set_quantizer_
|
3881
3872
|
|
3882
3873
|
- func: is_set_to(Tensor self, Tensor tensor) -> bool
|
3883
3874
|
use_c10_dispatcher: full
|
@@ -3892,24 +3883,20 @@
|
|
3892
3883
|
dispatch:
|
3893
3884
|
CPU: masked_fill__cpu
|
3894
3885
|
CUDA: masked_fill__cuda
|
3895
|
-
supports_named_tensor: True
|
3896
3886
|
|
3897
3887
|
- func: masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> Tensor
|
3898
3888
|
use_c10_dispatcher: full
|
3899
3889
|
variants: function, method
|
3900
|
-
supports_named_tensor: True
|
3901
3890
|
|
3902
3891
|
- func: masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!)
|
3903
3892
|
variants: method
|
3904
3893
|
dispatch:
|
3905
3894
|
CPU: masked_fill__cpu
|
3906
3895
|
CUDA: masked_fill__cuda
|
3907
|
-
supports_named_tensor: True
|
3908
3896
|
|
3909
3897
|
- func: masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> Tensor
|
3910
3898
|
use_c10_dispatcher: full
|
3911
3899
|
variants: function, method
|
3912
|
-
supports_named_tensor: True
|
3913
3900
|
|
3914
3901
|
- func: masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!)
|
3915
3902
|
variants: method
|
@@ -3922,6 +3909,7 @@
|
|
3922
3909
|
variants: function, method
|
3923
3910
|
|
3924
3911
|
- func: view(Tensor(a) self, int[] size) -> Tensor(a)
|
3912
|
+
use_c10_dispatcher: full
|
3925
3913
|
variants: method
|
3926
3914
|
device_guard: False
|
3927
3915
|
dispatch:
|
@@ -3929,6 +3917,7 @@
|
|
3929
3917
|
CUDA: view
|
3930
3918
|
MkldnnCPU: mkldnn_view
|
3931
3919
|
QuantizedCPU: view
|
3920
|
+
QuantizedCUDA: view
|
3932
3921
|
|
3933
3922
|
- func: put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!)
|
3934
3923
|
variants: method
|
@@ -3951,14 +3940,12 @@
|
|
3951
3940
|
|
3952
3941
|
- func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
3953
3942
|
variants: method
|
3954
|
-
supports_named_tensor: True
|
3955
3943
|
dispatch:
|
3956
3944
|
CPU: legacy::cpu::_th_index_fill_
|
3957
3945
|
CUDA: legacy::cuda::_th_index_fill_
|
3958
3946
|
|
3959
3947
|
- func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
3960
3948
|
use_c10_dispatcher: full
|
3961
|
-
supports_named_tensor: True
|
3962
3949
|
variants: function, method
|
3963
3950
|
|
3964
3951
|
- func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!)
|
@@ -3966,34 +3953,28 @@
|
|
3966
3953
|
dispatch:
|
3967
3954
|
CPU: index_fill_
|
3968
3955
|
CUDA: index_fill_
|
3969
|
-
supports_named_tensor: True
|
3970
3956
|
|
3971
3957
|
- func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor
|
3972
3958
|
use_c10_dispatcher: full
|
3973
3959
|
variants: function, method
|
3974
|
-
supports_named_tensor: True
|
3975
3960
|
|
3976
3961
|
- func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!)
|
3977
3962
|
variants: method
|
3978
|
-
supports_named_tensor: True
|
3979
3963
|
|
3980
3964
|
- func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!)
|
3981
3965
|
variants: method
|
3982
|
-
supports_named_tensor: True
|
3983
3966
|
|
3984
3967
|
- func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor
|
3985
3968
|
variants: function, method
|
3986
|
-
supports_named_tensor: True
|
3987
3969
|
|
3988
3970
|
- func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor
|
3989
3971
|
variants: function, method
|
3990
|
-
supports_named_tensor: True
|
3991
3972
|
|
3992
3973
|
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
3993
3974
|
variants: method
|
3994
3975
|
dispatch:
|
3995
|
-
CPU:
|
3996
|
-
CUDA:
|
3976
|
+
CPU: scatter_
|
3977
|
+
CUDA: scatter_
|
3997
3978
|
|
3998
3979
|
- func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
3999
3980
|
use_c10_dispatcher: full
|
@@ -4002,8 +3983,8 @@
|
|
4002
3983
|
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
4003
3984
|
variants: method
|
4004
3985
|
dispatch:
|
4005
|
-
CPU:
|
4006
|
-
CUDA:
|
3986
|
+
CPU: scatter_fill_
|
3987
|
+
CUDA: scatter_fill_
|
4007
3988
|
|
4008
3989
|
- func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
4009
3990
|
use_c10_dispatcher: full
|
@@ -4018,8 +3999,8 @@
|
|
4018
3999
|
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
4019
4000
|
variants: method
|
4020
4001
|
dispatch:
|
4021
|
-
CPU:
|
4022
|
-
CUDA:
|
4002
|
+
CPU: scatter_add_
|
4003
|
+
CUDA: scatter_add_
|
4023
4004
|
|
4024
4005
|
- func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
4025
4006
|
use_c10_dispatcher: full
|
@@ -4077,9 +4058,11 @@
|
|
4077
4058
|
CUDA: bitwise_and_out
|
4078
4059
|
|
4079
4060
|
- func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor
|
4061
|
+
use_c10_dispatcher: full
|
4080
4062
|
variants: method, function
|
4081
4063
|
|
4082
4064
|
- func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor
|
4065
|
+
use_c10_dispatcher: full
|
4083
4066
|
variants: method, function
|
4084
4067
|
|
4085
4068
|
- func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
@@ -4115,9 +4098,11 @@
|
|
4115
4098
|
CUDA: bitwise_or_out
|
4116
4099
|
|
4117
4100
|
- func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor
|
4101
|
+
use_c10_dispatcher: full
|
4118
4102
|
variants: method, function
|
4119
4103
|
|
4120
4104
|
- func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor
|
4105
|
+
use_c10_dispatcher: full
|
4121
4106
|
variants: method, function
|
4122
4107
|
|
4123
4108
|
- func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
@@ -4153,9 +4138,11 @@
|
|
4153
4138
|
CUDA: bitwise_xor_out
|
4154
4139
|
|
4155
4140
|
- func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor
|
4141
|
+
use_c10_dispatcher: full
|
4156
4142
|
variants: method, function
|
4157
4143
|
|
4158
4144
|
- func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor
|
4145
|
+
use_c10_dispatcher: full
|
4159
4146
|
variants: method, function
|
4160
4147
|
|
4161
4148
|
- func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
@@ -4231,14 +4218,12 @@
|
|
4231
4218
|
CUDA: __irshift__
|
4232
4219
|
|
4233
4220
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
4234
|
-
supports_named_tensor: True
|
4235
4221
|
variants: method
|
4236
4222
|
dispatch:
|
4237
4223
|
CPU: _lgamma__cpu
|
4238
4224
|
CUDA: _lgamma__cuda
|
4239
4225
|
|
4240
4226
|
- func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4241
|
-
supports_named_tensor: True
|
4242
4227
|
variants: method
|
4243
4228
|
|
4244
4229
|
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
@@ -4254,11 +4239,9 @@
|
|
4254
4239
|
CUDA: triu_cuda_
|
4255
4240
|
|
4256
4241
|
- func: digamma_(Tensor(a!) self) -> Tensor(a!)
|
4257
|
-
supports_named_tensor: True
|
4258
4242
|
variants: method
|
4259
4243
|
|
4260
4244
|
- func: polygamma_(Tensor(a!) self, int n) -> Tensor(a!)
|
4261
|
-
supports_named_tensor: True
|
4262
4245
|
variants: method
|
4263
4246
|
|
4264
4247
|
- func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!)
|
@@ -4268,14 +4251,12 @@
|
|
4268
4251
|
CUDA: legacy::cuda::_th_renorm_
|
4269
4252
|
|
4270
4253
|
- func: pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)
|
4271
|
-
supports_named_tensor: True
|
4272
4254
|
variants: method
|
4273
4255
|
dispatch:
|
4274
4256
|
CPU: pow_
|
4275
4257
|
CUDA: pow_
|
4276
4258
|
|
4277
4259
|
- func: pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)
|
4278
|
-
supports_named_tensor: True
|
4279
4260
|
variants: method
|
4280
4261
|
dispatch:
|
4281
4262
|
CPU: pow_
|
@@ -4297,13 +4278,13 @@
|
|
4297
4278
|
variants: method
|
4298
4279
|
dispatch:
|
4299
4280
|
CPU: fmod_
|
4300
|
-
CUDA:
|
4281
|
+
CUDA: fmod_cuda_
|
4301
4282
|
|
4302
4283
|
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4303
4284
|
variants: method
|
4304
4285
|
dispatch:
|
4305
4286
|
CPU: fmod_
|
4306
|
-
CUDA:
|
4287
|
+
CUDA: fmod_cuda_
|
4307
4288
|
|
4308
4289
|
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4309
4290
|
variants: method
|
@@ -4321,72 +4302,57 @@
|
|
4321
4302
|
variants: method
|
4322
4303
|
dispatch:
|
4323
4304
|
CPU: legacy::cpu::_th_addbmm_
|
4324
|
-
CUDA:
|
4305
|
+
CUDA: addbmm__cuda
|
4325
4306
|
|
4326
4307
|
- func: addbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
4327
4308
|
dispatch:
|
4328
|
-
CPU:
|
4329
|
-
CUDA:
|
4309
|
+
CPU: addbmm_cpu_out
|
4310
|
+
CUDA: addbmm_out_cuda
|
4330
4311
|
|
4331
4312
|
- func: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
4332
4313
|
use_c10_dispatcher: full
|
4333
4314
|
variants: method, function
|
4334
4315
|
dispatch:
|
4335
|
-
CPU:
|
4336
|
-
CUDA:
|
4316
|
+
CPU: addbmm_cpu
|
4317
|
+
CUDA: addbmm_cuda
|
4337
4318
|
|
4338
4319
|
- func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4339
4320
|
variants: method
|
4340
|
-
supports_named_tensor: True
|
4341
4321
|
|
4342
4322
|
- func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!)
|
4343
4323
|
variants: method
|
4344
|
-
supports_named_tensor: True
|
4345
4324
|
|
4346
4325
|
- func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)
|
4347
4326
|
variants: method
|
4348
|
-
supports_named_tensor: True
|
4349
4327
|
|
4350
4328
|
- func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)
|
4351
4329
|
variants: method
|
4352
|
-
supports_named_tensor: True
|
4353
4330
|
|
4354
4331
|
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
|
4355
4332
|
variants: method
|
4356
|
-
dispatch:
|
4357
|
-
CPU: legacy::cpu::_th_uniform_
|
4358
|
-
CUDA: uniform_cuda_
|
4359
|
-
supports_named_tensor: True
|
4360
4333
|
|
4361
4334
|
- func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
|
4362
4335
|
variants: method
|
4363
|
-
supports_named_tensor: True
|
4364
4336
|
|
4365
4337
|
- func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)
|
4366
4338
|
variants: method
|
4367
|
-
supports_named_tensor: True
|
4368
4339
|
|
4369
4340
|
- func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
|
4370
4341
|
variants: method
|
4371
|
-
supports_named_tensor: True
|
4372
4342
|
|
4373
4343
|
- func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
|
4374
4344
|
variants: method
|
4375
|
-
supports_named_tensor: True
|
4376
4345
|
|
4377
4346
|
# wrappers for TH functions
|
4378
4347
|
|
4379
4348
|
- func: diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
4380
4349
|
dispatch:
|
4381
|
-
CPU:
|
4382
|
-
CUDA:
|
4350
|
+
CPU: diag_cpu_out
|
4351
|
+
CUDA: diag_cuda_out
|
4383
4352
|
|
4384
4353
|
- func: diag(Tensor self, int diagonal=0) -> Tensor
|
4385
4354
|
use_c10_dispatcher: full
|
4386
4355
|
variants: method, function
|
4387
|
-
dispatch:
|
4388
|
-
CPU: legacy::cpu::_th_diag
|
4389
|
-
CUDA: legacy::cuda::_th_diag
|
4390
4356
|
|
4391
4357
|
- func: cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
|
4392
4358
|
|
@@ -4427,17 +4393,15 @@
|
|
4427
4393
|
variants: method, function
|
4428
4394
|
dispatch:
|
4429
4395
|
CPU: legacy::cpu::_th_trace
|
4430
|
-
CUDA:
|
4396
|
+
CUDA: trace_cuda
|
4431
4397
|
|
4432
4398
|
- func: ne.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4433
|
-
supports_named_tensor: True
|
4434
4399
|
dispatch:
|
4435
4400
|
CPU: ne_out
|
4436
4401
|
CUDA: ne_out
|
4437
4402
|
QuantizedCPU: ne_out_quantized_cpu
|
4438
4403
|
|
4439
4404
|
- func: ne.Scalar(Tensor self, Scalar other) -> Tensor
|
4440
|
-
supports_named_tensor: True
|
4441
4405
|
use_c10_dispatcher: full
|
4442
4406
|
variants: method, function
|
4443
4407
|
dispatch:
|
@@ -4446,14 +4410,12 @@
|
|
4446
4410
|
QuantizedCPU: ne_quantized_cpu
|
4447
4411
|
|
4448
4412
|
- func: ne.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4449
|
-
supports_named_tensor: True
|
4450
4413
|
dispatch:
|
4451
4414
|
CPU: ne_out
|
4452
4415
|
CUDA: ne_out
|
4453
4416
|
QuantizedCPU: ne_out_quantized_cpu
|
4454
4417
|
|
4455
4418
|
- func: ne.Tensor(Tensor self, Tensor other) -> Tensor
|
4456
|
-
supports_named_tensor: True
|
4457
4419
|
use_c10_dispatcher: full
|
4458
4420
|
variants: method, function
|
4459
4421
|
dispatch:
|
@@ -4462,14 +4424,12 @@
|
|
4462
4424
|
QuantizedCPU: ne_quantized_cpu
|
4463
4425
|
|
4464
4426
|
- func: eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4465
|
-
supports_named_tensor: True
|
4466
4427
|
dispatch:
|
4467
4428
|
CPU: eq_out
|
4468
4429
|
CUDA: eq_out
|
4469
4430
|
QuantizedCPU: eq_out_quantized_cpu
|
4470
4431
|
|
4471
4432
|
- func: eq.Scalar(Tensor self, Scalar other) -> Tensor
|
4472
|
-
supports_named_tensor: True
|
4473
4433
|
use_c10_dispatcher: full
|
4474
4434
|
variants: method, function
|
4475
4435
|
dispatch:
|
@@ -4478,14 +4438,12 @@
|
|
4478
4438
|
QuantizedCPU: eq_quantized_cpu
|
4479
4439
|
|
4480
4440
|
- func: eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4481
|
-
supports_named_tensor: True
|
4482
4441
|
dispatch:
|
4483
4442
|
CPU: eq_out
|
4484
4443
|
CUDA: eq_out
|
4485
4444
|
QuantizedCPU: eq_out_quantized_cpu
|
4486
4445
|
|
4487
4446
|
- func: eq.Tensor(Tensor self, Tensor other) -> Tensor
|
4488
|
-
supports_named_tensor: True
|
4489
4447
|
use_c10_dispatcher: full
|
4490
4448
|
variants: method, function
|
4491
4449
|
dispatch:
|
@@ -4494,14 +4452,12 @@
|
|
4494
4452
|
QuantizedCPU: eq_quantized_cpu
|
4495
4453
|
|
4496
4454
|
- func: ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4497
|
-
supports_named_tensor: True
|
4498
4455
|
dispatch:
|
4499
4456
|
CPU: ge_out
|
4500
4457
|
CUDA: ge_out
|
4501
4458
|
QuantizedCPU: ge_out_quantized_cpu
|
4502
4459
|
|
4503
4460
|
- func: ge.Scalar(Tensor self, Scalar other) -> Tensor
|
4504
|
-
supports_named_tensor: True
|
4505
4461
|
use_c10_dispatcher: full
|
4506
4462
|
variants: method, function
|
4507
4463
|
dispatch:
|
@@ -4510,14 +4466,12 @@
|
|
4510
4466
|
QuantizedCPU: ge_quantized_cpu
|
4511
4467
|
|
4512
4468
|
- func: ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4513
|
-
supports_named_tensor: True
|
4514
4469
|
dispatch:
|
4515
4470
|
CPU: ge_out
|
4516
4471
|
CUDA: ge_out
|
4517
4472
|
QuantizedCPU: ge_out_quantized_cpu
|
4518
4473
|
|
4519
4474
|
- func: ge.Tensor(Tensor self, Tensor other) -> Tensor
|
4520
|
-
supports_named_tensor: True
|
4521
4475
|
use_c10_dispatcher: full
|
4522
4476
|
variants: method, function
|
4523
4477
|
dispatch:
|
@@ -4526,14 +4480,12 @@
|
|
4526
4480
|
QuantizedCPU: ge_quantized_cpu
|
4527
4481
|
|
4528
4482
|
- func: le.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4529
|
-
supports_named_tensor: True
|
4530
4483
|
dispatch:
|
4531
4484
|
CPU: le_out
|
4532
4485
|
CUDA: le_out
|
4533
4486
|
QuantizedCPU: le_out_quantized_cpu
|
4534
4487
|
|
4535
4488
|
- func: le.Scalar(Tensor self, Scalar other) -> Tensor
|
4536
|
-
supports_named_tensor: True
|
4537
4489
|
use_c10_dispatcher: full
|
4538
4490
|
variants: method, function
|
4539
4491
|
dispatch:
|
@@ -4542,14 +4494,12 @@
|
|
4542
4494
|
QuantizedCPU: le_quantized_cpu
|
4543
4495
|
|
4544
4496
|
- func: le.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4545
|
-
supports_named_tensor: True
|
4546
4497
|
dispatch:
|
4547
4498
|
CPU: le_out
|
4548
4499
|
CUDA: le_out
|
4549
4500
|
QuantizedCPU: le_out_quantized_cpu
|
4550
4501
|
|
4551
4502
|
- func: le.Tensor(Tensor self, Tensor other) -> Tensor
|
4552
|
-
supports_named_tensor: True
|
4553
4503
|
use_c10_dispatcher: full
|
4554
4504
|
variants: method, function
|
4555
4505
|
dispatch:
|
@@ -4558,14 +4508,12 @@
|
|
4558
4508
|
QuantizedCPU: le_quantized_cpu
|
4559
4509
|
|
4560
4510
|
- func: gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4561
|
-
supports_named_tensor: True
|
4562
4511
|
dispatch:
|
4563
4512
|
CPU: gt_out
|
4564
4513
|
CUDA: gt_out
|
4565
4514
|
QuantizedCPU: gt_out_quantized_cpu
|
4566
4515
|
|
4567
4516
|
- func: gt.Scalar(Tensor self, Scalar other) -> Tensor
|
4568
|
-
supports_named_tensor: True
|
4569
4517
|
use_c10_dispatcher: full
|
4570
4518
|
variants: method, function
|
4571
4519
|
dispatch:
|
@@ -4574,14 +4522,12 @@
|
|
4574
4522
|
QuantizedCPU: gt_quantized_cpu
|
4575
4523
|
|
4576
4524
|
- func: gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4577
|
-
supports_named_tensor: True
|
4578
4525
|
dispatch:
|
4579
4526
|
CPU: gt_out
|
4580
4527
|
CUDA: gt_out
|
4581
4528
|
QuantizedCPU: gt_out_quantized_cpu
|
4582
4529
|
|
4583
4530
|
- func: gt.Tensor(Tensor self, Tensor other) -> Tensor
|
4584
|
-
supports_named_tensor: True
|
4585
4531
|
use_c10_dispatcher: full
|
4586
4532
|
variants: method, function
|
4587
4533
|
dispatch:
|
@@ -4590,14 +4536,12 @@
|
|
4590
4536
|
QuantizedCPU: gt_quantized_cpu
|
4591
4537
|
|
4592
4538
|
- func: lt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4593
|
-
supports_named_tensor: True
|
4594
4539
|
dispatch:
|
4595
4540
|
CPU: lt_out
|
4596
4541
|
CUDA: lt_out
|
4597
4542
|
QuantizedCPU: lt_out_quantized_cpu
|
4598
4543
|
|
4599
4544
|
- func: lt.Scalar(Tensor self, Scalar other) -> Tensor
|
4600
|
-
supports_named_tensor: True
|
4601
4545
|
use_c10_dispatcher: full
|
4602
4546
|
variants: method, function
|
4603
4547
|
dispatch:
|
@@ -4606,14 +4550,12 @@
|
|
4606
4550
|
QuantizedCPU: lt_quantized_cpu
|
4607
4551
|
|
4608
4552
|
- func: lt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4609
|
-
supports_named_tensor: True
|
4610
4553
|
dispatch:
|
4611
4554
|
CPU: lt_out
|
4612
4555
|
CUDA: lt_out
|
4613
4556
|
QuantizedCPU: lt_out_quantized_cpu
|
4614
4557
|
|
4615
4558
|
- func: lt.Tensor(Tensor self, Tensor other) -> Tensor
|
4616
|
-
supports_named_tensor: True
|
4617
4559
|
use_c10_dispatcher: full
|
4618
4560
|
variants: method, function
|
4619
4561
|
dispatch:
|
@@ -4656,7 +4598,6 @@
|
|
4656
4598
|
dispatch:
|
4657
4599
|
CPU: masked_select_out_cpu
|
4658
4600
|
CUDA: masked_select_out_cuda
|
4659
|
-
supports_named_tensor: True
|
4660
4601
|
|
4661
4602
|
- func: masked_select(Tensor self, Tensor mask) -> Tensor
|
4662
4603
|
use_c10_dispatcher: full
|
@@ -4664,7 +4605,6 @@
|
|
4664
4605
|
dispatch:
|
4665
4606
|
CPU: masked_select_cpu
|
4666
4607
|
CUDA: masked_select_cuda
|
4667
|
-
supports_named_tensor: True
|
4668
4608
|
|
4669
4609
|
- func: nonzero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4670
4610
|
dispatch:
|
@@ -4679,19 +4619,20 @@
|
|
4679
4619
|
CUDA: legacy::cuda::_th_nonzero
|
4680
4620
|
|
4681
4621
|
- func: nonzero_numpy(Tensor self) -> Tensor[]
|
4622
|
+
use_c10_dispatcher: full
|
4682
4623
|
variants: method, function
|
4683
4624
|
|
4684
4625
|
- func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)
|
4685
4626
|
dispatch:
|
4686
|
-
CPU:
|
4687
|
-
CUDA:
|
4627
|
+
CPU: gather_out_cpu_cuda
|
4628
|
+
CUDA: gather_out_cpu_cuda
|
4688
4629
|
|
4689
4630
|
- func: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor
|
4690
4631
|
use_c10_dispatcher: full
|
4691
4632
|
variants: method, function
|
4692
4633
|
dispatch:
|
4693
|
-
CPU:
|
4694
|
-
CUDA:
|
4634
|
+
CPU: gather
|
4635
|
+
CUDA: gather
|
4695
4636
|
|
4696
4637
|
- func: gather.dimname_out(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)
|
4697
4638
|
|
@@ -4702,24 +4643,19 @@
|
|
4702
4643
|
use_c10_dispatcher: full
|
4703
4644
|
|
4704
4645
|
- func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4705
|
-
supports_named_tensor: True
|
4706
4646
|
|
4707
4647
|
- func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4708
4648
|
use_c10_dispatcher: full
|
4709
4649
|
variants: method, function
|
4710
|
-
supports_named_tensor: True
|
4711
4650
|
|
4712
4651
|
- func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4713
4652
|
variants: method
|
4714
|
-
supports_named_tensor: True
|
4715
4653
|
|
4716
4654
|
- func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4717
|
-
supports_named_tensor: True
|
4718
4655
|
|
4719
4656
|
- func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4720
4657
|
use_c10_dispatcher: full
|
4721
4658
|
variants: method, function
|
4722
|
-
supports_named_tensor: True
|
4723
4659
|
|
4724
4660
|
- func: lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
|
4725
4661
|
dispatch:
|
@@ -4727,6 +4663,7 @@
|
|
4727
4663
|
CUDA: legacy::cuda::_th_gels_out
|
4728
4664
|
|
4729
4665
|
- func: lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR)
|
4666
|
+
use_c10_dispatcher: full
|
4730
4667
|
variants: method, function
|
4731
4668
|
dispatch:
|
4732
4669
|
CPU: legacy::cpu::_th_gels
|
@@ -4735,9 +4672,11 @@
|
|
4735
4672
|
- func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)
|
4736
4673
|
|
4737
4674
|
- func: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient)
|
4675
|
+
use_c10_dispatcher: full
|
4738
4676
|
variants: method, function
|
4739
4677
|
|
4740
4678
|
- func: _triangular_solve_helper(Tensor self, Tensor A, bool upper, bool transpose, bool unitriangular) -> (Tensor, Tensor)
|
4679
|
+
use_c10_dispatcher: full
|
4741
4680
|
variants: function
|
4742
4681
|
dispatch:
|
4743
4682
|
CPU: _triangular_solve_helper_cpu
|
@@ -4746,9 +4685,11 @@
|
|
4746
4685
|
- func: symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)
|
4747
4686
|
|
4748
4687
|
- func: symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4688
|
+
use_c10_dispatcher: full
|
4749
4689
|
variants: method, function
|
4750
4690
|
|
4751
4691
|
- func: _symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor)
|
4692
|
+
use_c10_dispatcher: full
|
4752
4693
|
variants: function
|
4753
4694
|
dispatch:
|
4754
4695
|
CPU: _symeig_helper_cpu
|
@@ -4760,6 +4701,7 @@
|
|
4760
4701
|
CUDA: legacy::cuda::_th_eig_out
|
4761
4702
|
|
4762
4703
|
- func: eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4704
|
+
use_c10_dispatcher: full
|
4763
4705
|
variants: method, function
|
4764
4706
|
dispatch:
|
4765
4707
|
CPU: legacy::cpu::_th_eig
|
@@ -4768,9 +4710,11 @@
|
|
4768
4710
|
- func: svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)
|
4769
4711
|
|
4770
4712
|
- func: svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V)
|
4713
|
+
use_c10_dispatcher: full
|
4771
4714
|
variants: method, function
|
4772
4715
|
|
4773
4716
|
- func: _svd_helper(Tensor self, bool some, bool compute_uv) -> (Tensor, Tensor, Tensor)
|
4717
|
+
use_c10_dispatcher: full
|
4774
4718
|
variants: function
|
4775
4719
|
dispatch:
|
4776
4720
|
CPU: _svd_helper_cpu
|
@@ -4803,11 +4747,13 @@
|
|
4803
4747
|
CUDA: _cholesky_solve_helper_cuda
|
4804
4748
|
|
4805
4749
|
- func: solve(Tensor self, Tensor A) -> (Tensor solution, Tensor LU)
|
4750
|
+
use_c10_dispatcher: full
|
4806
4751
|
variants: function, method
|
4807
4752
|
|
4808
4753
|
- func: solve.solution(Tensor self, Tensor A, *, Tensor(a!) solution, Tensor(b!) lu) -> (Tensor(a!) solution, Tensor(b!) LU)
|
4809
4754
|
|
4810
4755
|
- func: _solve_helper(Tensor self, Tensor A) -> (Tensor, Tensor)
|
4756
|
+
use_c10_dispatcher: full
|
4811
4757
|
variants: function
|
4812
4758
|
dispatch:
|
4813
4759
|
CPU: _solve_helper_cpu
|
@@ -4828,9 +4774,11 @@
|
|
4828
4774
|
- func: qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)
|
4829
4775
|
|
4830
4776
|
- func: qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R)
|
4777
|
+
use_c10_dispatcher: full
|
4831
4778
|
variants: method, function
|
4832
4779
|
|
4833
4780
|
- func: _qr_helper(Tensor self, bool some) -> (Tensor, Tensor)
|
4781
|
+
use_c10_dispatcher: full
|
4834
4782
|
variants: function
|
4835
4783
|
dispatch:
|
4836
4784
|
CPU: _qr_helper_cpu
|
@@ -4842,6 +4790,7 @@
|
|
4842
4790
|
CUDA: legacy::cuda::_th_geqrf_out
|
4843
4791
|
|
4844
4792
|
- func: geqrf(Tensor self) -> (Tensor a, Tensor tau)
|
4793
|
+
use_c10_dispatcher: full
|
4845
4794
|
variants: method, function
|
4846
4795
|
dispatch:
|
4847
4796
|
CPU: legacy::cpu::_th_geqrf
|
@@ -4868,6 +4817,7 @@
|
|
4868
4817
|
CPU: legacy::cpu::_th_ormqr
|
4869
4818
|
|
4870
4819
|
- func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor, Tensor, Tensor)
|
4820
|
+
use_c10_dispatcher: full
|
4871
4821
|
variants: function
|
4872
4822
|
dispatch:
|
4873
4823
|
CPU: _lu_with_info_cpu
|
@@ -4899,6 +4849,7 @@
|
|
4899
4849
|
CUDA: multinomial
|
4900
4850
|
|
4901
4851
|
- func: _multinomial_alias_setup(Tensor probs) -> (Tensor, Tensor)
|
4852
|
+
use_c10_dispatcher: full
|
4902
4853
|
variants: function
|
4903
4854
|
dispatch:
|
4904
4855
|
CPU: legacy::cpu::_th_multinomial_alias_setup
|
@@ -4911,66 +4862,55 @@
|
|
4911
4862
|
CUDA: legacy::cuda::_th_multinomial_alias_draw
|
4912
4863
|
|
4913
4864
|
- func: lgamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4914
|
-
supports_named_tensor: True
|
4915
4865
|
dispatch:
|
4916
4866
|
CPU: _lgamma_out_cpu
|
4917
4867
|
CUDA: _lgamma_out_cuda
|
4918
4868
|
|
4919
4869
|
- func: lgamma(Tensor self) -> Tensor
|
4920
4870
|
use_c10_dispatcher: full
|
4921
|
-
supports_named_tensor: True
|
4922
4871
|
variants: method, function
|
4923
4872
|
dispatch:
|
4924
4873
|
CPU: lgamma
|
4925
4874
|
CUDA: lgamma
|
4926
4875
|
|
4927
4876
|
- func: digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4928
|
-
supports_named_tensor: True
|
4929
4877
|
|
4930
4878
|
- func: digamma(Tensor self) -> Tensor
|
4931
4879
|
use_c10_dispatcher: full
|
4932
|
-
supports_named_tensor: True
|
4933
4880
|
variants: method, function
|
4934
4881
|
|
4935
4882
|
- func: polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4936
|
-
supports_named_tensor: True
|
4937
4883
|
|
4938
4884
|
- func: polygamma(int n, Tensor self) -> Tensor
|
4939
4885
|
use_c10_dispatcher: full
|
4940
|
-
supports_named_tensor: True
|
4941
4886
|
variants: method, function
|
4942
4887
|
|
4943
4888
|
- func: erfinv(Tensor self) -> Tensor
|
4944
4889
|
use_c10_dispatcher: full
|
4945
|
-
supports_named_tensor: True
|
4946
4890
|
variants: method, function
|
4947
4891
|
dispatch:
|
4948
4892
|
CPU: erfinv
|
4949
4893
|
CUDA: erfinv
|
4950
4894
|
|
4951
4895
|
- func: erfinv_(Tensor(a!) self) -> Tensor(a!)
|
4952
|
-
supports_named_tensor: True
|
4953
4896
|
variants: method
|
4954
4897
|
dispatch:
|
4955
4898
|
CPU: _erfinv__cpu
|
4956
4899
|
CUDA: _erfinv__cuda
|
4957
4900
|
|
4958
4901
|
- func: erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4959
|
-
supports_named_tensor: True
|
4960
4902
|
dispatch:
|
4961
4903
|
CPU: _erfinv_out_cpu
|
4962
4904
|
CUDA: _erfinv_out_cuda
|
4963
4905
|
|
4964
4906
|
- func: sign(Tensor self) -> Tensor
|
4907
|
+
use_c10_dispatcher: full
|
4965
4908
|
variants: function, method
|
4966
|
-
supports_named_tensor: True
|
4967
4909
|
|
4968
4910
|
- func: sign_(Tensor(a!) self) -> Tensor(a!)
|
4969
4911
|
variants: method
|
4970
|
-
supports_named_tensor: True
|
4971
4912
|
|
4972
4913
|
- func: sign.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4973
|
-
supports_named_tensor: True
|
4974
4914
|
dispatch:
|
4975
4915
|
CPU: sign_out
|
4976
4916
|
CUDA: sign_out
|
@@ -4980,11 +4920,9 @@
|
|
4980
4920
|
variants: method, function
|
4981
4921
|
|
4982
4922
|
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4983
|
-
supports_named_tensor: True
|
4984
4923
|
|
4985
4924
|
- func: atan2(Tensor self, Tensor other) -> Tensor
|
4986
4925
|
use_c10_dispatcher: full
|
4987
|
-
supports_named_tensor: True
|
4988
4926
|
variants: method, function
|
4989
4927
|
|
4990
4928
|
- func: lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5026,26 +4964,26 @@
|
|
5026
4964
|
- func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
5027
4965
|
dispatch:
|
5028
4966
|
CPU: fmod_out
|
5029
|
-
CUDA:
|
4967
|
+
CUDA: fmod_cuda_out
|
5030
4968
|
|
5031
4969
|
- func: fmod.Scalar(Tensor self, Scalar other) -> Tensor
|
5032
4970
|
use_c10_dispatcher: full
|
5033
4971
|
variants: method, function
|
5034
4972
|
dispatch:
|
5035
4973
|
CPU: fmod
|
5036
|
-
CUDA:
|
4974
|
+
CUDA: fmod_cuda
|
5037
4975
|
|
5038
4976
|
- func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5039
4977
|
dispatch:
|
5040
4978
|
CPU: fmod_out
|
5041
|
-
CUDA:
|
4979
|
+
CUDA: fmod_cuda_out
|
5042
4980
|
|
5043
4981
|
- func: fmod.Tensor(Tensor self, Tensor other) -> Tensor
|
5044
4982
|
use_c10_dispatcher: full
|
5045
4983
|
variants: method, function
|
5046
4984
|
dispatch:
|
5047
4985
|
CPU: fmod
|
5048
|
-
CUDA:
|
4986
|
+
CUDA: fmod_cuda
|
5049
4987
|
|
5050
4988
|
- func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
5051
4989
|
dispatch:
|
@@ -5082,9 +5020,8 @@
|
|
5082
5020
|
variants: method, function
|
5083
5021
|
dispatch:
|
5084
5022
|
CPU: min
|
5085
|
-
CUDA:
|
5023
|
+
CUDA: min
|
5086
5024
|
QuantizedCPU: min_quant
|
5087
|
-
supports_named_tensor: True
|
5088
5025
|
|
5089
5026
|
- func: max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5090
5027
|
|
@@ -5097,9 +5034,8 @@
|
|
5097
5034
|
variants: method, function
|
5098
5035
|
dispatch:
|
5099
5036
|
CPU: max
|
5100
|
-
CUDA:
|
5037
|
+
CUDA: max
|
5101
5038
|
QuantizedCPU: max_quant
|
5102
|
-
supports_named_tensor: True
|
5103
5039
|
|
5104
5040
|
- func: median(Tensor self) -> Tensor
|
5105
5041
|
use_c10_dispatcher: full
|
@@ -5107,7 +5043,6 @@
|
|
5107
5043
|
dispatch:
|
5108
5044
|
CPU: median_cpu
|
5109
5045
|
CUDA: median_cuda
|
5110
|
-
supports_named_tensor: True
|
5111
5046
|
|
5112
5047
|
- func: sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
5113
5048
|
dispatch:
|
@@ -5115,6 +5050,7 @@
|
|
5115
5050
|
CUDA: legacy::cuda::_th_sort_out
|
5116
5051
|
|
5117
5052
|
- func: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)
|
5053
|
+
use_c10_dispatcher: full
|
5118
5054
|
variants: method, function
|
5119
5055
|
dispatch:
|
5120
5056
|
CPU: legacy::cpu::_th_sort
|
@@ -5139,6 +5075,7 @@
|
|
5139
5075
|
CUDA: legacy::cuda::_th_topk_out
|
5140
5076
|
|
5141
5077
|
- func: topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)
|
5078
|
+
use_c10_dispatcher: full
|
5142
5079
|
variants: method, function
|
5143
5080
|
dispatch:
|
5144
5081
|
CPU: topk
|
@@ -5147,12 +5084,10 @@
|
|
5147
5084
|
|
5148
5085
|
- func: all(Tensor self) -> Tensor
|
5149
5086
|
use_c10_dispatcher: full
|
5150
|
-
supports_named_tensor: True
|
5151
5087
|
variants: method, function
|
5152
5088
|
|
5153
5089
|
- func: any(Tensor self) -> Tensor
|
5154
5090
|
use_c10_dispatcher: full
|
5155
|
-
supports_named_tensor: True
|
5156
5091
|
variants: method, function
|
5157
5092
|
dispatch:
|
5158
5093
|
CPU: any
|
@@ -5173,11 +5108,20 @@
|
|
5173
5108
|
CUDA: legacy::cuda::_th_renorm
|
5174
5109
|
|
5175
5110
|
- func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)
|
5111
|
+
use_c10_dispatcher: full
|
5176
5112
|
variants: method
|
5177
5113
|
device_guard: False
|
5178
5114
|
dispatch:
|
5179
5115
|
CPU: unfold
|
5180
5116
|
CUDA: unfold
|
5117
|
+
QuantizedCPU: unfold
|
5118
|
+
QuantizedCUDA: unfold
|
5119
|
+
|
5120
|
+
- func: unfold_backward(Tensor grad_in, int[] input_sizes, int dim, int size, int step) -> Tensor
|
5121
|
+
variants: function
|
5122
|
+
dispatch:
|
5123
|
+
CPU: unfold_backward
|
5124
|
+
CUDA: unfold_backward
|
5181
5125
|
|
5182
5126
|
- func: equal(Tensor self, Tensor other) -> bool
|
5183
5127
|
use_c10_dispatcher: full
|
@@ -5185,96 +5129,69 @@
|
|
5185
5129
|
dispatch:
|
5186
5130
|
CPU: legacy::cpu::_th_equal
|
5187
5131
|
CUDA: legacy::cuda::_th_equal
|
5188
|
-
QuantizedCPU:
|
5189
|
-
supports_named_tensor: True
|
5132
|
+
QuantizedCPU: quantized_equal_cpu
|
5190
5133
|
|
5191
5134
|
- func: pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)
|
5192
|
-
supports_named_tensor: True
|
5193
5135
|
dispatch:
|
5194
5136
|
CPU: pow_out
|
5195
5137
|
CUDA: pow_out
|
5196
5138
|
|
5197
5139
|
- func: pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor
|
5198
5140
|
use_c10_dispatcher: full
|
5199
|
-
supports_named_tensor: True
|
5200
5141
|
variants: method, function
|
5201
5142
|
dispatch:
|
5202
5143
|
CPU: pow
|
5203
5144
|
CUDA: pow
|
5204
5145
|
|
5205
5146
|
- func: pow.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)
|
5206
|
-
supports_named_tensor: True
|
5207
5147
|
dispatch:
|
5208
5148
|
CPU: pow_out
|
5209
5149
|
CUDA: pow_out
|
5210
5150
|
|
5211
5151
|
- func: pow.Scalar(Scalar self, Tensor exponent) -> Tensor
|
5212
5152
|
use_c10_dispatcher: full
|
5213
|
-
supports_named_tensor: True
|
5214
5153
|
dispatch:
|
5215
5154
|
CPU: pow
|
5216
5155
|
CUDA: pow
|
5217
5156
|
|
5218
5157
|
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
5219
5158
|
variants: method
|
5220
|
-
dispatch:
|
5221
|
-
CPU: normal_cpu_
|
5222
|
-
CUDA: normal_cuda_
|
5223
|
-
supports_named_tensor: True
|
5224
5159
|
|
5225
5160
|
- func: normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5226
|
-
dispatch:
|
5227
|
-
CPU: normal_out_cpu
|
5228
|
-
CUDA: normal_out_cuda
|
5229
5161
|
|
5230
5162
|
- func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor
|
5231
|
-
dispatch:
|
5232
|
-
CPU: normal_cpu
|
5233
|
-
CUDA: normal_cuda
|
5234
5163
|
|
5235
5164
|
- func: normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5236
|
-
dispatch:
|
5237
|
-
CPU: normal_out_cpu
|
5238
|
-
CUDA: normal_out_cuda
|
5239
5165
|
|
5240
5166
|
- func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5241
|
-
dispatch:
|
5242
|
-
CPU: normal_cpu
|
5243
|
-
CUDA: normal_cuda
|
5244
5167
|
|
5245
5168
|
- func: normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5246
|
-
dispatch:
|
5247
|
-
CPU: normal_out_cpu
|
5248
|
-
CUDA: normal_out_cuda
|
5249
5169
|
|
5250
5170
|
- func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5251
|
-
dispatch:
|
5252
|
-
CPU: normal_cpu
|
5253
|
-
CUDA: normal_cuda
|
5254
5171
|
|
5255
5172
|
- func: normal.float_float(float mean, float std, int[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
5256
5173
|
|
5257
5174
|
- func: normal.float_float_out(float mean, float std, int[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5258
5175
|
|
5259
5176
|
- func: alias(Tensor(a) self) -> Tensor(a)
|
5177
|
+
use_c10_dispatcher: full
|
5260
5178
|
variants: method, function
|
5261
|
-
supports_named_tensor: True
|
5262
5179
|
|
5263
5180
|
- func: _addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
5264
5181
|
use_c10_dispatcher: full
|
5265
5182
|
dispatch:
|
5266
5183
|
CPU: legacy::cpu::_th_addr
|
5267
|
-
CUDA:
|
5184
|
+
CUDA: addr_cuda
|
5268
5185
|
|
5269
5186
|
- func: _addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
5270
5187
|
dispatch:
|
5271
5188
|
CPU: legacy::cpu::_th_addr_
|
5272
|
-
CUDA:
|
5189
|
+
CUDA: addr__cuda
|
5273
5190
|
|
5274
5191
|
- func: _addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
5275
5192
|
dispatch:
|
5276
5193
|
CPU: legacy::cpu::_th_addr_out
|
5277
|
-
CUDA:
|
5194
|
+
CUDA: addr_out_cuda
|
5278
5195
|
|
5279
5196
|
- func: _index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
5280
5197
|
dispatch:
|
@@ -5285,37 +5202,23 @@
|
|
5285
5202
|
use_c10_dispatcher: full
|
5286
5203
|
dispatch:
|
5287
5204
|
CPU: _cumsum_cpu
|
5288
|
-
CUDA:
|
5205
|
+
CUDA: _cumsum_cuda
|
5289
5206
|
|
5290
5207
|
- func: _cumsum.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5291
5208
|
dispatch:
|
5292
5209
|
CPU: _cumsum_out_cpu
|
5293
|
-
CUDA:
|
5210
|
+
CUDA: _cumsum_out_cuda
|
5294
5211
|
|
5295
5212
|
- func: _cumprod(Tensor self, int dim) -> Tensor
|
5296
5213
|
use_c10_dispatcher: full
|
5297
5214
|
dispatch:
|
5298
5215
|
CPU: _cumprod_cpu
|
5299
|
-
CUDA:
|
5216
|
+
CUDA: _cumprod_cuda
|
5300
5217
|
|
5301
5218
|
- func: _cumprod.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5302
5219
|
dispatch:
|
5303
5220
|
CPU: _cumprod_out_cpu
|
5304
|
-
CUDA:
|
5305
|
-
|
5306
|
-
- func: _var(Tensor self, bool unbiased=True) -> Tensor
|
5307
|
-
use_c10_dispatcher: full
|
5308
|
-
dispatch:
|
5309
|
-
CPU: legacy::cpu::_th_var
|
5310
|
-
CUDA: legacy::cuda::_th_var
|
5311
|
-
supports_named_tensor: True
|
5312
|
-
|
5313
|
-
- func: _std(Tensor self, bool unbiased=True) -> Tensor
|
5314
|
-
use_c10_dispatcher: full
|
5315
|
-
dispatch:
|
5316
|
-
CPU: legacy::cpu::_th_std
|
5317
|
-
CUDA: legacy::cuda::_th_std
|
5318
|
-
supports_named_tensor: True
|
5221
|
+
CUDA: _cumprod_out_cuda
|
5319
5222
|
|
5320
5223
|
- func: _amp_non_finite_check_and_unscale_(Tensor(a!) self, Tensor(b!) found_inf, Tensor inv_scale) -> ()
|
5321
5224
|
variants: function
|
@@ -5328,6 +5231,7 @@
|
|
5328
5231
|
CUDA: _amp_update_scale_cuda
|
5329
5232
|
|
5330
5233
|
- func: _cat(Tensor[] tensors, int dim=0) -> Tensor
|
5234
|
+
use_c10_dispatcher: full
|
5331
5235
|
dispatch:
|
5332
5236
|
CPU: _cat_cpu
|
5333
5237
|
CUDA: cat_cuda
|
@@ -5340,6 +5244,7 @@
|
|
5340
5244
|
QuantizedCPU: quantized_cat_out
|
5341
5245
|
|
5342
5246
|
- func: _mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor, Tensor)
|
5247
|
+
use_c10_dispatcher: full
|
5343
5248
|
dispatch:
|
5344
5249
|
CPU: legacy::cpu::_th_mode
|
5345
5250
|
CUDA: legacy::cuda::_th_mode
|
@@ -5349,25 +5254,39 @@
|
|
5349
5254
|
CPU: legacy::cpu::_th_mode_out
|
5350
5255
|
CUDA: legacy::cuda::_th_mode_out
|
5351
5256
|
|
5352
|
-
- func:
|
5257
|
+
- func: bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor
|
5258
|
+
use_c10_dispatcher: full
|
5259
|
+
dispatch:
|
5260
|
+
CPU: bucketize_cpu
|
5261
|
+
CUDA: bucketize_cuda
|
5262
|
+
|
5263
|
+
- func: bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)
|
5264
|
+
dispatch:
|
5265
|
+
CPU: bucketize_out_cpu
|
5266
|
+
CUDA: bucketize_out_cuda
|
5267
|
+
|
5268
|
+
- func: bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor
|
5269
|
+
use_c10_dispatcher: full
|
5353
5270
|
dispatch:
|
5354
|
-
CPU:
|
5355
|
-
CUDA:
|
5271
|
+
CPU: bucketize_cpu
|
5272
|
+
CUDA: bucketize_cuda
|
5356
5273
|
|
5357
|
-
- func:
|
5274
|
+
- func: searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False) -> Tensor
|
5275
|
+
use_c10_dispatcher: full
|
5358
5276
|
dispatch:
|
5359
|
-
CPU:
|
5360
|
-
CUDA:
|
5277
|
+
CPU: searchsorted_cpu
|
5278
|
+
CUDA: searchsorted_cuda
|
5361
5279
|
|
5362
|
-
- func:
|
5280
|
+
- func: searchsorted.Tensor_out(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)
|
5363
5281
|
dispatch:
|
5364
|
-
CPU:
|
5365
|
-
CUDA:
|
5282
|
+
CPU: searchsorted_out_cpu
|
5283
|
+
CUDA: searchsorted_out_cuda
|
5366
5284
|
|
5367
|
-
- func:
|
5285
|
+
- func: searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False) -> Tensor
|
5286
|
+
use_c10_dispatcher: full
|
5368
5287
|
dispatch:
|
5369
|
-
CPU:
|
5370
|
-
CUDA:
|
5288
|
+
CPU: searchsorted_cpu
|
5289
|
+
CUDA: searchsorted_cuda
|
5371
5290
|
|
5372
5291
|
## NN wrappers
|
5373
5292
|
|
@@ -5446,6 +5365,7 @@
|
|
5446
5365
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward_out
|
5447
5366
|
|
5448
5367
|
- func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target)
|
5368
|
+
use_c10_dispatcher: full
|
5449
5369
|
python_module: nn
|
5450
5370
|
dispatch:
|
5451
5371
|
CPU: multilabel_margin_loss_forward_cpu
|
@@ -5560,18 +5480,10 @@
|
|
5560
5480
|
|
5561
5481
|
- func: elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!)
|
5562
5482
|
python_module: nn
|
5563
|
-
dispatch:
|
5564
|
-
CPU: elu_out
|
5565
|
-
CUDA: elu_out
|
5566
|
-
QuantizedCPU: quantized_elu_out
|
5567
5483
|
|
5568
5484
|
- func: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor
|
5569
5485
|
use_c10_dispatcher: full
|
5570
5486
|
python_module: nn
|
5571
|
-
dispatch:
|
5572
|
-
CPU: elu
|
5573
|
-
CUDA: elu
|
5574
|
-
QuantizedCPU: quantized_elu
|
5575
5487
|
|
5576
5488
|
- func: elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5577
5489
|
python_module: nn
|
@@ -5585,10 +5497,6 @@
|
|
5585
5497
|
|
5586
5498
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
5587
5499
|
python_module: nn
|
5588
|
-
dispatch:
|
5589
|
-
CPU: elu_
|
5590
|
-
CUDA: elu_
|
5591
|
-
QuantizedCPU: quantized_elu_
|
5592
5500
|
|
5593
5501
|
- func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!)
|
5594
5502
|
python_module: nn
|
@@ -5622,6 +5530,10 @@
|
|
5622
5530
|
- func: hardsigmoid(Tensor self) -> Tensor
|
5623
5531
|
use_c10_dispatcher: full
|
5624
5532
|
python_module: nn
|
5533
|
+
dispatch:
|
5534
|
+
CPU: hardsigmoid
|
5535
|
+
CUDA: hardsigmoid
|
5536
|
+
QuantizedCPU: quantized_hardsigmoid
|
5625
5537
|
|
5626
5538
|
- func: hardsigmoid_(Tensor(a!) self) -> Tensor(a!)
|
5627
5539
|
python_module: nn
|
@@ -5629,6 +5541,9 @@
|
|
5629
5541
|
- func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor
|
5630
5542
|
use_c10_dispatcher: full
|
5631
5543
|
python_module: nn
|
5544
|
+
dispatch:
|
5545
|
+
CPU: hardsigmoid_backward
|
5546
|
+
CUDA: hardsigmoid_backward
|
5632
5547
|
|
5633
5548
|
- func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)
|
5634
5549
|
python_module: nn
|
@@ -5661,6 +5576,24 @@
|
|
5661
5576
|
CPU: hardtanh_
|
5662
5577
|
CUDA: hardtanh_
|
5663
5578
|
QuantizedCPU: quantized_hardtanh_
|
5579
|
+
Vulkan: vulkan_hardtanh_
|
5580
|
+
|
5581
|
+
- func: hardswish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
5582
|
+
python_module: nn
|
5583
|
+
|
5584
|
+
- func: hardswish(Tensor self) -> Tensor
|
5585
|
+
use_c10_dispatcher: full
|
5586
|
+
python_module: nn
|
5587
|
+
|
5588
|
+
- func: hardswish_(Tensor(a!) self) -> Tensor(a!)
|
5589
|
+
python_module: nn
|
5590
|
+
|
5591
|
+
- func: hardswish_backward(Tensor grad_output, Tensor self) -> Tensor
|
5592
|
+
use_c10_dispatcher: full
|
5593
|
+
python_module: nn
|
5594
|
+
dispatch:
|
5595
|
+
CPU: hardswish_backward
|
5596
|
+
CUDA: hardswish_backward
|
5664
5597
|
|
5665
5598
|
- func: leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!)
|
5666
5599
|
python_module: nn
|
@@ -5702,6 +5635,7 @@
|
|
5702
5635
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out
|
5703
5636
|
|
5704
5637
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
5638
|
+
use_c10_dispatcher: full
|
5705
5639
|
python_module: nn
|
5706
5640
|
dispatch:
|
5707
5641
|
CPU: log_sigmoid_forward_cpu
|
@@ -5784,14 +5718,17 @@
|
|
5784
5718
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d_out
|
5785
5719
|
|
5786
5720
|
- func: adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5721
|
+
use_c10_dispatcher: full
|
5787
5722
|
python_module: nn
|
5788
5723
|
|
5789
5724
|
- func: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5725
|
+
use_c10_dispatcher: full
|
5790
5726
|
dispatch:
|
5791
5727
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d
|
5792
5728
|
requires_tensor: True
|
5793
5729
|
|
5794
5730
|
- func: _adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5731
|
+
use_c10_dispatcher: full
|
5795
5732
|
dispatch:
|
5796
5733
|
CPU: adaptive_avg_pool2d_cpu
|
5797
5734
|
CUDA: adaptive_avg_pool2d_cuda
|
@@ -5811,6 +5748,7 @@
|
|
5811
5748
|
CUDA: adaptive_avg_pool3d_out_cuda
|
5812
5749
|
|
5813
5750
|
- func: adaptive_avg_pool3d(Tensor self, int[3] output_size) -> Tensor
|
5751
|
+
use_c10_dispatcher: full
|
5814
5752
|
python_module: nn
|
5815
5753
|
dispatch:
|
5816
5754
|
CPU: adaptive_avg_pool3d_cpu
|
@@ -5838,6 +5776,7 @@
|
|
5838
5776
|
|
5839
5777
|
# Return: (Tensor output, Tensor indices)
|
5840
5778
|
- func: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
|
5779
|
+
use_c10_dispatcher: full
|
5841
5780
|
python_module: nn
|
5842
5781
|
dispatch:
|
5843
5782
|
CPU: adaptive_max_pool2d_cpu
|
@@ -5865,6 +5804,7 @@
|
|
5865
5804
|
|
5866
5805
|
# Return: (Tensor output, Tensor indices)
|
5867
5806
|
- func: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
|
5807
|
+
use_c10_dispatcher: full
|
5868
5808
|
python_module: nn
|
5869
5809
|
dispatch:
|
5870
5810
|
CPU: adaptive_max_pool3d_cpu
|
@@ -5891,6 +5831,7 @@
|
|
5891
5831
|
MkldnnCPU: mkldnn_avg_pool2d_out
|
5892
5832
|
|
5893
5833
|
- func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
5834
|
+
use_c10_dispatcher: full
|
5894
5835
|
python_module: nn
|
5895
5836
|
dispatch:
|
5896
5837
|
CPU: avg_pool2d_cpu
|
@@ -5905,6 +5846,7 @@
|
|
5905
5846
|
CUDA: avg_pool2d_backward_out_cuda
|
5906
5847
|
|
5907
5848
|
- func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
5849
|
+
use_c10_dispatcher: full
|
5908
5850
|
python_module: nn
|
5909
5851
|
dispatch:
|
5910
5852
|
CPU: avg_pool2d_backward_cpu
|
@@ -5917,6 +5859,7 @@
|
|
5917
5859
|
CUDA: avg_pool3d_out_cuda
|
5918
5860
|
|
5919
5861
|
- func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
5862
|
+
use_c10_dispatcher: full
|
5920
5863
|
python_module: nn
|
5921
5864
|
dispatch:
|
5922
5865
|
CPU: avg_pool3d_cpu
|
@@ -5930,6 +5873,7 @@
|
|
5930
5873
|
CUDA: avg_pool3d_backward_out_cuda
|
5931
5874
|
|
5932
5875
|
- func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
5876
|
+
use_c10_dispatcher: full
|
5933
5877
|
python_module: nn
|
5934
5878
|
dispatch:
|
5935
5879
|
CPU: avg_pool3d_backward_cpu
|
@@ -5944,6 +5888,7 @@
|
|
5944
5888
|
|
5945
5889
|
# Return: (Tensor output, Tensor indices)
|
5946
5890
|
- func: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
5891
|
+
use_c10_dispatcher: full
|
5947
5892
|
python_module: nn
|
5948
5893
|
dispatch:
|
5949
5894
|
CPU: fractional_max_pool2d_cpu
|
@@ -5956,6 +5901,7 @@
|
|
5956
5901
|
CUDA: fractional_max_pool2d_backward_out_cuda
|
5957
5902
|
|
5958
5903
|
- func: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor
|
5904
|
+
use_c10_dispatcher: full
|
5959
5905
|
python_module: nn
|
5960
5906
|
dispatch:
|
5961
5907
|
CPU: fractional_max_pool2d_backward_cpu
|
@@ -5970,6 +5916,7 @@
|
|
5970
5916
|
|
5971
5917
|
# Return: (Tensor output, Tensor indices)
|
5972
5918
|
- func: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
5919
|
+
use_c10_dispatcher: full
|
5973
5920
|
python_module: nn
|
5974
5921
|
dispatch:
|
5975
5922
|
CPU: fractional_max_pool3d_cpu
|
@@ -5982,6 +5929,7 @@
|
|
5982
5929
|
CUDA: fractional_max_pool3d_backward_out_cuda
|
5983
5930
|
|
5984
5931
|
- func: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor
|
5932
|
+
use_c10_dispatcher: full
|
5985
5933
|
python_module: nn
|
5986
5934
|
dispatch:
|
5987
5935
|
CPU: fractional_max_pool3d_backward_cpu
|
@@ -5996,11 +5944,11 @@
|
|
5996
5944
|
|
5997
5945
|
# Return: (Tensor output, Tensor indices)
|
5998
5946
|
- func: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
5947
|
+
use_c10_dispatcher: full
|
5999
5948
|
python_module: nn
|
6000
5949
|
dispatch:
|
6001
5950
|
CPU: max_pool2d_with_indices_cpu
|
6002
5951
|
CUDA: max_pool2d_with_indices_cuda
|
6003
|
-
supports_named_tensor: True
|
6004
5952
|
|
6005
5953
|
- func: max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6006
5954
|
python_module: nn
|
@@ -6009,6 +5957,7 @@
|
|
6009
5957
|
CUDA: max_pool2d_with_indices_backward_out_cuda
|
6010
5958
|
|
6011
5959
|
- func: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
5960
|
+
use_c10_dispatcher: full
|
6012
5961
|
python_module: nn
|
6013
5962
|
dispatch:
|
6014
5963
|
CPU: max_pool2d_with_indices_backward_cpu
|
@@ -6023,11 +5972,11 @@
|
|
6023
5972
|
|
6024
5973
|
# Return: (Tensor output, Tensor indices)
|
6025
5974
|
- func: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
5975
|
+
use_c10_dispatcher: full
|
6026
5976
|
python_module: nn
|
6027
5977
|
dispatch:
|
6028
5978
|
CPU: max_pool3d_with_indices_cpu
|
6029
5979
|
CUDA: max_pool3d_with_indices_cuda
|
6030
|
-
supports_named_tensor: True
|
6031
5980
|
|
6032
5981
|
- func: max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6033
5982
|
python_module: nn
|
@@ -6036,6 +5985,7 @@
|
|
6036
5985
|
CUDA: max_pool3d_with_indices_backward_out_cuda
|
6037
5986
|
|
6038
5987
|
- func: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
5988
|
+
use_c10_dispatcher: full
|
6039
5989
|
python_module: nn
|
6040
5990
|
dispatch:
|
6041
5991
|
CPU: max_pool3d_with_indices_backward_cpu
|
@@ -6048,6 +5998,7 @@
|
|
6048
5998
|
CUDA: max_unpooling2d_forward_out_cuda
|
6049
5999
|
|
6050
6000
|
- func: max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6001
|
+
use_c10_dispatcher: full
|
6051
6002
|
python_module: nn
|
6052
6003
|
dispatch:
|
6053
6004
|
CPU: max_unpooling2d_forward_cpu
|
@@ -6060,6 +6011,7 @@
|
|
6060
6011
|
CUDA: max_unpooling2d_backward_out_cuda
|
6061
6012
|
|
6062
6013
|
- func: max_unpool2d_backward(Tensor grad_output, Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6014
|
+
use_c10_dispatcher: full
|
6063
6015
|
python_module: nn
|
6064
6016
|
dispatch:
|
6065
6017
|
CPU: max_unpooling2d_backward_cpu
|
@@ -6072,6 +6024,7 @@
|
|
6072
6024
|
CUDA: max_unpooling3d_forward_out_cuda
|
6073
6025
|
|
6074
6026
|
- func: max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6027
|
+
use_c10_dispatcher: full
|
6075
6028
|
python_module: nn
|
6076
6029
|
dispatch:
|
6077
6030
|
CPU: max_unpooling3d_forward_cpu
|
@@ -6084,6 +6037,7 @@
|
|
6084
6037
|
CUDA: max_unpooling3d_backward_out_cuda
|
6085
6038
|
|
6086
6039
|
- func: max_unpool3d_backward(Tensor grad_output, Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6040
|
+
use_c10_dispatcher: full
|
6087
6041
|
python_module: nn
|
6088
6042
|
dispatch:
|
6089
6043
|
CPU: max_unpooling3d_backward_cpu
|
@@ -6096,10 +6050,12 @@
|
|
6096
6050
|
CUDA: reflection_pad1d_out_cuda
|
6097
6051
|
|
6098
6052
|
- func: reflection_pad1d(Tensor self, int[2] padding) -> Tensor
|
6053
|
+
use_c10_dispatcher: full
|
6099
6054
|
python_module: nn
|
6100
6055
|
dispatch:
|
6101
6056
|
CPU: reflection_pad1d_cpu
|
6102
6057
|
CUDA: reflection_pad1d_cuda
|
6058
|
+
QuantizedCPU: reflection_pad1d_cpu
|
6103
6059
|
|
6104
6060
|
- func: reflection_pad1d_backward.grad_input(Tensor grad_output, Tensor self, int[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6105
6061
|
python_module: nn
|
@@ -6108,6 +6064,7 @@
|
|
6108
6064
|
CUDA: reflection_pad1d_backward_out_cuda
|
6109
6065
|
|
6110
6066
|
- func: reflection_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6067
|
+
use_c10_dispatcher: full
|
6111
6068
|
python_module: nn
|
6112
6069
|
dispatch:
|
6113
6070
|
CPU: reflection_pad1d_backward_cpu
|
@@ -6120,6 +6077,7 @@
|
|
6120
6077
|
CUDA: reflection_pad2d_out_cuda
|
6121
6078
|
|
6122
6079
|
- func: reflection_pad2d(Tensor self, int[4] padding) -> Tensor
|
6080
|
+
use_c10_dispatcher: full
|
6123
6081
|
python_module: nn
|
6124
6082
|
dispatch:
|
6125
6083
|
CPU: reflection_pad2d_cpu
|
@@ -6132,6 +6090,7 @@
|
|
6132
6090
|
CUDA: reflection_pad2d_backward_out_cuda
|
6133
6091
|
|
6134
6092
|
- func: reflection_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6093
|
+
use_c10_dispatcher: full
|
6135
6094
|
python_module: nn
|
6136
6095
|
dispatch:
|
6137
6096
|
CPU: reflection_pad2d_backward_cpu
|
@@ -6144,6 +6103,7 @@
|
|
6144
6103
|
CUDA: replication_pad1d_out_cuda
|
6145
6104
|
|
6146
6105
|
- func: replication_pad1d(Tensor self, int[2] padding) -> Tensor
|
6106
|
+
use_c10_dispatcher: full
|
6147
6107
|
python_module: nn
|
6148
6108
|
dispatch:
|
6149
6109
|
CPU: replication_pad1d_cpu
|
@@ -6156,6 +6116,7 @@
|
|
6156
6116
|
CUDA: replication_pad1d_backward_out_cuda
|
6157
6117
|
|
6158
6118
|
- func: replication_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6119
|
+
use_c10_dispatcher: full
|
6159
6120
|
python_module: nn
|
6160
6121
|
dispatch:
|
6161
6122
|
CPU: replication_pad1d_backward_cpu
|
@@ -6168,6 +6129,7 @@
|
|
6168
6129
|
CUDA: replication_pad2d_out_cuda
|
6169
6130
|
|
6170
6131
|
- func: replication_pad2d(Tensor self, int[4] padding) -> Tensor
|
6132
|
+
use_c10_dispatcher: full
|
6171
6133
|
python_module: nn
|
6172
6134
|
dispatch:
|
6173
6135
|
CPU: replication_pad2d_cpu
|
@@ -6180,6 +6142,7 @@
|
|
6180
6142
|
CUDA: replication_pad2d_backward_out_cuda
|
6181
6143
|
|
6182
6144
|
- func: replication_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6145
|
+
use_c10_dispatcher: full
|
6183
6146
|
python_module: nn
|
6184
6147
|
dispatch:
|
6185
6148
|
CPU: replication_pad2d_backward_cpu
|
@@ -6192,6 +6155,7 @@
|
|
6192
6155
|
CUDA: replication_pad3d_out_cuda
|
6193
6156
|
|
6194
6157
|
- func: replication_pad3d(Tensor self, int[6] padding) -> Tensor
|
6158
|
+
use_c10_dispatcher: full
|
6195
6159
|
python_module: nn
|
6196
6160
|
dispatch:
|
6197
6161
|
CPU: replication_pad3d_cpu
|
@@ -6204,6 +6168,7 @@
|
|
6204
6168
|
CUDA: replication_pad3d_backward_out_cuda
|
6205
6169
|
|
6206
6170
|
- func: replication_pad3d_backward(Tensor grad_output, Tensor self, int[6] padding) -> Tensor
|
6171
|
+
use_c10_dispatcher: full
|
6207
6172
|
python_module: nn
|
6208
6173
|
dispatch:
|
6209
6174
|
CPU: replication_pad3d_backward_cpu
|
@@ -6216,6 +6181,7 @@
|
|
6216
6181
|
CUDA: upsample_linear1d_out_cuda
|
6217
6182
|
|
6218
6183
|
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
|
6184
|
+
use_c10_dispatcher: full
|
6219
6185
|
python_module: nn
|
6220
6186
|
dispatch:
|
6221
6187
|
CPU: upsample_linear1d_cpu
|
@@ -6228,6 +6194,7 @@
|
|
6228
6194
|
CUDA: upsample_linear1d_backward_out_cuda
|
6229
6195
|
|
6230
6196
|
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None) -> Tensor
|
6197
|
+
use_c10_dispatcher: full
|
6231
6198
|
python_module: nn
|
6232
6199
|
dispatch:
|
6233
6200
|
CPU: upsample_linear1d_backward_cpu
|
@@ -6240,6 +6207,7 @@
|
|
6240
6207
|
CUDA: upsample_bilinear2d_out_cuda
|
6241
6208
|
|
6242
6209
|
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6210
|
+
use_c10_dispatcher: full
|
6243
6211
|
python_module: nn
|
6244
6212
|
dispatch:
|
6245
6213
|
CPU: upsample_bilinear2d_cpu
|
@@ -6253,6 +6221,7 @@
|
|
6253
6221
|
CUDA: upsample_bilinear2d_backward_out_cuda
|
6254
6222
|
|
6255
6223
|
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6224
|
+
use_c10_dispatcher: full
|
6256
6225
|
python_module: nn
|
6257
6226
|
dispatch:
|
6258
6227
|
CPU: upsample_bilinear2d_backward_cpu
|
@@ -6265,6 +6234,7 @@
|
|
6265
6234
|
CUDA: upsample_bicubic2d_out_cuda
|
6266
6235
|
|
6267
6236
|
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6237
|
+
use_c10_dispatcher: full
|
6268
6238
|
python_module: nn
|
6269
6239
|
dispatch:
|
6270
6240
|
CPU: upsample_bicubic2d_cpu
|
@@ -6277,6 +6247,7 @@
|
|
6277
6247
|
CUDA: upsample_bicubic2d_backward_out_cuda
|
6278
6248
|
|
6279
6249
|
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6250
|
+
use_c10_dispatcher: full
|
6280
6251
|
python_module: nn
|
6281
6252
|
dispatch:
|
6282
6253
|
CPU: upsample_bicubic2d_backward_cpu
|
@@ -6289,6 +6260,7 @@
|
|
6289
6260
|
CUDA: upsample_trilinear3d_out_cuda
|
6290
6261
|
|
6291
6262
|
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6263
|
+
use_c10_dispatcher: full
|
6292
6264
|
python_module: nn
|
6293
6265
|
dispatch:
|
6294
6266
|
CPU: upsample_trilinear3d_cpu
|
@@ -6301,6 +6273,7 @@
|
|
6301
6273
|
CUDA: upsample_trilinear3d_backward_out_cuda
|
6302
6274
|
|
6303
6275
|
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6276
|
+
use_c10_dispatcher: full
|
6304
6277
|
python_module: nn
|
6305
6278
|
dispatch:
|
6306
6279
|
CPU: upsample_trilinear3d_backward_cpu
|
@@ -6313,6 +6286,7 @@
|
|
6313
6286
|
CUDA: upsample_nearest1d_out_cuda
|
6314
6287
|
|
6315
6288
|
- func: upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor
|
6289
|
+
use_c10_dispatcher: full
|
6316
6290
|
python_module: nn
|
6317
6291
|
dispatch:
|
6318
6292
|
CPU: upsample_nearest1d_cpu
|
@@ -6325,6 +6299,7 @@
|
|
6325
6299
|
CUDA: upsample_nearest1d_backward_out_cuda
|
6326
6300
|
|
6327
6301
|
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None) -> Tensor
|
6302
|
+
use_c10_dispatcher: full
|
6328
6303
|
python_module: nn
|
6329
6304
|
dispatch:
|
6330
6305
|
CPU: upsample_nearest1d_backward_cpu
|
@@ -6337,11 +6312,13 @@
|
|
6337
6312
|
CUDA: upsample_nearest2d_out_cuda
|
6338
6313
|
|
6339
6314
|
- func: upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6315
|
+
use_c10_dispatcher: full
|
6340
6316
|
python_module: nn
|
6341
6317
|
dispatch:
|
6342
6318
|
CPU: upsample_nearest2d_cpu
|
6343
6319
|
CUDA: upsample_nearest2d_cuda
|
6344
6320
|
QuantizedCPU: quantized_upsample_nearest2d_cpu
|
6321
|
+
Vulkan: upsample_nearest2d_vulkan
|
6345
6322
|
|
6346
6323
|
- func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6347
6324
|
python_module: nn
|
@@ -6350,6 +6327,7 @@
|
|
6350
6327
|
CUDA: upsample_nearest2d_backward_out_cuda
|
6351
6328
|
|
6352
6329
|
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6330
|
+
use_c10_dispatcher: full
|
6353
6331
|
python_module: nn
|
6354
6332
|
dispatch:
|
6355
6333
|
CPU: upsample_nearest2d_backward_cpu
|
@@ -6362,6 +6340,7 @@
|
|
6362
6340
|
CUDA: upsample_nearest3d_out_cuda
|
6363
6341
|
|
6364
6342
|
- func: upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6343
|
+
use_c10_dispatcher: full
|
6365
6344
|
python_module: nn
|
6366
6345
|
dispatch:
|
6367
6346
|
CPU: upsample_nearest3d_cpu
|
@@ -6375,6 +6354,7 @@
|
|
6375
6354
|
CUDA: upsample_nearest3d_backward_out_cuda
|
6376
6355
|
|
6377
6356
|
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6357
|
+
use_c10_dispatcher: full
|
6378
6358
|
python_module: nn
|
6379
6359
|
dispatch:
|
6380
6360
|
CPU: upsample_nearest3d_backward_cpu
|
@@ -6437,6 +6417,7 @@
|
|
6437
6417
|
CUDA: slow_conv_transpose2d_backward_out_cuda
|
6438
6418
|
|
6439
6419
|
- func: slow_conv_transpose2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6420
|
+
use_c10_dispatcher: full
|
6440
6421
|
python_module: nn
|
6441
6422
|
dispatch:
|
6442
6423
|
CPU: slow_conv_transpose2d_backward_cpu
|
@@ -6461,6 +6442,7 @@
|
|
6461
6442
|
CUDA: slow_conv_transpose3d_backward_out_cuda
|
6462
6443
|
|
6463
6444
|
- func: slow_conv_transpose3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6445
|
+
use_c10_dispatcher: full
|
6464
6446
|
python_module: nn
|
6465
6447
|
dispatch:
|
6466
6448
|
CPU: slow_conv_transpose3d_backward_cpu
|
@@ -6488,13 +6470,14 @@
|
|
6488
6470
|
python_module: nn
|
6489
6471
|
dispatch:
|
6490
6472
|
CPU: slow_conv2d_backward_out_cpu
|
6491
|
-
CUDA:
|
6473
|
+
CUDA: slow_conv2d_backward_out_cuda
|
6492
6474
|
|
6493
6475
|
- func: thnn_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6476
|
+
use_c10_dispatcher: full
|
6494
6477
|
python_module: nn
|
6495
6478
|
dispatch:
|
6496
6479
|
CPU: slow_conv2d_backward_cpu
|
6497
|
-
CUDA:
|
6480
|
+
CUDA: slow_conv2d_backward_cuda
|
6498
6481
|
|
6499
6482
|
- func: thnn_conv_depthwise2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
6500
6483
|
python_module: nn
|
@@ -6515,12 +6498,13 @@
|
|
6515
6498
|
- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight) -> (Tensor(a!), Tensor(b!))
|
6516
6499
|
python_module: nn
|
6517
6500
|
dispatch:
|
6518
|
-
CUDA:
|
6501
|
+
CUDA: thnn_conv_depthwise2d_backward_out
|
6519
6502
|
|
6520
6503
|
- func: thnn_conv_depthwise2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[2] output_mask) -> (Tensor grad_input, Tensor grad_weight)
|
6504
|
+
use_c10_dispatcher: full
|
6521
6505
|
python_module: nn
|
6522
6506
|
dispatch:
|
6523
|
-
CUDA:
|
6507
|
+
CUDA: thnn_conv_depthwise2d_backward
|
6524
6508
|
|
6525
6509
|
- func: slow_conv3d.out(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, *, Tensor(a!) out) -> Tensor(a!)
|
6526
6510
|
python_module: nn
|
@@ -6544,6 +6528,7 @@
|
|
6544
6528
|
CPU: slow_conv3d_backward_out_cpu
|
6545
6529
|
|
6546
6530
|
- func: slow_conv3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6531
|
+
use_c10_dispatcher: full
|
6547
6532
|
python_module: nn
|
6548
6533
|
dispatch:
|
6549
6534
|
CPU: slow_conv3d_backward_cpu
|
@@ -6555,6 +6540,7 @@
|
|
6555
6540
|
CUDA: slow_conv_dilated2d_cuda
|
6556
6541
|
|
6557
6542
|
- func: slow_conv_dilated2d_backward(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6543
|
+
use_c10_dispatcher: full
|
6558
6544
|
python_module: nn
|
6559
6545
|
dispatch:
|
6560
6546
|
CPU: slow_conv_dilated2d_backward_cpu
|
@@ -6567,6 +6553,7 @@
|
|
6567
6553
|
CUDA: slow_conv_dilated3d_cuda
|
6568
6554
|
|
6569
6555
|
- func: slow_conv_dilated3d_backward(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6556
|
+
use_c10_dispatcher: full
|
6570
6557
|
python_module: nn
|
6571
6558
|
dispatch:
|
6572
6559
|
CPU: slow_conv_dilated3d_backward_cpu
|
@@ -6579,6 +6566,7 @@
|
|
6579
6566
|
CUDA: col2im_out_cuda
|
6580
6567
|
|
6581
6568
|
- func: col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6569
|
+
use_c10_dispatcher: full
|
6582
6570
|
python_module: nn
|
6583
6571
|
dispatch:
|
6584
6572
|
CPU: col2im_cpu
|
@@ -6591,6 +6579,7 @@
|
|
6591
6579
|
CUDA: col2im_backward_out_cuda
|
6592
6580
|
|
6593
6581
|
- func: col2im_backward(Tensor grad_output, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6582
|
+
use_c10_dispatcher: full
|
6594
6583
|
python_module: nn
|
6595
6584
|
dispatch:
|
6596
6585
|
CPU: col2im_backward_cpu
|
@@ -6603,6 +6592,7 @@
|
|
6603
6592
|
CUDA: im2col_out_cuda
|
6604
6593
|
|
6605
6594
|
- func: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6595
|
+
use_c10_dispatcher: full
|
6606
6596
|
python_module: nn
|
6607
6597
|
dispatch:
|
6608
6598
|
CPU: im2col_cpu
|
@@ -6615,6 +6605,7 @@
|
|
6615
6605
|
CUDA: im2col_backward_out_cuda
|
6616
6606
|
|
6617
6607
|
- func: im2col_backward(Tensor grad_output, int[2] input_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6608
|
+
use_c10_dispatcher: full
|
6618
6609
|
python_module: nn
|
6619
6610
|
dispatch:
|
6620
6611
|
CPU: im2col_backward_cpu
|
@@ -6622,12 +6613,15 @@
|
|
6622
6613
|
|
6623
6614
|
- func: isfinite(Tensor self) -> Tensor
|
6624
6615
|
use_c10_dispatcher: full
|
6625
|
-
variants: function
|
6616
|
+
variants: function, method
|
6626
6617
|
device_guard: False
|
6627
|
-
supports_named_tensor: True
|
6628
6618
|
|
6629
6619
|
- func: isinf(Tensor self) -> Tensor
|
6630
6620
|
use_c10_dispatcher: full
|
6631
|
-
variants: function
|
6621
|
+
variants: function, method
|
6632
6622
|
device_guard: False
|
6633
|
-
|
6623
|
+
|
6624
|
+
# Note: this function is only for testing.
|
6625
|
+
# It is undocumented and should not be used outside of tests.
|
6626
|
+
- func: _test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=1) -> Tensor
|
6627
|
+
use_c10_dispatcher: full
|