torch-ddp 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/LICENSE.txt +46 -0
- data/README.md +114 -0
- data/bin/torchrun +6 -0
- data/examples/benchmark/training.rb +374 -0
- data/examples/mnist/distributed.rb +240 -0
- data/ext/torch_ddp/distributed.cpp +348 -0
- data/ext/torch_ddp/ext.cpp +11 -0
- data/ext/torch_ddp/extconf.rb +155 -0
- data/lib/torch/ddp/monkey_patch.rb +325 -0
- data/lib/torch/ddp/version.rb +5 -0
- data/lib/torch/distributed.rb +466 -0
- data/lib/torch/nn/parallel/distributed_data_parallel.rb +115 -0
- data/lib/torch/torchrun.rb +531 -0
- data/lib/torch-ddp.rb +8 -0
- data/test/distributed_test.rb +243 -0
- data/test/support/net.rb +42 -0
- data/test/support/scripts/show_ranks.rb +7 -0
- data/test/support/tensor.pth +0 -0
- data/test/test_helper.rb +71 -0
- data/test/torchrun_test.rb +33 -0
- metadata +92 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
---
|
|
2
|
+
SHA256:
|
|
3
|
+
metadata.gz: 01d7ef15d46b7d5ce121a60f0293d96300674a08ad1ae955f9732bd3d60ecdbd
|
|
4
|
+
data.tar.gz: f1a67feaa2252260a2b549c4022f0db06cdc816c520ec414a0a1a68b3a26b1e9
|
|
5
|
+
SHA512:
|
|
6
|
+
metadata.gz: d166257ca64d58ad7783745fdcf8f0606f18bceb8ca07fa01fff12d4acf10976564a6d8764098afffecc0befebc8f38dd88bbaef61984af6bffb7d13493ce056
|
|
7
|
+
data.tar.gz: 43d0f74ef949c8c4ac9c37c28ae03df2d2cbba9a4a10442a198a11a520018cdd4bd69992a791e1e9419715816d6b97a1dd07ada5e1d5ed04b6f83dc2227fa4c8
|
data/LICENSE.txt
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
BSD 3-Clause License
|
|
2
|
+
|
|
3
|
+
From Torch-rb:
|
|
4
|
+
|
|
5
|
+
Copyright (c) 2019- Andrew Kane
|
|
6
|
+
|
|
7
|
+
From PyTorch (for ported code):
|
|
8
|
+
|
|
9
|
+
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
|
10
|
+
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
|
11
|
+
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
|
12
|
+
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
|
13
|
+
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
|
14
|
+
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
|
15
|
+
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
|
|
16
|
+
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
|
|
17
|
+
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
|
|
18
|
+
|
|
19
|
+
All rights reserved.
|
|
20
|
+
|
|
21
|
+
Redistribution and use in source and binary forms, with or without
|
|
22
|
+
modification, are permitted provided that the following conditions are met:
|
|
23
|
+
|
|
24
|
+
1. Redistributions of source code must retain the above copyright
|
|
25
|
+
notice, this list of conditions and the following disclaimer.
|
|
26
|
+
|
|
27
|
+
2. Redistributions in binary form must reproduce the above copyright
|
|
28
|
+
notice, this list of conditions and the following disclaimer in the
|
|
29
|
+
documentation and/or other materials provided with the distribution.
|
|
30
|
+
|
|
31
|
+
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
|
|
32
|
+
and IDIAP Research Institute nor the names of its contributors may be
|
|
33
|
+
used to endorse or promote products derived from this software without
|
|
34
|
+
specific prior written permission.
|
|
35
|
+
|
|
36
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
37
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
38
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
39
|
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
40
|
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
41
|
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
42
|
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
43
|
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
44
|
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
45
|
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
46
|
+
POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
# Torch DDP
|
|
2
|
+
|
|
3
|
+
Optional distributed data parallel support for [`torch-rb`](https://github.com/ankane/torch.rb). It adds the `Torch::Distributed` API, a `DistributedDataParallel` wrapper, and a `torchrun` launcher that mirrors the PyTorch CLI.
|
|
4
|
+
|
|
5
|
+
Note: This gem has only seen testing across a narrow set of multi-GPU setups (limited Linux versions, drivers, and interconnects), so expect rough edges and please report issues you find.
|
|
6
|
+
|
|
7
|
+
## Installation
|
|
8
|
+
|
|
9
|
+
Build LibTorch with distributed backends (Gloo for CPU, NCCL for CUDA). Point the extension at your LibTorch, CUDA, and optional Gloo includes:
|
|
10
|
+
|
|
11
|
+
```sh
|
|
12
|
+
bundle config build.torch-ddp --with-torch-dir=/path/to/libtorch --with-gloo-include=/path/to/gloo
|
|
13
|
+
```
|
|
14
|
+
|
|
15
|
+
If your CUDA or Gloo headers aren't in standard locations, extend the build config:
|
|
16
|
+
|
|
17
|
+
```sh
|
|
18
|
+
bundle config build.torch-ddp --with-torch-dir=/path/to/libtorch --with-cuda-include=/path/to/cuda/include --with-gloo-include=/path/to/gloo/repo
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
Add the gem next to `torch-rb`:
|
|
22
|
+
|
|
23
|
+
```ruby
|
|
24
|
+
gem "torch-rb"
|
|
25
|
+
gem "torch-ddp"
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
## Usage
|
|
29
|
+
|
|
30
|
+
Initialize a process group and wrap your module:
|
|
31
|
+
|
|
32
|
+
```ruby
|
|
33
|
+
require "torch/distributed"
|
|
34
|
+
|
|
35
|
+
Torch::Distributed.init_process_group
|
|
36
|
+
ddp = Torch::NN::Parallel::DistributedDataParallel.new(model)
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
For single-node launches, `torchrun` will set ranks and world size for you:
|
|
40
|
+
|
|
41
|
+
```sh
|
|
42
|
+
bundle exec torchrun --standalone --nproc-per-node=gpu path/to/training_script.rb
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
Torch.rb ships with a `torchrun` launcher that handles process orchestration and sets the `RANK`, `LOCAL_RANK`, `WORLD_SIZE`, `MASTER_ADDR`, and `MASTER_PORT` environment variables expected by `Torch::Distributed.init_process_group`.
|
|
46
|
+
|
|
47
|
+
For multi-node runs, launch the same command on every node with matching rendezvous settings:
|
|
48
|
+
|
|
49
|
+
```sh
|
|
50
|
+
bundle exec torchrun \
|
|
51
|
+
--nnodes=2 \
|
|
52
|
+
--node-rank=0 \
|
|
53
|
+
--rdzv-backend=c10d \
|
|
54
|
+
--rdzv-endpoint=host0.example.com:29503 \
|
|
55
|
+
--rdzv-id=my-job \
|
|
56
|
+
--nproc-per-node=4 \
|
|
57
|
+
path/to/training_script.rb
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
On node 1, change `--node-rank=1`. The launcher restarts workers up to `--max-restarts` times and can be combined with tools like `bundle exec` or custom scripts via `--no-ruby`.
|
|
61
|
+
|
|
62
|
+
Use `Torch::Distributed.fork_world` for test helpers and small experiments without a launcher. Set `start_method: :spawn` to launch fresh worker processes instead of forking (avoids CUDA fork issues).
|
|
63
|
+
|
|
64
|
+
## Examples
|
|
65
|
+
|
|
66
|
+
Run the distributed MNIST sample (spawns one process per GPU):
|
|
67
|
+
|
|
68
|
+
```sh
|
|
69
|
+
bundle exec ruby examples/mnist/distributed.rb --gpus 2
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
or
|
|
73
|
+
```sh
|
|
74
|
+
bundle exec torchrun --standalone --nproc-per-node=gpu examples/mnist/distributed.rb
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
Run the training benchmark (variable batch size / GPU count):
|
|
78
|
+
|
|
79
|
+
```sh
|
|
80
|
+
bundle exec ruby examples/benchmark/training.rb --arch mnist_cnn --batch-size 256 --gpus 1 --steps 50
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
Set `--gpus` to 2+ to enable distributed training; `--steps` measures only timed steps and `--warmup` sets warmup iterations.
|
|
84
|
+
|
|
85
|
+
Generate a comparison table across backends, group sizes, and batch sizes:
|
|
86
|
+
|
|
87
|
+
```sh
|
|
88
|
+
bundle exec ruby examples/benchmark/training.rb --backends gloo,nccl --batch-sizes 32,64,128,256 --gpus 2 --steps 50
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
Example results on dual RTX 3090s:
|
|
92
|
+
Processing speed: images per second. Convergence speed: average loss reduction per step and per second.
|
|
93
|
+
|
|
94
|
+
```text
|
|
95
|
+
Backend | Proc Group | Batch | Images/s |
|
|
96
|
+
--------+------------+-------+----------|
|
|
97
|
+
gloo | 1 | 32 | 1724.4 |
|
|
98
|
+
gloo | 1 | 64 | 1941.8 |
|
|
99
|
+
gloo | 1 | 128 | 2038.7 |
|
|
100
|
+
gloo | 1 | 256 | 2171.8 |
|
|
101
|
+
gloo | 2 | 32 | 2261.0 |
|
|
102
|
+
gloo | 2 | 64 | 2870.6 |
|
|
103
|
+
gloo | 2 | 128 | 3398.4 |
|
|
104
|
+
gloo | 2 | 256 | 3743.1 |
|
|
105
|
+
nccl | 1 | 32 | 1804.8 |
|
|
106
|
+
nccl | 1 | 64 | 1963.0 |
|
|
107
|
+
nccl | 1 | 128 | 2051.5 |
|
|
108
|
+
nccl | 1 | 256 | 2143.3 |
|
|
109
|
+
nccl | 2 | 32 | 3046.1 |
|
|
110
|
+
nccl | 2 | 64 | 3513.6 |
|
|
111
|
+
nccl | 2 | 128 | 3892.1 |
|
|
112
|
+
nccl | 2 | 256 | 4024.5 |
|
|
113
|
+
--------+------------+-------+----------|
|
|
114
|
+
```
|
data/bin/torchrun
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
1
|
+
# Benchmark training throughput for common architectures/datasets.
|
|
2
|
+
# Usage examples:
|
|
3
|
+
# ruby examples/benchmark/training.rb --arch mnist_cnn --batch-size 128 --gpus 1
|
|
4
|
+
# ruby examples/benchmark/training.rb --arch mnist_cnn --batch-size 128 --gpus 2 --steps 50
|
|
5
|
+
|
|
6
|
+
require "bundler/setup"
|
|
7
|
+
require "optparse"
|
|
8
|
+
require "torch"
|
|
9
|
+
require "torch/distributed"
|
|
10
|
+
require "torch/nn/parallel/distributed_data_parallel"
|
|
11
|
+
require "torchvision"
|
|
12
|
+
|
|
13
|
+
DEFAULT_BACKEND = if Torch.const_defined?(:CUDA) && Torch::CUDA.respond_to?(:available?) && Torch::CUDA.available?
|
|
14
|
+
"nccl"
|
|
15
|
+
else
|
|
16
|
+
Torch::Distributed.get_default_backend_for_device(Torch::Accelerator.current_accelerator) || "gloo"
|
|
17
|
+
end
|
|
18
|
+
SPAWN_BACKEND_ENV = "TORCH_RB_BENCH_BACKEND".freeze
|
|
19
|
+
SPAWN_GROUP_ENV = "TORCH_RB_BENCH_GROUP_SIZE".freeze
|
|
20
|
+
SPAWN_BATCH_ENV = "TORCH_RB_BENCH_BATCH_SIZE".freeze
|
|
21
|
+
|
|
22
|
+
def parse_list(value)
|
|
23
|
+
value.split(",").map(&:strip).reject(&:empty?)
|
|
24
|
+
end
|
|
25
|
+
|
|
26
|
+
def backend_supported?(backend)
|
|
27
|
+
return true unless backend == "nccl"
|
|
28
|
+
|
|
29
|
+
Torch.const_defined?(:CUDA) && Torch::CUDA.respond_to?(:available?) && Torch::CUDA.available?
|
|
30
|
+
end
|
|
31
|
+
|
|
32
|
+
def usable_cuda_device_count
|
|
33
|
+
return 0 unless Torch.const_defined?(:CUDA) && Torch::CUDA.respond_to?(:available?) && Torch::CUDA.available?
|
|
34
|
+
|
|
35
|
+
Torch::CUDA.respond_to?(:device_count) ? Torch::CUDA.device_count : 0
|
|
36
|
+
rescue
|
|
37
|
+
0
|
|
38
|
+
end
|
|
39
|
+
|
|
40
|
+
def spawn_worker_process?
|
|
41
|
+
ENV[Torch::Distributed::SPAWN_ENV_KEY] == "1"
|
|
42
|
+
end
|
|
43
|
+
|
|
44
|
+
def apply_spawn_overrides!(options)
|
|
45
|
+
return unless ENV[Torch::Distributed::SPAWN_ENV_KEY] == "1"
|
|
46
|
+
|
|
47
|
+
if ENV[SPAWN_BACKEND_ENV]
|
|
48
|
+
options[:backends] = [ENV[SPAWN_BACKEND_ENV]]
|
|
49
|
+
end
|
|
50
|
+
|
|
51
|
+
if ENV[SPAWN_GROUP_ENV]
|
|
52
|
+
group_size = ENV[SPAWN_GROUP_ENV].to_i
|
|
53
|
+
if group_size.positive?
|
|
54
|
+
options[:group_sizes] = [group_size]
|
|
55
|
+
options[:gpus] = group_size
|
|
56
|
+
end
|
|
57
|
+
end
|
|
58
|
+
|
|
59
|
+
if ENV[SPAWN_BATCH_ENV]
|
|
60
|
+
batch_size = ENV[SPAWN_BATCH_ENV].to_i
|
|
61
|
+
options[:batch_sizes] = [batch_size] if batch_size.positive?
|
|
62
|
+
end
|
|
63
|
+
end
|
|
64
|
+
|
|
65
|
+
def with_spawn_env(backend:, group_size:, batch_size:)
|
|
66
|
+
previous = {
|
|
67
|
+
SPAWN_BACKEND_ENV => ENV[SPAWN_BACKEND_ENV],
|
|
68
|
+
SPAWN_GROUP_ENV => ENV[SPAWN_GROUP_ENV],
|
|
69
|
+
SPAWN_BATCH_ENV => ENV[SPAWN_BATCH_ENV]
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
ENV[SPAWN_BACKEND_ENV] = backend
|
|
73
|
+
ENV[SPAWN_GROUP_ENV] = group_size.to_s
|
|
74
|
+
ENV[SPAWN_BATCH_ENV] = batch_size.to_s
|
|
75
|
+
|
|
76
|
+
yield
|
|
77
|
+
ensure
|
|
78
|
+
ENV[SPAWN_BACKEND_ENV] = previous[SPAWN_BACKEND_ENV]
|
|
79
|
+
ENV[SPAWN_GROUP_ENV] = previous[SPAWN_GROUP_ENV]
|
|
80
|
+
ENV[SPAWN_BATCH_ENV] = previous[SPAWN_BATCH_ENV]
|
|
81
|
+
end
|
|
82
|
+
|
|
83
|
+
class MnistCnn < Torch::NN::Module
|
|
84
|
+
def initialize
|
|
85
|
+
super()
|
|
86
|
+
@conv1 = Torch::NN::Conv2d.new(1, 32, 3, stride: 1)
|
|
87
|
+
@conv2 = Torch::NN::Conv2d.new(32, 64, 3, stride: 1)
|
|
88
|
+
@dropout1 = Torch::NN::Dropout2d.new(p: 0.25)
|
|
89
|
+
@dropout2 = Torch::NN::Dropout2d.new(p: 0.5)
|
|
90
|
+
@fc1 = Torch::NN::Linear.new(9216, 128)
|
|
91
|
+
@fc2 = Torch::NN::Linear.new(128, 10)
|
|
92
|
+
end
|
|
93
|
+
|
|
94
|
+
def forward(x)
|
|
95
|
+
x = Torch::NN::F.relu(@conv1.call(x))
|
|
96
|
+
x = Torch::NN::F.relu(@conv2.call(x))
|
|
97
|
+
x = Torch::NN::F.max_pool2d(x, 2)
|
|
98
|
+
x = @dropout1.call(x)
|
|
99
|
+
x = Torch.flatten(x, start_dim: 1)
|
|
100
|
+
x = Torch::NN::F.relu(@fc1.call(x))
|
|
101
|
+
x = @dropout2.call(x)
|
|
102
|
+
Torch::NN::F.log_softmax(@fc2.call(x), 1)
|
|
103
|
+
end
|
|
104
|
+
end
|
|
105
|
+
|
|
106
|
+
ARCH_CONFIGS = {
|
|
107
|
+
"mnist_cnn" => {
|
|
108
|
+
model: -> { MnistCnn.new },
|
|
109
|
+
dataset: :mnist
|
|
110
|
+
}
|
|
111
|
+
}.freeze
|
|
112
|
+
|
|
113
|
+
def parse_options
|
|
114
|
+
defaults = {
|
|
115
|
+
arch: "mnist_cnn",
|
|
116
|
+
batch_sizes: [128],
|
|
117
|
+
steps: 100,
|
|
118
|
+
warmup: 10,
|
|
119
|
+
backends: [DEFAULT_BACKEND],
|
|
120
|
+
gpus: Torch::CUDA.available? ? [Torch::CUDA.device_count, 1].max : 1,
|
|
121
|
+
group_sizes: nil,
|
|
122
|
+
data_dir: File.join(__dir__, "data"),
|
|
123
|
+
lr: 0.01
|
|
124
|
+
}
|
|
125
|
+
|
|
126
|
+
OptionParser.new do |opts|
|
|
127
|
+
opts.banner = "Usage: ruby examples/benchmark/training.rb [options]"
|
|
128
|
+
opts.on("--arch NAME", "Architecture to benchmark (#{ARCH_CONFIGS.keys.join(', ')}, default: #{defaults[:arch]})") { |v| defaults[:arch] = v }
|
|
129
|
+
opts.on("--batch-size N", Integer, "Batch size per process (default: #{defaults[:batch_sizes].first})") { |v| defaults[:batch_sizes] = [v] }
|
|
130
|
+
opts.on("--batch-sizes LIST", String, "Comma-separated batch sizes per process") { |v| defaults[:batch_sizes] = parse_list(v).map(&:to_i) }
|
|
131
|
+
opts.on("--steps N", Integer, "Number of timed training steps (default: #{defaults[:steps]})") { |v| defaults[:steps] = v }
|
|
132
|
+
opts.on("--warmup N", Integer, "Number of warmup steps not included in timing (default: #{defaults[:warmup]})") { |v| defaults[:warmup] = v }
|
|
133
|
+
opts.on("--backend NAME", String, "Process group backend (default: #{defaults[:backends].first})") { |v| defaults[:backends] = [v] }
|
|
134
|
+
opts.on("--backends LIST", String, "Comma-separated list of backends to benchmark (gloo,nccl)") { |v| defaults[:backends] = parse_list(v) }
|
|
135
|
+
opts.on("--gpus N", Integer, "Number of GPUs/processes to use (1 for non-distributed)") { |v| defaults[:gpus] = v }
|
|
136
|
+
opts.on("--group-sizes LIST", String, "Process group sizes to benchmark (default: 1..gpus)") { |v| defaults[:group_sizes] = parse_list(v).map(&:to_i) }
|
|
137
|
+
opts.on("--data-dir PATH", String, "Directory for cached datasets (default: #{defaults[:data_dir]})") { |v| defaults[:data_dir] = v }
|
|
138
|
+
opts.on("--lr FLOAT", Float, "Learning rate (default: #{defaults[:lr]})") { |v| defaults[:lr] = v }
|
|
139
|
+
end.parse!(ARGV)
|
|
140
|
+
|
|
141
|
+
defaults[:group_sizes] ||= (1..defaults[:gpus]).to_a
|
|
142
|
+
defaults
|
|
143
|
+
end
|
|
144
|
+
|
|
145
|
+
def dataset_for(name, data_dir, distributed:, rank:, world_size:)
|
|
146
|
+
case name
|
|
147
|
+
when :mnist
|
|
148
|
+
transforms = TorchVision::Transforms::Compose.new([
|
|
149
|
+
TorchVision::Transforms::ToTensor.new,
|
|
150
|
+
TorchVision::Transforms::Normalize.new([0.1307], [0.3081])
|
|
151
|
+
])
|
|
152
|
+
|
|
153
|
+
if distributed
|
|
154
|
+
if rank.zero?
|
|
155
|
+
train = TorchVision::Datasets::MNIST.new(data_dir, train: true, download: true, transform: transforms)
|
|
156
|
+
Torch::Distributed.barrier
|
|
157
|
+
else
|
|
158
|
+
Torch::Distributed.barrier
|
|
159
|
+
train = TorchVision::Datasets::MNIST.new(data_dir, train: true, download: false, transform: transforms)
|
|
160
|
+
end
|
|
161
|
+
indices = rank.step(train.size - 1, world_size).to_a
|
|
162
|
+
Torch::Utils::Data::Subset.new(train, indices)
|
|
163
|
+
else
|
|
164
|
+
TorchVision::Datasets::MNIST.new(data_dir, train: true, download: true, transform: transforms)
|
|
165
|
+
end
|
|
166
|
+
else
|
|
167
|
+
raise ArgumentError, "Unknown dataset: #{name}"
|
|
168
|
+
end
|
|
169
|
+
end
|
|
170
|
+
|
|
171
|
+
def sync_cuda_if_needed(device)
|
|
172
|
+
return unless device && device.type == "cuda"
|
|
173
|
+
return unless Torch.const_defined?(:CUDA) && Torch::CUDA.respond_to?(:synchronize)
|
|
174
|
+
|
|
175
|
+
Torch::CUDA.synchronize
|
|
176
|
+
end
|
|
177
|
+
|
|
178
|
+
def benchmark_worker(rank, world_size, port, options)
|
|
179
|
+
arch = options.fetch(:arch)
|
|
180
|
+
config = ARCH_CONFIGS[arch]
|
|
181
|
+
raise ArgumentError, "Unsupported architecture #{arch.inspect}" unless config
|
|
182
|
+
|
|
183
|
+
distributed = world_size > 1
|
|
184
|
+
accelerator = Torch::Accelerator.current_accelerator
|
|
185
|
+
selected_backend = options[:backend] || Torch::Distributed.get_default_backend_for_device(accelerator) || DEFAULT_BACKEND
|
|
186
|
+
if distributed
|
|
187
|
+
store = Torch::Distributed::TCPStore.new("127.0.0.1", port, world_size, rank.zero?)
|
|
188
|
+
Torch::Distributed.init_process_group(selected_backend, store: store, rank: rank, world_size: world_size)
|
|
189
|
+
end
|
|
190
|
+
|
|
191
|
+
cuda_devices = usable_cuda_device_count
|
|
192
|
+
device = if cuda_devices.positive? && options[:gpus] > 0
|
|
193
|
+
Torch.device("cuda:#{rank % cuda_devices}")
|
|
194
|
+
else
|
|
195
|
+
Torch.device("cpu")
|
|
196
|
+
end
|
|
197
|
+
|
|
198
|
+
model = config[:model].call.to(device)
|
|
199
|
+
if distributed
|
|
200
|
+
ddp_devices = device.type == "cuda" ? [device.index] : nil
|
|
201
|
+
model = Torch::NN::Parallel::DistributedDataParallel.new(model, device_ids: ddp_devices)
|
|
202
|
+
end
|
|
203
|
+
optimizer = Torch::Optim::SGD.new(model.parameters, lr: options[:lr])
|
|
204
|
+
|
|
205
|
+
loader = Torch::Utils::Data::DataLoader.new(
|
|
206
|
+
dataset_for(config[:dataset], options[:data_dir], distributed: distributed, rank: rank, world_size: world_size),
|
|
207
|
+
batch_size: options[:batch_size],
|
|
208
|
+
shuffle: true
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
warmup_steps = options[:warmup]
|
|
212
|
+
timed_steps = options[:steps]
|
|
213
|
+
total_steps = warmup_steps + timed_steps
|
|
214
|
+
losses = []
|
|
215
|
+
|
|
216
|
+
# Warm up the model (including one full timed-length pass) to avoid init overhead in measurements.
|
|
217
|
+
step_idx = 0
|
|
218
|
+
loader.each do |data, target|
|
|
219
|
+
data = data.to(device)
|
|
220
|
+
target = target.to(device)
|
|
221
|
+
|
|
222
|
+
optimizer.zero_grad
|
|
223
|
+
loss = Torch::NN::F.nll_loss(model.call(data), target)
|
|
224
|
+
loss.backward
|
|
225
|
+
optimizer.step
|
|
226
|
+
|
|
227
|
+
step_idx += 1
|
|
228
|
+
break if step_idx >= total_steps
|
|
229
|
+
end
|
|
230
|
+
|
|
231
|
+
sync_cuda_if_needed(device)
|
|
232
|
+
Torch::Distributed.barrier if distributed
|
|
233
|
+
|
|
234
|
+
timed = 0
|
|
235
|
+
step_idx = 0
|
|
236
|
+
start = Process.clock_gettime(Process::CLOCK_MONOTONIC)
|
|
237
|
+
loader.each do |data, target|
|
|
238
|
+
data = data.to(device)
|
|
239
|
+
target = target.to(device)
|
|
240
|
+
|
|
241
|
+
optimizer.zero_grad
|
|
242
|
+
loss = Torch::NN::F.nll_loss(model.call(data), target)
|
|
243
|
+
loss.backward
|
|
244
|
+
optimizer.step
|
|
245
|
+
|
|
246
|
+
loss_value = loss.item
|
|
247
|
+
if distributed
|
|
248
|
+
loss_tensor = Torch.tensor([loss_value], device: device)
|
|
249
|
+
Torch::Distributed.all_reduce(loss_tensor)
|
|
250
|
+
loss_value = loss_tensor.item / world_size.to_f
|
|
251
|
+
end
|
|
252
|
+
losses << loss_value if !distributed || rank.zero?
|
|
253
|
+
|
|
254
|
+
step_idx += 1
|
|
255
|
+
break if step_idx >= timed_steps
|
|
256
|
+
end
|
|
257
|
+
|
|
258
|
+
sync_cuda_if_needed(device)
|
|
259
|
+
Torch::Distributed.barrier if distributed
|
|
260
|
+
elapsed = Process.clock_gettime(Process::CLOCK_MONOTONIC) - start
|
|
261
|
+
timed = step_idx
|
|
262
|
+
|
|
263
|
+
images = timed * options[:batch_size] * world_size
|
|
264
|
+
throughput = elapsed.positive? ? images.to_f / elapsed : 0.0
|
|
265
|
+
initial_loss = losses.first || 0.0
|
|
266
|
+
final_loss = losses.last || initial_loss
|
|
267
|
+
loss_delta = initial_loss - final_loss
|
|
268
|
+
loss_delta_per_step = timed.zero? ? 0.0 : loss_delta / timed
|
|
269
|
+
loss_delta_per_sec = elapsed.zero? ? 0.0 : loss_delta / elapsed
|
|
270
|
+
|
|
271
|
+
result = if !distributed || rank.zero?
|
|
272
|
+
{
|
|
273
|
+
backend: selected_backend,
|
|
274
|
+
world_size: world_size,
|
|
275
|
+
batch_size: options[:batch_size],
|
|
276
|
+
arch: arch,
|
|
277
|
+
dataset: config[:dataset],
|
|
278
|
+
elapsed: elapsed,
|
|
279
|
+
timed_steps: timed,
|
|
280
|
+
images: images,
|
|
281
|
+
throughput: throughput,
|
|
282
|
+
initial_loss: initial_loss,
|
|
283
|
+
final_loss: final_loss,
|
|
284
|
+
loss_delta: loss_delta,
|
|
285
|
+
loss_delta_per_step: loss_delta_per_step,
|
|
286
|
+
loss_delta_per_sec: loss_delta_per_sec
|
|
287
|
+
}
|
|
288
|
+
end
|
|
289
|
+
|
|
290
|
+
Torch::Distributed.destroy_process_group if distributed
|
|
291
|
+
result
|
|
292
|
+
end
|
|
293
|
+
|
|
294
|
+
def run_benchmark_case(world_size, options)
|
|
295
|
+
if world_size > 1
|
|
296
|
+
outputs = Torch::Distributed.fork_world(world_size, start_method: :spawn) do |rank, port|
|
|
297
|
+
benchmark_worker(rank, world_size, port, options)
|
|
298
|
+
end
|
|
299
|
+
outputs.compact.first
|
|
300
|
+
else
|
|
301
|
+
benchmark_worker(0, 1, Torch::Distributed.free_port, options)
|
|
302
|
+
end
|
|
303
|
+
end
|
|
304
|
+
|
|
305
|
+
def print_summary_table(results)
|
|
306
|
+
puts "\nBenchmark comparison (processing vs convergence)"
|
|
307
|
+
puts "Processing speed: images per second. Convergence speed: average loss reduction per step and per second.\n"
|
|
308
|
+
|
|
309
|
+
headers = ["Backend", "Proc Group", "Batch", "Images/s", "Loss delta/step", "Loss delta/s", "Final loss"]
|
|
310
|
+
formatters = [
|
|
311
|
+
->(r) { r[:backend] },
|
|
312
|
+
->(r) { r[:world_size] },
|
|
313
|
+
->(r) { r[:batch_size] },
|
|
314
|
+
->(r) { format("%.1f", r[:throughput]) },
|
|
315
|
+
->(r) { format("%.4f", r[:loss_delta_per_step]) },
|
|
316
|
+
->(r) { format("%.4f", r[:loss_delta_per_sec]) },
|
|
317
|
+
->(r) { format("%.4f", r[:final_loss]) }
|
|
318
|
+
]
|
|
319
|
+
|
|
320
|
+
widths = headers.each_with_index.map do |header, idx|
|
|
321
|
+
[header.length, results.map { |r| formatters[idx].call(r).to_s.length }.max].compact.max
|
|
322
|
+
end
|
|
323
|
+
|
|
324
|
+
header_line = headers.each_with_index.map { |h, idx| h.ljust(widths[idx]) }.join(" | ")
|
|
325
|
+
divider = widths.map { |w| "-" * w }.join("-+-")
|
|
326
|
+
puts header_line
|
|
327
|
+
puts divider
|
|
328
|
+
|
|
329
|
+
results.sort_by { |r| [r[:backend], r[:world_size], r[:batch_size]] }.each do |result|
|
|
330
|
+
row = formatters.each_with_index.map { |formatter, idx| formatter.call(result).to_s.ljust(widths[idx]) }
|
|
331
|
+
puts row.join(" | ")
|
|
332
|
+
end
|
|
333
|
+
end
|
|
334
|
+
|
|
335
|
+
options = parse_options
|
|
336
|
+
apply_spawn_overrides!(options)
|
|
337
|
+
max_world_size = options[:gpus]
|
|
338
|
+
raise "Number of GPUs requested must be >= 1" if max_world_size < 1
|
|
339
|
+
Torch.manual_seed(1)
|
|
340
|
+
|
|
341
|
+
group_sizes = options[:group_sizes].map { |v| [v, max_world_size].min }.select { |v| v >= 1 }.uniq.sort
|
|
342
|
+
batch_sizes = options[:batch_sizes].map { |v| [v, 1].max }.uniq
|
|
343
|
+
backends = options[:backends].map(&:downcase).uniq
|
|
344
|
+
|
|
345
|
+
if group_sizes.any? { |size| size > 1 }
|
|
346
|
+
raise "torch.distributed is not available" unless Torch::Distributed.available?
|
|
347
|
+
end
|
|
348
|
+
|
|
349
|
+
results = []
|
|
350
|
+
|
|
351
|
+
backends.each do |backend|
|
|
352
|
+
unless backend_supported?(backend)
|
|
353
|
+
warn "Skipping backend=#{backend} because required accelerator support is unavailable."
|
|
354
|
+
next
|
|
355
|
+
end
|
|
356
|
+
|
|
357
|
+
group_sizes.each do |world_size|
|
|
358
|
+
batch_sizes.each do |batch_size|
|
|
359
|
+
run_options = options.merge(batch_size: batch_size, backend: backend, gpus: world_size)
|
|
360
|
+
puts "Running backend=#{backend}, group_size=#{world_size}, batch_size=#{batch_size}..." unless spawn_worker_process?
|
|
361
|
+
with_spawn_env(backend: backend, group_size: world_size, batch_size: batch_size) do
|
|
362
|
+
results << run_benchmark_case(world_size, run_options)
|
|
363
|
+
end
|
|
364
|
+
end
|
|
365
|
+
end
|
|
366
|
+
end
|
|
367
|
+
|
|
368
|
+
results.compact!
|
|
369
|
+
|
|
370
|
+
if results.empty?
|
|
371
|
+
puts "No benchmark results to report."
|
|
372
|
+
else
|
|
373
|
+
print_summary_table(results)
|
|
374
|
+
end
|