tomz-libsvm-ruby-swig 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/AUTHORS +3 -0
- data/COPYING +24 -0
- data/History.txt +3 -0
- data/Manifest.txt +11 -0
- data/README.txt +55 -0
- data/Rakefile +33 -0
- data/ext/extconf.rb +6 -0
- data/ext/svm.cpp +3095 -0
- data/ext/svm.h +81 -0
- data/ext/svmc_wrap.cxx +4548 -0
- data/lib/svm.rb +337 -0
- metadata +76 -0
data/AUTHORS
ADDED
data/COPYING
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
== LICENSE:
|
2
|
+
|
3
|
+
(The MIT License)
|
4
|
+
|
5
|
+
Copyright (c) 2009 Tom Zeng
|
6
|
+
|
7
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
8
|
+
a copy of this software and associated documentation files (the
|
9
|
+
'Software'), to deal in the Software without restriction, including
|
10
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
11
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
12
|
+
permit persons to whom the Software is furnished to do so, subject to
|
13
|
+
the following conditions:
|
14
|
+
|
15
|
+
The above copyright notice and this permission notice shall be
|
16
|
+
included in all copies or substantial portions of the Software.
|
17
|
+
|
18
|
+
THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
|
19
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
20
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
21
|
+
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
22
|
+
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
23
|
+
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
24
|
+
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/History.txt
ADDED
data/Manifest.txt
ADDED
data/README.txt
ADDED
@@ -0,0 +1,55 @@
|
|
1
|
+
= libsvm-ruby-swig
|
2
|
+
|
3
|
+
* Ruby interface to LIBSVM (using SWIG)
|
4
|
+
* http://www.tomzconsulting.com
|
5
|
+
|
6
|
+
== DESCRIPTION:
|
7
|
+
|
8
|
+
This is the Ruby port of the LIBSVM Python SWIG (Simplified Wrapper and
|
9
|
+
Interface Generator) interface.
|
10
|
+
|
11
|
+
A modified version of LIBSVM 2.88 is included, it contains changes merged from:
|
12
|
+
git://github.com/npinto/libsvm-2.88_objs-np.git
|
13
|
+
git://github.com/alanfalloon/libsvm-2.88_output_model_params.git
|
14
|
+
to expose additional data/parameters in the model object. You don't need your
|
15
|
+
own copy of SWIG to use this library - all needed files are generated using
|
16
|
+
SWIG already.
|
17
|
+
|
18
|
+
Look for the README file in the ruby subdirectory for instructions.
|
19
|
+
The binaries included were built under Ubuntu Linux 2.6.24-23-generic,
|
20
|
+
you should run make under the libsvm-2.88 and libsvm-2.88/ruby
|
21
|
+
directories to regenerate the executables for your environment.
|
22
|
+
|
23
|
+
== INSTALL:
|
24
|
+
|
25
|
+
sudo gem sources -a http://gems.github.com (you only have to do this once)
|
26
|
+
sudo gem install tomz-libsvm-ruby-swig
|
27
|
+
|
28
|
+
== SYNOPSIS:
|
29
|
+
|
30
|
+
Quick Interactive Tutorial using irb (adopted from the python code from Toby
|
31
|
+
Segaran's "Programming Collective Intelligence" book):
|
32
|
+
|
33
|
+
irb(main):001:0> require 'svm'
|
34
|
+
=> true
|
35
|
+
irb(main):002:0> prob = Problem.new([1,-1],[[1,0,1],[-1,0,-1]])
|
36
|
+
irb(main):003:0> param = Parameter.new(:kernel_type => LINEAR, :C => 10)
|
37
|
+
irb(main):004:0> m = Model.new(prob,param)
|
38
|
+
irb(main):005:0> m.predict([1,1,1])
|
39
|
+
=> 1.0
|
40
|
+
irb(main):006:0> m.predict([0,0,1])
|
41
|
+
=> 1.0
|
42
|
+
irb(main):007:0> m.predict([0,0,-1])
|
43
|
+
=> -1.0
|
44
|
+
irb(main):008:0> m.save("test.model")
|
45
|
+
irb(main):009:0> m2 = Model.new("test.model")
|
46
|
+
irb(main):010:0> m2.predict([0,0,-1])
|
47
|
+
=> -1.0
|
48
|
+
|
49
|
+
== AUTHOR:
|
50
|
+
|
51
|
+
Tom Zeng
|
52
|
+
http://www.tomzconsulting.com
|
53
|
+
http://www.linkedin.com/in/tomzeng
|
54
|
+
tom.z.zeng _at_ gmail _dot_ com
|
55
|
+
|
data/Rakefile
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
require 'rubygems'
|
2
|
+
require 'hoe'
|
3
|
+
|
4
|
+
task :default => ["make_gem"]
|
5
|
+
|
6
|
+
EXT = "ext/blah.#{Hoe::DLEXT}"
|
7
|
+
|
8
|
+
Hoe.new('libsvm-ruby-swig', '0.2.0') do |p|
|
9
|
+
p.author = 'Tom Zeng'
|
10
|
+
p.email = 'tom.z.zeng@gmail.com'
|
11
|
+
p.url = 'http://www.tomzconsulting.com'
|
12
|
+
p.summary = 'Ruby wrapper of LIBSVM using SWIG'
|
13
|
+
p.description = 'Ruby wrapper of LIBSVM using SWIG'
|
14
|
+
|
15
|
+
p.spec_extras[:extensions] = "ext/extconf.rb"
|
16
|
+
p.clean_globs << EXT << "ext/*.o" << "ext/Makefile"
|
17
|
+
end
|
18
|
+
|
19
|
+
task :make_gem => EXT
|
20
|
+
|
21
|
+
file EXT => ["ext/extconf.rb", "ext/svmc_wrap.cxx", "ext/svm.cpp", "ext/svm.h"] do
|
22
|
+
Dir.chdir "ext" do
|
23
|
+
ruby "extconf.rb"
|
24
|
+
sh "make"
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
task :copy_files do
|
29
|
+
cp "libsvm-2.88/svm.h","ext/"
|
30
|
+
cp "libsvm-2.88/svm.cpp","ext/"
|
31
|
+
cp "libsvm-2.88/ruby/svmc_wrap.cxx","ext/"
|
32
|
+
cp "libsvm-2.88/ruby/svm.rb","lib/"
|
33
|
+
end
|
data/ext/extconf.rb
ADDED
data/ext/svm.cpp
ADDED
@@ -0,0 +1,3095 @@
|
|
1
|
+
#include <math.h>
|
2
|
+
#include <stdio.h>
|
3
|
+
#include <stdlib.h>
|
4
|
+
#include <ctype.h>
|
5
|
+
#include <float.h>
|
6
|
+
#include <string.h>
|
7
|
+
#include <stdarg.h>
|
8
|
+
#include "svm.h"
|
9
|
+
typedef float Qfloat;
|
10
|
+
typedef signed char schar;
|
11
|
+
#ifndef min
|
12
|
+
template <class T> inline T min(T x,T y) { return (x<y)?x:y; }
|
13
|
+
#endif
|
14
|
+
#ifndef max
|
15
|
+
template <class T> inline T max(T x,T y) { return (x>y)?x:y; }
|
16
|
+
#endif
|
17
|
+
template <class T> inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
|
18
|
+
template <class S, class T> inline void clone(T*& dst, S* src, int n)
|
19
|
+
{
|
20
|
+
dst = new T[n];
|
21
|
+
memcpy((void *)dst,(void *)src,sizeof(T)*n);
|
22
|
+
}
|
23
|
+
inline double powi(double base, int times)
|
24
|
+
{
|
25
|
+
double tmp = base, ret = 1.0;
|
26
|
+
|
27
|
+
for(int t=times; t>0; t/=2)
|
28
|
+
{
|
29
|
+
if(t%2==1) ret*=tmp;
|
30
|
+
tmp = tmp * tmp;
|
31
|
+
}
|
32
|
+
return ret;
|
33
|
+
}
|
34
|
+
#define INF HUGE_VAL
|
35
|
+
#define TAU 1e-12
|
36
|
+
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
|
37
|
+
#if 1
|
38
|
+
int info_on = 0;
|
39
|
+
static void info(const char *fmt,...)
|
40
|
+
{
|
41
|
+
va_list ap;
|
42
|
+
if (info_on==1) {
|
43
|
+
va_start(ap,fmt);
|
44
|
+
vprintf(fmt,ap);
|
45
|
+
va_end(ap);
|
46
|
+
}
|
47
|
+
}
|
48
|
+
static void info_flush()
|
49
|
+
{
|
50
|
+
if (info_on==1) fflush(stdout);
|
51
|
+
}
|
52
|
+
#else
|
53
|
+
static void info(char *fmt,...) {}
|
54
|
+
static void info_flush() {}
|
55
|
+
#endif
|
56
|
+
|
57
|
+
//
|
58
|
+
// Kernel Cache
|
59
|
+
//
|
60
|
+
// l is the number of total data items
|
61
|
+
// size is the cache size limit in bytes
|
62
|
+
//
|
63
|
+
class Cache
|
64
|
+
{
|
65
|
+
public:
|
66
|
+
Cache(int l,long int size);
|
67
|
+
~Cache();
|
68
|
+
|
69
|
+
// request data [0,len)
|
70
|
+
// return some position p where [p,len) need to be filled
|
71
|
+
// (p >= len if nothing needs to be filled)
|
72
|
+
int get_data(const int index, Qfloat **data, int len);
|
73
|
+
void swap_index(int i, int j);
|
74
|
+
private:
|
75
|
+
int l;
|
76
|
+
long int size;
|
77
|
+
struct head_t
|
78
|
+
{
|
79
|
+
head_t *prev, *next; // a circular list
|
80
|
+
Qfloat *data;
|
81
|
+
int len; // data[0,len) is cached in this entry
|
82
|
+
};
|
83
|
+
|
84
|
+
head_t *head;
|
85
|
+
head_t lru_head;
|
86
|
+
void lru_delete(head_t *h);
|
87
|
+
void lru_insert(head_t *h);
|
88
|
+
};
|
89
|
+
|
90
|
+
Cache::Cache(int l_,long int size_):l(l_),size(size_)
|
91
|
+
{
|
92
|
+
head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0
|
93
|
+
size /= sizeof(Qfloat);
|
94
|
+
size -= l * sizeof(head_t) / sizeof(Qfloat);
|
95
|
+
size = max(size, 2 * (long int) l); // cache must be large enough for two columns
|
96
|
+
lru_head.next = lru_head.prev = &lru_head;
|
97
|
+
}
|
98
|
+
|
99
|
+
Cache::~Cache()
|
100
|
+
{
|
101
|
+
for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
|
102
|
+
free(h->data);
|
103
|
+
free(head);
|
104
|
+
}
|
105
|
+
|
106
|
+
void Cache::lru_delete(head_t *h)
|
107
|
+
{
|
108
|
+
// delete from current location
|
109
|
+
h->prev->next = h->next;
|
110
|
+
h->next->prev = h->prev;
|
111
|
+
}
|
112
|
+
|
113
|
+
void Cache::lru_insert(head_t *h)
|
114
|
+
{
|
115
|
+
// insert to last position
|
116
|
+
h->next = &lru_head;
|
117
|
+
h->prev = lru_head.prev;
|
118
|
+
h->prev->next = h;
|
119
|
+
h->next->prev = h;
|
120
|
+
}
|
121
|
+
|
122
|
+
int Cache::get_data(const int index, Qfloat **data, int len)
|
123
|
+
{
|
124
|
+
head_t *h = &head[index];
|
125
|
+
if(h->len) lru_delete(h);
|
126
|
+
int more = len - h->len;
|
127
|
+
|
128
|
+
if(more > 0)
|
129
|
+
{
|
130
|
+
// free old space
|
131
|
+
while(size < more)
|
132
|
+
{
|
133
|
+
head_t *old = lru_head.next;
|
134
|
+
lru_delete(old);
|
135
|
+
free(old->data);
|
136
|
+
size += old->len;
|
137
|
+
old->data = 0;
|
138
|
+
old->len = 0;
|
139
|
+
}
|
140
|
+
|
141
|
+
// allocate new space
|
142
|
+
h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
|
143
|
+
size -= more;
|
144
|
+
swap(h->len,len);
|
145
|
+
}
|
146
|
+
|
147
|
+
lru_insert(h);
|
148
|
+
*data = h->data;
|
149
|
+
return len;
|
150
|
+
}
|
151
|
+
|
152
|
+
void Cache::swap_index(int i, int j)
|
153
|
+
{
|
154
|
+
if(i==j) return;
|
155
|
+
|
156
|
+
if(head[i].len) lru_delete(&head[i]);
|
157
|
+
if(head[j].len) lru_delete(&head[j]);
|
158
|
+
swap(head[i].data,head[j].data);
|
159
|
+
swap(head[i].len,head[j].len);
|
160
|
+
if(head[i].len) lru_insert(&head[i]);
|
161
|
+
if(head[j].len) lru_insert(&head[j]);
|
162
|
+
|
163
|
+
if(i>j) swap(i,j);
|
164
|
+
for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
|
165
|
+
{
|
166
|
+
if(h->len > i)
|
167
|
+
{
|
168
|
+
if(h->len > j)
|
169
|
+
swap(h->data[i],h->data[j]);
|
170
|
+
else
|
171
|
+
{
|
172
|
+
// give up
|
173
|
+
lru_delete(h);
|
174
|
+
free(h->data);
|
175
|
+
size += h->len;
|
176
|
+
h->data = 0;
|
177
|
+
h->len = 0;
|
178
|
+
}
|
179
|
+
}
|
180
|
+
}
|
181
|
+
}
|
182
|
+
|
183
|
+
//
|
184
|
+
// Kernel evaluation
|
185
|
+
//
|
186
|
+
// the static method k_function is for doing single kernel evaluation
|
187
|
+
// the constructor of Kernel prepares to calculate the l*l kernel matrix
|
188
|
+
// the member function get_Q is for getting one column from the Q Matrix
|
189
|
+
//
|
190
|
+
class QMatrix {
|
191
|
+
public:
|
192
|
+
virtual Qfloat *get_Q(int column, int len) const = 0;
|
193
|
+
virtual Qfloat *get_QD() const = 0;
|
194
|
+
virtual void swap_index(int i, int j) const = 0;
|
195
|
+
virtual ~QMatrix() {}
|
196
|
+
};
|
197
|
+
|
198
|
+
class Kernel: public QMatrix {
|
199
|
+
public:
|
200
|
+
Kernel(int l, svm_node * const * x, const svm_parameter& param);
|
201
|
+
virtual ~Kernel();
|
202
|
+
|
203
|
+
static double k_function(const svm_node *x, const svm_node *y,
|
204
|
+
const svm_parameter& param);
|
205
|
+
virtual Qfloat *get_Q(int column, int len) const = 0;
|
206
|
+
virtual Qfloat *get_QD() const = 0;
|
207
|
+
virtual void swap_index(int i, int j) const // no so const...
|
208
|
+
{
|
209
|
+
swap(x[i],x[j]);
|
210
|
+
if(x_square) swap(x_square[i],x_square[j]);
|
211
|
+
}
|
212
|
+
protected:
|
213
|
+
|
214
|
+
double (Kernel::*kernel_function)(int i, int j) const;
|
215
|
+
|
216
|
+
private:
|
217
|
+
const svm_node **x;
|
218
|
+
double *x_square;
|
219
|
+
|
220
|
+
// svm_parameter
|
221
|
+
const int kernel_type;
|
222
|
+
const int degree;
|
223
|
+
const double gamma;
|
224
|
+
const double coef0;
|
225
|
+
|
226
|
+
static double dot(const svm_node *px, const svm_node *py);
|
227
|
+
double kernel_linear(int i, int j) const
|
228
|
+
{
|
229
|
+
return dot(x[i],x[j]);
|
230
|
+
}
|
231
|
+
double kernel_poly(int i, int j) const
|
232
|
+
{
|
233
|
+
return powi(gamma*dot(x[i],x[j])+coef0,degree);
|
234
|
+
}
|
235
|
+
double kernel_rbf(int i, int j) const
|
236
|
+
{
|
237
|
+
return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
|
238
|
+
}
|
239
|
+
double kernel_sigmoid(int i, int j) const
|
240
|
+
{
|
241
|
+
return tanh(gamma*dot(x[i],x[j])+coef0);
|
242
|
+
}
|
243
|
+
double kernel_precomputed(int i, int j) const
|
244
|
+
{
|
245
|
+
return x[i][(int)(x[j][0].value)].value;
|
246
|
+
}
|
247
|
+
};
|
248
|
+
|
249
|
+
Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
|
250
|
+
:kernel_type(param.kernel_type), degree(param.degree),
|
251
|
+
gamma(param.gamma), coef0(param.coef0)
|
252
|
+
{
|
253
|
+
switch(kernel_type)
|
254
|
+
{
|
255
|
+
case LINEAR:
|
256
|
+
kernel_function = &Kernel::kernel_linear;
|
257
|
+
break;
|
258
|
+
case POLY:
|
259
|
+
kernel_function = &Kernel::kernel_poly;
|
260
|
+
break;
|
261
|
+
case RBF:
|
262
|
+
kernel_function = &Kernel::kernel_rbf;
|
263
|
+
break;
|
264
|
+
case SIGMOID:
|
265
|
+
kernel_function = &Kernel::kernel_sigmoid;
|
266
|
+
break;
|
267
|
+
case PRECOMPUTED:
|
268
|
+
kernel_function = &Kernel::kernel_precomputed;
|
269
|
+
break;
|
270
|
+
}
|
271
|
+
|
272
|
+
clone(x,x_,l);
|
273
|
+
|
274
|
+
if(kernel_type == RBF)
|
275
|
+
{
|
276
|
+
x_square = new double[l];
|
277
|
+
for(int i=0;i<l;i++)
|
278
|
+
x_square[i] = dot(x[i],x[i]);
|
279
|
+
}
|
280
|
+
else
|
281
|
+
x_square = 0;
|
282
|
+
}
|
283
|
+
|
284
|
+
Kernel::~Kernel()
|
285
|
+
{
|
286
|
+
delete[] x;
|
287
|
+
delete[] x_square;
|
288
|
+
}
|
289
|
+
|
290
|
+
double Kernel::dot(const svm_node *px, const svm_node *py)
|
291
|
+
{
|
292
|
+
double sum = 0;
|
293
|
+
while(px->index != -1 && py->index != -1)
|
294
|
+
{
|
295
|
+
if(px->index == py->index)
|
296
|
+
{
|
297
|
+
sum += px->value * py->value;
|
298
|
+
++px;
|
299
|
+
++py;
|
300
|
+
}
|
301
|
+
else
|
302
|
+
{
|
303
|
+
if(px->index > py->index)
|
304
|
+
++py;
|
305
|
+
else
|
306
|
+
++px;
|
307
|
+
}
|
308
|
+
}
|
309
|
+
return sum;
|
310
|
+
}
|
311
|
+
|
312
|
+
double Kernel::k_function(const svm_node *x, const svm_node *y,
|
313
|
+
const svm_parameter& param)
|
314
|
+
{
|
315
|
+
switch(param.kernel_type)
|
316
|
+
{
|
317
|
+
case LINEAR:
|
318
|
+
return dot(x,y);
|
319
|
+
case POLY:
|
320
|
+
return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
|
321
|
+
case RBF:
|
322
|
+
{
|
323
|
+
double sum = 0;
|
324
|
+
while(x->index != -1 && y->index !=-1)
|
325
|
+
{
|
326
|
+
if(x->index == y->index)
|
327
|
+
{
|
328
|
+
double d = x->value - y->value;
|
329
|
+
sum += d*d;
|
330
|
+
++x;
|
331
|
+
++y;
|
332
|
+
}
|
333
|
+
else
|
334
|
+
{
|
335
|
+
if(x->index > y->index)
|
336
|
+
{
|
337
|
+
sum += y->value * y->value;
|
338
|
+
++y;
|
339
|
+
}
|
340
|
+
else
|
341
|
+
{
|
342
|
+
sum += x->value * x->value;
|
343
|
+
++x;
|
344
|
+
}
|
345
|
+
}
|
346
|
+
}
|
347
|
+
|
348
|
+
while(x->index != -1)
|
349
|
+
{
|
350
|
+
sum += x->value * x->value;
|
351
|
+
++x;
|
352
|
+
}
|
353
|
+
|
354
|
+
while(y->index != -1)
|
355
|
+
{
|
356
|
+
sum += y->value * y->value;
|
357
|
+
++y;
|
358
|
+
}
|
359
|
+
|
360
|
+
return exp(-param.gamma*sum);
|
361
|
+
}
|
362
|
+
case SIGMOID:
|
363
|
+
return tanh(param.gamma*dot(x,y)+param.coef0);
|
364
|
+
case PRECOMPUTED: //x: test (validation), y: SV
|
365
|
+
return x[(int)(y->value)].value;
|
366
|
+
default:
|
367
|
+
return 0; // Unreachable
|
368
|
+
}
|
369
|
+
}
|
370
|
+
|
371
|
+
// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
|
372
|
+
// Solves:
|
373
|
+
//
|
374
|
+
// min 0.5(\alpha^T Q \alpha) + p^T \alpha
|
375
|
+
//
|
376
|
+
// y^T \alpha = \delta
|
377
|
+
// y_i = +1 or -1
|
378
|
+
// 0 <= alpha_i <= Cp for y_i = 1
|
379
|
+
// 0 <= alpha_i <= Cn for y_i = -1
|
380
|
+
//
|
381
|
+
// Given:
|
382
|
+
//
|
383
|
+
// Q, p, y, Cp, Cn, and an initial feasible point \alpha
|
384
|
+
// l is the size of vectors and matrices
|
385
|
+
// eps is the stopping tolerance
|
386
|
+
//
|
387
|
+
// solution will be put in \alpha, objective value will be put in obj
|
388
|
+
//
|
389
|
+
class Solver {
|
390
|
+
public:
|
391
|
+
Solver() {};
|
392
|
+
virtual ~Solver() {};
|
393
|
+
|
394
|
+
struct SolutionInfo {
|
395
|
+
double obj;
|
396
|
+
double rho;
|
397
|
+
double upper_bound_p;
|
398
|
+
double upper_bound_n;
|
399
|
+
double r; // for Solver_NU
|
400
|
+
};
|
401
|
+
|
402
|
+
void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
|
403
|
+
double *alpha_, double Cp, double Cn, double eps,
|
404
|
+
SolutionInfo* si, int shrinking);
|
405
|
+
protected:
|
406
|
+
int active_size;
|
407
|
+
schar *y;
|
408
|
+
double *G; // gradient of objective function
|
409
|
+
enum { LOWER_BOUND, UPPER_BOUND, FREE };
|
410
|
+
char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
|
411
|
+
double *alpha;
|
412
|
+
const QMatrix *Q;
|
413
|
+
const Qfloat *QD;
|
414
|
+
double eps;
|
415
|
+
double Cp,Cn;
|
416
|
+
double *p;
|
417
|
+
int *active_set;
|
418
|
+
double *G_bar; // gradient, if we treat free variables as 0
|
419
|
+
int l;
|
420
|
+
bool unshrink; // XXX
|
421
|
+
|
422
|
+
double get_C(int i)
|
423
|
+
{
|
424
|
+
return (y[i] > 0)? Cp : Cn;
|
425
|
+
}
|
426
|
+
void update_alpha_status(int i)
|
427
|
+
{
|
428
|
+
if(alpha[i] >= get_C(i))
|
429
|
+
alpha_status[i] = UPPER_BOUND;
|
430
|
+
else if(alpha[i] <= 0)
|
431
|
+
alpha_status[i] = LOWER_BOUND;
|
432
|
+
else alpha_status[i] = FREE;
|
433
|
+
}
|
434
|
+
bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
|
435
|
+
bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
|
436
|
+
bool is_free(int i) { return alpha_status[i] == FREE; }
|
437
|
+
void swap_index(int i, int j);
|
438
|
+
void reconstruct_gradient();
|
439
|
+
virtual int select_working_set(int &i, int &j);
|
440
|
+
virtual double calculate_rho();
|
441
|
+
virtual void do_shrinking();
|
442
|
+
private:
|
443
|
+
bool be_shrunk(int i, double Gmax1, double Gmax2);
|
444
|
+
};
|
445
|
+
|
446
|
+
void Solver::swap_index(int i, int j)
|
447
|
+
{
|
448
|
+
Q->swap_index(i,j);
|
449
|
+
swap(y[i],y[j]);
|
450
|
+
swap(G[i],G[j]);
|
451
|
+
swap(alpha_status[i],alpha_status[j]);
|
452
|
+
swap(alpha[i],alpha[j]);
|
453
|
+
swap(p[i],p[j]);
|
454
|
+
swap(active_set[i],active_set[j]);
|
455
|
+
swap(G_bar[i],G_bar[j]);
|
456
|
+
}
|
457
|
+
|
458
|
+
void Solver::reconstruct_gradient()
|
459
|
+
{
|
460
|
+
// reconstruct inactive elements of G from G_bar and free variables
|
461
|
+
|
462
|
+
if(active_size == l) return;
|
463
|
+
|
464
|
+
int i,j;
|
465
|
+
int nr_free = 0;
|
466
|
+
|
467
|
+
for(j=active_size;j<l;j++)
|
468
|
+
G[j] = G_bar[j] + p[j];
|
469
|
+
|
470
|
+
for(j=0;j<active_size;j++)
|
471
|
+
if(is_free(j))
|
472
|
+
nr_free++;
|
473
|
+
|
474
|
+
if(2*nr_free < active_size)
|
475
|
+
info("\nWarning: using -h 0 may be faster\n");
|
476
|
+
|
477
|
+
if (nr_free*l > 2*active_size*(l-active_size))
|
478
|
+
{
|
479
|
+
for(i=active_size;i<l;i++)
|
480
|
+
{
|
481
|
+
const Qfloat *Q_i = Q->get_Q(i,active_size);
|
482
|
+
for(j=0;j<active_size;j++)
|
483
|
+
if(is_free(j))
|
484
|
+
G[i] += alpha[j] * Q_i[j];
|
485
|
+
}
|
486
|
+
}
|
487
|
+
else
|
488
|
+
{
|
489
|
+
for(i=0;i<active_size;i++)
|
490
|
+
if(is_free(i))
|
491
|
+
{
|
492
|
+
const Qfloat *Q_i = Q->get_Q(i,l);
|
493
|
+
double alpha_i = alpha[i];
|
494
|
+
for(j=active_size;j<l;j++)
|
495
|
+
G[j] += alpha_i * Q_i[j];
|
496
|
+
}
|
497
|
+
}
|
498
|
+
}
|
499
|
+
|
500
|
+
void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
|
501
|
+
double *alpha_, double Cp, double Cn, double eps,
|
502
|
+
SolutionInfo* si, int shrinking)
|
503
|
+
{
|
504
|
+
this->l = l;
|
505
|
+
this->Q = &Q;
|
506
|
+
QD=Q.get_QD();
|
507
|
+
clone(p, p_,l);
|
508
|
+
clone(y, y_,l);
|
509
|
+
clone(alpha,alpha_,l);
|
510
|
+
this->Cp = Cp;
|
511
|
+
this->Cn = Cn;
|
512
|
+
this->eps = eps;
|
513
|
+
unshrink = false;
|
514
|
+
|
515
|
+
// initialize alpha_status
|
516
|
+
{
|
517
|
+
alpha_status = new char[l];
|
518
|
+
for(int i=0;i<l;i++)
|
519
|
+
update_alpha_status(i);
|
520
|
+
}
|
521
|
+
|
522
|
+
// initialize active set (for shrinking)
|
523
|
+
{
|
524
|
+
active_set = new int[l];
|
525
|
+
for(int i=0;i<l;i++)
|
526
|
+
active_set[i] = i;
|
527
|
+
active_size = l;
|
528
|
+
}
|
529
|
+
|
530
|
+
// initialize gradient
|
531
|
+
{
|
532
|
+
G = new double[l];
|
533
|
+
G_bar = new double[l];
|
534
|
+
int i;
|
535
|
+
for(i=0;i<l;i++)
|
536
|
+
{
|
537
|
+
G[i] = p[i];
|
538
|
+
G_bar[i] = 0;
|
539
|
+
}
|
540
|
+
for(i=0;i<l;i++)
|
541
|
+
if(!is_lower_bound(i))
|
542
|
+
{
|
543
|
+
const Qfloat *Q_i = Q.get_Q(i,l);
|
544
|
+
double alpha_i = alpha[i];
|
545
|
+
int j;
|
546
|
+
for(j=0;j<l;j++)
|
547
|
+
G[j] += alpha_i*Q_i[j];
|
548
|
+
if(is_upper_bound(i))
|
549
|
+
for(j=0;j<l;j++)
|
550
|
+
G_bar[j] += get_C(i) * Q_i[j];
|
551
|
+
}
|
552
|
+
}
|
553
|
+
|
554
|
+
// optimization step
|
555
|
+
|
556
|
+
int iter = 0;
|
557
|
+
int counter = min(l,1000)+1;
|
558
|
+
|
559
|
+
while(1)
|
560
|
+
{
|
561
|
+
// show progress and do shrinking
|
562
|
+
|
563
|
+
if(--counter == 0)
|
564
|
+
{
|
565
|
+
counter = min(l,1000);
|
566
|
+
if(shrinking) do_shrinking();
|
567
|
+
info("."); info_flush();
|
568
|
+
}
|
569
|
+
|
570
|
+
int i,j;
|
571
|
+
if(select_working_set(i,j)!=0)
|
572
|
+
{
|
573
|
+
// reconstruct the whole gradient
|
574
|
+
reconstruct_gradient();
|
575
|
+
// reset active set size and check
|
576
|
+
active_size = l;
|
577
|
+
info("*"); info_flush();
|
578
|
+
if(select_working_set(i,j)!=0)
|
579
|
+
break;
|
580
|
+
else
|
581
|
+
counter = 1; // do shrinking next iteration
|
582
|
+
}
|
583
|
+
|
584
|
+
++iter;
|
585
|
+
|
586
|
+
// update alpha[i] and alpha[j], handle bounds carefully
|
587
|
+
|
588
|
+
const Qfloat *Q_i = Q.get_Q(i,active_size);
|
589
|
+
const Qfloat *Q_j = Q.get_Q(j,active_size);
|
590
|
+
|
591
|
+
double C_i = get_C(i);
|
592
|
+
double C_j = get_C(j);
|
593
|
+
|
594
|
+
double old_alpha_i = alpha[i];
|
595
|
+
double old_alpha_j = alpha[j];
|
596
|
+
|
597
|
+
if(y[i]!=y[j])
|
598
|
+
{
|
599
|
+
double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j];
|
600
|
+
if (quad_coef <= 0)
|
601
|
+
quad_coef = TAU;
|
602
|
+
double delta = (-G[i]-G[j])/quad_coef;
|
603
|
+
double diff = alpha[i] - alpha[j];
|
604
|
+
alpha[i] += delta;
|
605
|
+
alpha[j] += delta;
|
606
|
+
|
607
|
+
if(diff > 0)
|
608
|
+
{
|
609
|
+
if(alpha[j] < 0)
|
610
|
+
{
|
611
|
+
alpha[j] = 0;
|
612
|
+
alpha[i] = diff;
|
613
|
+
}
|
614
|
+
}
|
615
|
+
else
|
616
|
+
{
|
617
|
+
if(alpha[i] < 0)
|
618
|
+
{
|
619
|
+
alpha[i] = 0;
|
620
|
+
alpha[j] = -diff;
|
621
|
+
}
|
622
|
+
}
|
623
|
+
if(diff > C_i - C_j)
|
624
|
+
{
|
625
|
+
if(alpha[i] > C_i)
|
626
|
+
{
|
627
|
+
alpha[i] = C_i;
|
628
|
+
alpha[j] = C_i - diff;
|
629
|
+
}
|
630
|
+
}
|
631
|
+
else
|
632
|
+
{
|
633
|
+
if(alpha[j] > C_j)
|
634
|
+
{
|
635
|
+
alpha[j] = C_j;
|
636
|
+
alpha[i] = C_j + diff;
|
637
|
+
}
|
638
|
+
}
|
639
|
+
}
|
640
|
+
else
|
641
|
+
{
|
642
|
+
double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j];
|
643
|
+
if (quad_coef <= 0)
|
644
|
+
quad_coef = TAU;
|
645
|
+
double delta = (G[i]-G[j])/quad_coef;
|
646
|
+
double sum = alpha[i] + alpha[j];
|
647
|
+
alpha[i] -= delta;
|
648
|
+
alpha[j] += delta;
|
649
|
+
|
650
|
+
if(sum > C_i)
|
651
|
+
{
|
652
|
+
if(alpha[i] > C_i)
|
653
|
+
{
|
654
|
+
alpha[i] = C_i;
|
655
|
+
alpha[j] = sum - C_i;
|
656
|
+
}
|
657
|
+
}
|
658
|
+
else
|
659
|
+
{
|
660
|
+
if(alpha[j] < 0)
|
661
|
+
{
|
662
|
+
alpha[j] = 0;
|
663
|
+
alpha[i] = sum;
|
664
|
+
}
|
665
|
+
}
|
666
|
+
if(sum > C_j)
|
667
|
+
{
|
668
|
+
if(alpha[j] > C_j)
|
669
|
+
{
|
670
|
+
alpha[j] = C_j;
|
671
|
+
alpha[i] = sum - C_j;
|
672
|
+
}
|
673
|
+
}
|
674
|
+
else
|
675
|
+
{
|
676
|
+
if(alpha[i] < 0)
|
677
|
+
{
|
678
|
+
alpha[i] = 0;
|
679
|
+
alpha[j] = sum;
|
680
|
+
}
|
681
|
+
}
|
682
|
+
}
|
683
|
+
|
684
|
+
// update G
|
685
|
+
|
686
|
+
double delta_alpha_i = alpha[i] - old_alpha_i;
|
687
|
+
double delta_alpha_j = alpha[j] - old_alpha_j;
|
688
|
+
|
689
|
+
for(int k=0;k<active_size;k++)
|
690
|
+
{
|
691
|
+
G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
|
692
|
+
}
|
693
|
+
|
694
|
+
// update alpha_status and G_bar
|
695
|
+
|
696
|
+
{
|
697
|
+
bool ui = is_upper_bound(i);
|
698
|
+
bool uj = is_upper_bound(j);
|
699
|
+
update_alpha_status(i);
|
700
|
+
update_alpha_status(j);
|
701
|
+
int k;
|
702
|
+
if(ui != is_upper_bound(i))
|
703
|
+
{
|
704
|
+
Q_i = Q.get_Q(i,l);
|
705
|
+
if(ui)
|
706
|
+
for(k=0;k<l;k++)
|
707
|
+
G_bar[k] -= C_i * Q_i[k];
|
708
|
+
else
|
709
|
+
for(k=0;k<l;k++)
|
710
|
+
G_bar[k] += C_i * Q_i[k];
|
711
|
+
}
|
712
|
+
|
713
|
+
if(uj != is_upper_bound(j))
|
714
|
+
{
|
715
|
+
Q_j = Q.get_Q(j,l);
|
716
|
+
if(uj)
|
717
|
+
for(k=0;k<l;k++)
|
718
|
+
G_bar[k] -= C_j * Q_j[k];
|
719
|
+
else
|
720
|
+
for(k=0;k<l;k++)
|
721
|
+
G_bar[k] += C_j * Q_j[k];
|
722
|
+
}
|
723
|
+
}
|
724
|
+
}
|
725
|
+
|
726
|
+
// calculate rho
|
727
|
+
|
728
|
+
si->rho = calculate_rho();
|
729
|
+
|
730
|
+
// calculate objective value
|
731
|
+
{
|
732
|
+
double v = 0;
|
733
|
+
int i;
|
734
|
+
for(i=0;i<l;i++)
|
735
|
+
v += alpha[i] * (G[i] + p[i]);
|
736
|
+
|
737
|
+
si->obj = v/2;
|
738
|
+
}
|
739
|
+
|
740
|
+
// put back the solution
|
741
|
+
{
|
742
|
+
for(int i=0;i<l;i++)
|
743
|
+
alpha_[active_set[i]] = alpha[i];
|
744
|
+
}
|
745
|
+
|
746
|
+
// juggle everything back
|
747
|
+
/*{
|
748
|
+
for(int i=0;i<l;i++)
|
749
|
+
while(active_set[i] != i)
|
750
|
+
swap_index(i,active_set[i]);
|
751
|
+
// or Q.swap_index(i,active_set[i]);
|
752
|
+
}*/
|
753
|
+
|
754
|
+
si->upper_bound_p = Cp;
|
755
|
+
si->upper_bound_n = Cn;
|
756
|
+
|
757
|
+
info("\noptimization finished, #iter = %d\n",iter);
|
758
|
+
|
759
|
+
delete[] p;
|
760
|
+
delete[] y;
|
761
|
+
delete[] alpha;
|
762
|
+
delete[] alpha_status;
|
763
|
+
delete[] active_set;
|
764
|
+
delete[] G;
|
765
|
+
delete[] G_bar;
|
766
|
+
}
|
767
|
+
|
768
|
+
// return 1 if already optimal, return 0 otherwise
|
769
|
+
int Solver::select_working_set(int &out_i, int &out_j)
|
770
|
+
{
|
771
|
+
// return i,j such that
|
772
|
+
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
773
|
+
// j: minimizes the decrease of obj value
|
774
|
+
// (if quadratic coefficeint <= 0, replace it with tau)
|
775
|
+
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
776
|
+
|
777
|
+
double Gmax = -INF;
|
778
|
+
double Gmax2 = -INF;
|
779
|
+
int Gmax_idx = -1;
|
780
|
+
int Gmin_idx = -1;
|
781
|
+
double obj_diff_min = INF;
|
782
|
+
|
783
|
+
for(int t=0;t<active_size;t++)
|
784
|
+
if(y[t]==+1)
|
785
|
+
{
|
786
|
+
if(!is_upper_bound(t))
|
787
|
+
if(-G[t] >= Gmax)
|
788
|
+
{
|
789
|
+
Gmax = -G[t];
|
790
|
+
Gmax_idx = t;
|
791
|
+
}
|
792
|
+
}
|
793
|
+
else
|
794
|
+
{
|
795
|
+
if(!is_lower_bound(t))
|
796
|
+
if(G[t] >= Gmax)
|
797
|
+
{
|
798
|
+
Gmax = G[t];
|
799
|
+
Gmax_idx = t;
|
800
|
+
}
|
801
|
+
}
|
802
|
+
|
803
|
+
int i = Gmax_idx;
|
804
|
+
const Qfloat *Q_i = NULL;
|
805
|
+
if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
|
806
|
+
Q_i = Q->get_Q(i,active_size);
|
807
|
+
|
808
|
+
for(int j=0;j<active_size;j++)
|
809
|
+
{
|
810
|
+
if(y[j]==+1)
|
811
|
+
{
|
812
|
+
if (!is_lower_bound(j))
|
813
|
+
{
|
814
|
+
double grad_diff=Gmax+G[j];
|
815
|
+
if (G[j] >= Gmax2)
|
816
|
+
Gmax2 = G[j];
|
817
|
+
if (grad_diff > 0)
|
818
|
+
{
|
819
|
+
double obj_diff;
|
820
|
+
double quad_coef=Q_i[i]+QD[j]-2.0*y[i]*Q_i[j];
|
821
|
+
if (quad_coef > 0)
|
822
|
+
obj_diff = -(grad_diff*grad_diff)/quad_coef;
|
823
|
+
else
|
824
|
+
obj_diff = -(grad_diff*grad_diff)/TAU;
|
825
|
+
|
826
|
+
if (obj_diff <= obj_diff_min)
|
827
|
+
{
|
828
|
+
Gmin_idx=j;
|
829
|
+
obj_diff_min = obj_diff;
|
830
|
+
}
|
831
|
+
}
|
832
|
+
}
|
833
|
+
}
|
834
|
+
else
|
835
|
+
{
|
836
|
+
if (!is_upper_bound(j))
|
837
|
+
{
|
838
|
+
double grad_diff= Gmax-G[j];
|
839
|
+
if (-G[j] >= Gmax2)
|
840
|
+
Gmax2 = -G[j];
|
841
|
+
if (grad_diff > 0)
|
842
|
+
{
|
843
|
+
double obj_diff;
|
844
|
+
double quad_coef=Q_i[i]+QD[j]+2.0*y[i]*Q_i[j];
|
845
|
+
if (quad_coef > 0)
|
846
|
+
obj_diff = -(grad_diff*grad_diff)/quad_coef;
|
847
|
+
else
|
848
|
+
obj_diff = -(grad_diff*grad_diff)/TAU;
|
849
|
+
|
850
|
+
if (obj_diff <= obj_diff_min)
|
851
|
+
{
|
852
|
+
Gmin_idx=j;
|
853
|
+
obj_diff_min = obj_diff;
|
854
|
+
}
|
855
|
+
}
|
856
|
+
}
|
857
|
+
}
|
858
|
+
}
|
859
|
+
|
860
|
+
if(Gmax+Gmax2 < eps)
|
861
|
+
return 1;
|
862
|
+
|
863
|
+
out_i = Gmax_idx;
|
864
|
+
out_j = Gmin_idx;
|
865
|
+
return 0;
|
866
|
+
}
|
867
|
+
|
868
|
+
bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
|
869
|
+
{
|
870
|
+
if(is_upper_bound(i))
|
871
|
+
{
|
872
|
+
if(y[i]==+1)
|
873
|
+
return(-G[i] > Gmax1);
|
874
|
+
else
|
875
|
+
return(-G[i] > Gmax2);
|
876
|
+
}
|
877
|
+
else if(is_lower_bound(i))
|
878
|
+
{
|
879
|
+
if(y[i]==+1)
|
880
|
+
return(G[i] > Gmax2);
|
881
|
+
else
|
882
|
+
return(G[i] > Gmax1);
|
883
|
+
}
|
884
|
+
else
|
885
|
+
return(false);
|
886
|
+
}
|
887
|
+
|
888
|
+
void Solver::do_shrinking()
|
889
|
+
{
|
890
|
+
int i;
|
891
|
+
double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
|
892
|
+
double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
|
893
|
+
|
894
|
+
// find maximal violating pair first
|
895
|
+
for(i=0;i<active_size;i++)
|
896
|
+
{
|
897
|
+
if(y[i]==+1)
|
898
|
+
{
|
899
|
+
if(!is_upper_bound(i))
|
900
|
+
{
|
901
|
+
if(-G[i] >= Gmax1)
|
902
|
+
Gmax1 = -G[i];
|
903
|
+
}
|
904
|
+
if(!is_lower_bound(i))
|
905
|
+
{
|
906
|
+
if(G[i] >= Gmax2)
|
907
|
+
Gmax2 = G[i];
|
908
|
+
}
|
909
|
+
}
|
910
|
+
else
|
911
|
+
{
|
912
|
+
if(!is_upper_bound(i))
|
913
|
+
{
|
914
|
+
if(-G[i] >= Gmax2)
|
915
|
+
Gmax2 = -G[i];
|
916
|
+
}
|
917
|
+
if(!is_lower_bound(i))
|
918
|
+
{
|
919
|
+
if(G[i] >= Gmax1)
|
920
|
+
Gmax1 = G[i];
|
921
|
+
}
|
922
|
+
}
|
923
|
+
}
|
924
|
+
|
925
|
+
if(unshrink == false && Gmax1 + Gmax2 <= eps*10)
|
926
|
+
{
|
927
|
+
unshrink = true;
|
928
|
+
reconstruct_gradient();
|
929
|
+
active_size = l;
|
930
|
+
info("*"); info_flush();
|
931
|
+
}
|
932
|
+
|
933
|
+
for(i=0;i<active_size;i++)
|
934
|
+
if (be_shrunk(i, Gmax1, Gmax2))
|
935
|
+
{
|
936
|
+
active_size--;
|
937
|
+
while (active_size > i)
|
938
|
+
{
|
939
|
+
if (!be_shrunk(active_size, Gmax1, Gmax2))
|
940
|
+
{
|
941
|
+
swap_index(i,active_size);
|
942
|
+
break;
|
943
|
+
}
|
944
|
+
active_size--;
|
945
|
+
}
|
946
|
+
}
|
947
|
+
}
|
948
|
+
|
949
|
+
double Solver::calculate_rho()
|
950
|
+
{
|
951
|
+
double r;
|
952
|
+
int nr_free = 0;
|
953
|
+
double ub = INF, lb = -INF, sum_free = 0;
|
954
|
+
for(int i=0;i<active_size;i++)
|
955
|
+
{
|
956
|
+
double yG = y[i]*G[i];
|
957
|
+
|
958
|
+
if(is_upper_bound(i))
|
959
|
+
{
|
960
|
+
if(y[i]==-1)
|
961
|
+
ub = min(ub,yG);
|
962
|
+
else
|
963
|
+
lb = max(lb,yG);
|
964
|
+
}
|
965
|
+
else if(is_lower_bound(i))
|
966
|
+
{
|
967
|
+
if(y[i]==+1)
|
968
|
+
ub = min(ub,yG);
|
969
|
+
else
|
970
|
+
lb = max(lb,yG);
|
971
|
+
}
|
972
|
+
else
|
973
|
+
{
|
974
|
+
++nr_free;
|
975
|
+
sum_free += yG;
|
976
|
+
}
|
977
|
+
}
|
978
|
+
|
979
|
+
if(nr_free>0)
|
980
|
+
r = sum_free/nr_free;
|
981
|
+
else
|
982
|
+
r = (ub+lb)/2;
|
983
|
+
|
984
|
+
return r;
|
985
|
+
}
|
986
|
+
|
987
|
+
//
|
988
|
+
// Solver for nu-svm classification and regression
|
989
|
+
//
|
990
|
+
// additional constraint: e^T \alpha = constant
|
991
|
+
//
|
992
|
+
class Solver_NU : public Solver
|
993
|
+
{
|
994
|
+
public:
|
995
|
+
Solver_NU() {}
|
996
|
+
void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
|
997
|
+
double *alpha, double Cp, double Cn, double eps,
|
998
|
+
SolutionInfo* si, int shrinking)
|
999
|
+
{
|
1000
|
+
this->si = si;
|
1001
|
+
Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
|
1002
|
+
}
|
1003
|
+
private:
|
1004
|
+
SolutionInfo *si;
|
1005
|
+
int select_working_set(int &i, int &j);
|
1006
|
+
double calculate_rho();
|
1007
|
+
bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
|
1008
|
+
void do_shrinking();
|
1009
|
+
};
|
1010
|
+
|
1011
|
+
// return 1 if already optimal, return 0 otherwise
|
1012
|
+
int Solver_NU::select_working_set(int &out_i, int &out_j)
|
1013
|
+
{
|
1014
|
+
// return i,j such that y_i = y_j and
|
1015
|
+
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
1016
|
+
// j: minimizes the decrease of obj value
|
1017
|
+
// (if quadratic coefficeint <= 0, replace it with tau)
|
1018
|
+
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
1019
|
+
|
1020
|
+
double Gmaxp = -INF;
|
1021
|
+
double Gmaxp2 = -INF;
|
1022
|
+
int Gmaxp_idx = -1;
|
1023
|
+
|
1024
|
+
double Gmaxn = -INF;
|
1025
|
+
double Gmaxn2 = -INF;
|
1026
|
+
int Gmaxn_idx = -1;
|
1027
|
+
|
1028
|
+
int Gmin_idx = -1;
|
1029
|
+
double obj_diff_min = INF;
|
1030
|
+
|
1031
|
+
for(int t=0;t<active_size;t++)
|
1032
|
+
if(y[t]==+1)
|
1033
|
+
{
|
1034
|
+
if(!is_upper_bound(t))
|
1035
|
+
if(-G[t] >= Gmaxp)
|
1036
|
+
{
|
1037
|
+
Gmaxp = -G[t];
|
1038
|
+
Gmaxp_idx = t;
|
1039
|
+
}
|
1040
|
+
}
|
1041
|
+
else
|
1042
|
+
{
|
1043
|
+
if(!is_lower_bound(t))
|
1044
|
+
if(G[t] >= Gmaxn)
|
1045
|
+
{
|
1046
|
+
Gmaxn = G[t];
|
1047
|
+
Gmaxn_idx = t;
|
1048
|
+
}
|
1049
|
+
}
|
1050
|
+
|
1051
|
+
int ip = Gmaxp_idx;
|
1052
|
+
int in = Gmaxn_idx;
|
1053
|
+
const Qfloat *Q_ip = NULL;
|
1054
|
+
const Qfloat *Q_in = NULL;
|
1055
|
+
if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
|
1056
|
+
Q_ip = Q->get_Q(ip,active_size);
|
1057
|
+
if(in != -1)
|
1058
|
+
Q_in = Q->get_Q(in,active_size);
|
1059
|
+
|
1060
|
+
for(int j=0;j<active_size;j++)
|
1061
|
+
{
|
1062
|
+
if(y[j]==+1)
|
1063
|
+
{
|
1064
|
+
if (!is_lower_bound(j))
|
1065
|
+
{
|
1066
|
+
double grad_diff=Gmaxp+G[j];
|
1067
|
+
if (G[j] >= Gmaxp2)
|
1068
|
+
Gmaxp2 = G[j];
|
1069
|
+
if (grad_diff > 0)
|
1070
|
+
{
|
1071
|
+
double obj_diff;
|
1072
|
+
double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j];
|
1073
|
+
if (quad_coef > 0)
|
1074
|
+
obj_diff = -(grad_diff*grad_diff)/quad_coef;
|
1075
|
+
else
|
1076
|
+
obj_diff = -(grad_diff*grad_diff)/TAU;
|
1077
|
+
|
1078
|
+
if (obj_diff <= obj_diff_min)
|
1079
|
+
{
|
1080
|
+
Gmin_idx=j;
|
1081
|
+
obj_diff_min = obj_diff;
|
1082
|
+
}
|
1083
|
+
}
|
1084
|
+
}
|
1085
|
+
}
|
1086
|
+
else
|
1087
|
+
{
|
1088
|
+
if (!is_upper_bound(j))
|
1089
|
+
{
|
1090
|
+
double grad_diff=Gmaxn-G[j];
|
1091
|
+
if (-G[j] >= Gmaxn2)
|
1092
|
+
Gmaxn2 = -G[j];
|
1093
|
+
if (grad_diff > 0)
|
1094
|
+
{
|
1095
|
+
double obj_diff;
|
1096
|
+
double quad_coef = Q_in[in]+QD[j]-2*Q_in[j];
|
1097
|
+
if (quad_coef > 0)
|
1098
|
+
obj_diff = -(grad_diff*grad_diff)/quad_coef;
|
1099
|
+
else
|
1100
|
+
obj_diff = -(grad_diff*grad_diff)/TAU;
|
1101
|
+
|
1102
|
+
if (obj_diff <= obj_diff_min)
|
1103
|
+
{
|
1104
|
+
Gmin_idx=j;
|
1105
|
+
obj_diff_min = obj_diff;
|
1106
|
+
}
|
1107
|
+
}
|
1108
|
+
}
|
1109
|
+
}
|
1110
|
+
}
|
1111
|
+
|
1112
|
+
if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
|
1113
|
+
return 1;
|
1114
|
+
|
1115
|
+
if (y[Gmin_idx] == +1)
|
1116
|
+
out_i = Gmaxp_idx;
|
1117
|
+
else
|
1118
|
+
out_i = Gmaxn_idx;
|
1119
|
+
out_j = Gmin_idx;
|
1120
|
+
|
1121
|
+
return 0;
|
1122
|
+
}
|
1123
|
+
|
1124
|
+
bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
|
1125
|
+
{
|
1126
|
+
if(is_upper_bound(i))
|
1127
|
+
{
|
1128
|
+
if(y[i]==+1)
|
1129
|
+
return(-G[i] > Gmax1);
|
1130
|
+
else
|
1131
|
+
return(-G[i] > Gmax4);
|
1132
|
+
}
|
1133
|
+
else if(is_lower_bound(i))
|
1134
|
+
{
|
1135
|
+
if(y[i]==+1)
|
1136
|
+
return(G[i] > Gmax2);
|
1137
|
+
else
|
1138
|
+
return(G[i] > Gmax3);
|
1139
|
+
}
|
1140
|
+
else
|
1141
|
+
return(false);
|
1142
|
+
}
|
1143
|
+
|
1144
|
+
void Solver_NU::do_shrinking()
|
1145
|
+
{
|
1146
|
+
double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
|
1147
|
+
double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
|
1148
|
+
double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
|
1149
|
+
double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
|
1150
|
+
|
1151
|
+
// find maximal violating pair first
|
1152
|
+
int i;
|
1153
|
+
for(i=0;i<active_size;i++)
|
1154
|
+
{
|
1155
|
+
if(!is_upper_bound(i))
|
1156
|
+
{
|
1157
|
+
if(y[i]==+1)
|
1158
|
+
{
|
1159
|
+
if(-G[i] > Gmax1) Gmax1 = -G[i];
|
1160
|
+
}
|
1161
|
+
else if(-G[i] > Gmax4) Gmax4 = -G[i];
|
1162
|
+
}
|
1163
|
+
if(!is_lower_bound(i))
|
1164
|
+
{
|
1165
|
+
if(y[i]==+1)
|
1166
|
+
{
|
1167
|
+
if(G[i] > Gmax2) Gmax2 = G[i];
|
1168
|
+
}
|
1169
|
+
else if(G[i] > Gmax3) Gmax3 = G[i];
|
1170
|
+
}
|
1171
|
+
}
|
1172
|
+
|
1173
|
+
if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
|
1174
|
+
{
|
1175
|
+
unshrink = true;
|
1176
|
+
reconstruct_gradient();
|
1177
|
+
active_size = l;
|
1178
|
+
}
|
1179
|
+
|
1180
|
+
for(i=0;i<active_size;i++)
|
1181
|
+
if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
|
1182
|
+
{
|
1183
|
+
active_size--;
|
1184
|
+
while (active_size > i)
|
1185
|
+
{
|
1186
|
+
if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
|
1187
|
+
{
|
1188
|
+
swap_index(i,active_size);
|
1189
|
+
break;
|
1190
|
+
}
|
1191
|
+
active_size--;
|
1192
|
+
}
|
1193
|
+
}
|
1194
|
+
}
|
1195
|
+
|
1196
|
+
double Solver_NU::calculate_rho()
|
1197
|
+
{
|
1198
|
+
int nr_free1 = 0,nr_free2 = 0;
|
1199
|
+
double ub1 = INF, ub2 = INF;
|
1200
|
+
double lb1 = -INF, lb2 = -INF;
|
1201
|
+
double sum_free1 = 0, sum_free2 = 0;
|
1202
|
+
|
1203
|
+
for(int i=0;i<active_size;i++)
|
1204
|
+
{
|
1205
|
+
if(y[i]==+1)
|
1206
|
+
{
|
1207
|
+
if(is_upper_bound(i))
|
1208
|
+
lb1 = max(lb1,G[i]);
|
1209
|
+
else if(is_lower_bound(i))
|
1210
|
+
ub1 = min(ub1,G[i]);
|
1211
|
+
else
|
1212
|
+
{
|
1213
|
+
++nr_free1;
|
1214
|
+
sum_free1 += G[i];
|
1215
|
+
}
|
1216
|
+
}
|
1217
|
+
else
|
1218
|
+
{
|
1219
|
+
if(is_upper_bound(i))
|
1220
|
+
lb2 = max(lb2,G[i]);
|
1221
|
+
else if(is_lower_bound(i))
|
1222
|
+
ub2 = min(ub2,G[i]);
|
1223
|
+
else
|
1224
|
+
{
|
1225
|
+
++nr_free2;
|
1226
|
+
sum_free2 += G[i];
|
1227
|
+
}
|
1228
|
+
}
|
1229
|
+
}
|
1230
|
+
|
1231
|
+
double r1,r2;
|
1232
|
+
if(nr_free1 > 0)
|
1233
|
+
r1 = sum_free1/nr_free1;
|
1234
|
+
else
|
1235
|
+
r1 = (ub1+lb1)/2;
|
1236
|
+
|
1237
|
+
if(nr_free2 > 0)
|
1238
|
+
r2 = sum_free2/nr_free2;
|
1239
|
+
else
|
1240
|
+
r2 = (ub2+lb2)/2;
|
1241
|
+
|
1242
|
+
si->r = (r1+r2)/2;
|
1243
|
+
return (r1-r2)/2;
|
1244
|
+
}
|
1245
|
+
|
1246
|
+
//
|
1247
|
+
// Q matrices for various formulations
|
1248
|
+
//
|
1249
|
+
class SVC_Q: public Kernel
|
1250
|
+
{
|
1251
|
+
public:
|
1252
|
+
SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
|
1253
|
+
:Kernel(prob.l, prob.x, param)
|
1254
|
+
{
|
1255
|
+
clone(y,y_,prob.l);
|
1256
|
+
cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
|
1257
|
+
QD = new Qfloat[prob.l];
|
1258
|
+
for(int i=0;i<prob.l;i++)
|
1259
|
+
QD[i]= (Qfloat)(this->*kernel_function)(i,i);
|
1260
|
+
}
|
1261
|
+
|
1262
|
+
Qfloat *get_Q(int i, int len) const
|
1263
|
+
{
|
1264
|
+
Qfloat *data;
|
1265
|
+
int start, j;
|
1266
|
+
if((start = cache->get_data(i,&data,len)) < len)
|
1267
|
+
{
|
1268
|
+
for(j=start;j<len;j++)
|
1269
|
+
data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
|
1270
|
+
}
|
1271
|
+
return data;
|
1272
|
+
}
|
1273
|
+
|
1274
|
+
Qfloat *get_QD() const
|
1275
|
+
{
|
1276
|
+
return QD;
|
1277
|
+
}
|
1278
|
+
|
1279
|
+
void swap_index(int i, int j) const
|
1280
|
+
{
|
1281
|
+
cache->swap_index(i,j);
|
1282
|
+
Kernel::swap_index(i,j);
|
1283
|
+
swap(y[i],y[j]);
|
1284
|
+
swap(QD[i],QD[j]);
|
1285
|
+
}
|
1286
|
+
|
1287
|
+
~SVC_Q()
|
1288
|
+
{
|
1289
|
+
delete[] y;
|
1290
|
+
delete cache;
|
1291
|
+
delete[] QD;
|
1292
|
+
}
|
1293
|
+
private:
|
1294
|
+
schar *y;
|
1295
|
+
Cache *cache;
|
1296
|
+
Qfloat *QD;
|
1297
|
+
};
|
1298
|
+
|
1299
|
+
class ONE_CLASS_Q: public Kernel
|
1300
|
+
{
|
1301
|
+
public:
|
1302
|
+
ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
|
1303
|
+
:Kernel(prob.l, prob.x, param)
|
1304
|
+
{
|
1305
|
+
cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
|
1306
|
+
QD = new Qfloat[prob.l];
|
1307
|
+
for(int i=0;i<prob.l;i++)
|
1308
|
+
QD[i]= (Qfloat)(this->*kernel_function)(i,i);
|
1309
|
+
}
|
1310
|
+
|
1311
|
+
Qfloat *get_Q(int i, int len) const
|
1312
|
+
{
|
1313
|
+
Qfloat *data;
|
1314
|
+
int start, j;
|
1315
|
+
if((start = cache->get_data(i,&data,len)) < len)
|
1316
|
+
{
|
1317
|
+
for(j=start;j<len;j++)
|
1318
|
+
data[j] = (Qfloat)(this->*kernel_function)(i,j);
|
1319
|
+
}
|
1320
|
+
return data;
|
1321
|
+
}
|
1322
|
+
|
1323
|
+
Qfloat *get_QD() const
|
1324
|
+
{
|
1325
|
+
return QD;
|
1326
|
+
}
|
1327
|
+
|
1328
|
+
void swap_index(int i, int j) const
|
1329
|
+
{
|
1330
|
+
cache->swap_index(i,j);
|
1331
|
+
Kernel::swap_index(i,j);
|
1332
|
+
swap(QD[i],QD[j]);
|
1333
|
+
}
|
1334
|
+
|
1335
|
+
~ONE_CLASS_Q()
|
1336
|
+
{
|
1337
|
+
delete cache;
|
1338
|
+
delete[] QD;
|
1339
|
+
}
|
1340
|
+
private:
|
1341
|
+
Cache *cache;
|
1342
|
+
Qfloat *QD;
|
1343
|
+
};
|
1344
|
+
|
1345
|
+
class SVR_Q: public Kernel
|
1346
|
+
{
|
1347
|
+
public:
|
1348
|
+
SVR_Q(const svm_problem& prob, const svm_parameter& param)
|
1349
|
+
:Kernel(prob.l, prob.x, param)
|
1350
|
+
{
|
1351
|
+
l = prob.l;
|
1352
|
+
cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
|
1353
|
+
QD = new Qfloat[2*l];
|
1354
|
+
sign = new schar[2*l];
|
1355
|
+
index = new int[2*l];
|
1356
|
+
for(int k=0;k<l;k++)
|
1357
|
+
{
|
1358
|
+
sign[k] = 1;
|
1359
|
+
sign[k+l] = -1;
|
1360
|
+
index[k] = k;
|
1361
|
+
index[k+l] = k;
|
1362
|
+
QD[k]= (Qfloat)(this->*kernel_function)(k,k);
|
1363
|
+
QD[k+l]=QD[k];
|
1364
|
+
}
|
1365
|
+
buffer[0] = new Qfloat[2*l];
|
1366
|
+
buffer[1] = new Qfloat[2*l];
|
1367
|
+
next_buffer = 0;
|
1368
|
+
}
|
1369
|
+
|
1370
|
+
void swap_index(int i, int j) const
|
1371
|
+
{
|
1372
|
+
swap(sign[i],sign[j]);
|
1373
|
+
swap(index[i],index[j]);
|
1374
|
+
swap(QD[i],QD[j]);
|
1375
|
+
}
|
1376
|
+
|
1377
|
+
Qfloat *get_Q(int i, int len) const
|
1378
|
+
{
|
1379
|
+
Qfloat *data;
|
1380
|
+
int j, real_i = index[i];
|
1381
|
+
if(cache->get_data(real_i,&data,l) < l)
|
1382
|
+
{
|
1383
|
+
for(j=0;j<l;j++)
|
1384
|
+
data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
|
1385
|
+
}
|
1386
|
+
|
1387
|
+
// reorder and copy
|
1388
|
+
Qfloat *buf = buffer[next_buffer];
|
1389
|
+
next_buffer = 1 - next_buffer;
|
1390
|
+
schar si = sign[i];
|
1391
|
+
for(int j=0;j<len;j++)
|
1392
|
+
buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
|
1393
|
+
return buf;
|
1394
|
+
}
|
1395
|
+
|
1396
|
+
Qfloat *get_QD() const
|
1397
|
+
{
|
1398
|
+
return QD;
|
1399
|
+
}
|
1400
|
+
|
1401
|
+
~SVR_Q()
|
1402
|
+
{
|
1403
|
+
delete cache;
|
1404
|
+
delete[] sign;
|
1405
|
+
delete[] index;
|
1406
|
+
delete[] buffer[0];
|
1407
|
+
delete[] buffer[1];
|
1408
|
+
delete[] QD;
|
1409
|
+
}
|
1410
|
+
private:
|
1411
|
+
int l;
|
1412
|
+
Cache *cache;
|
1413
|
+
schar *sign;
|
1414
|
+
int *index;
|
1415
|
+
mutable int next_buffer;
|
1416
|
+
Qfloat *buffer[2];
|
1417
|
+
Qfloat *QD;
|
1418
|
+
};
|
1419
|
+
|
1420
|
+
//
|
1421
|
+
// construct and solve various formulations
|
1422
|
+
//
|
1423
|
+
static void solve_c_svc(
|
1424
|
+
const svm_problem *prob, const svm_parameter* param,
|
1425
|
+
double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
|
1426
|
+
{
|
1427
|
+
int l = prob->l;
|
1428
|
+
double *minus_ones = new double[l];
|
1429
|
+
schar *y = new schar[l];
|
1430
|
+
|
1431
|
+
int i;
|
1432
|
+
|
1433
|
+
for(i=0;i<l;i++)
|
1434
|
+
{
|
1435
|
+
alpha[i] = 0;
|
1436
|
+
minus_ones[i] = -1;
|
1437
|
+
if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;
|
1438
|
+
}
|
1439
|
+
|
1440
|
+
Solver s;
|
1441
|
+
s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
|
1442
|
+
alpha, Cp, Cn, param->eps, si, param->shrinking);
|
1443
|
+
|
1444
|
+
double sum_alpha=0;
|
1445
|
+
for(i=0;i<l;i++)
|
1446
|
+
sum_alpha += alpha[i];
|
1447
|
+
|
1448
|
+
if (Cp==Cn)
|
1449
|
+
info("nu = %f\n", sum_alpha/(Cp*prob->l));
|
1450
|
+
|
1451
|
+
for(i=0;i<l;i++)
|
1452
|
+
alpha[i] *= y[i];
|
1453
|
+
|
1454
|
+
delete[] minus_ones;
|
1455
|
+
delete[] y;
|
1456
|
+
}
|
1457
|
+
|
1458
|
+
static void solve_nu_svc(
|
1459
|
+
const svm_problem *prob, const svm_parameter *param,
|
1460
|
+
double *alpha, Solver::SolutionInfo* si)
|
1461
|
+
{
|
1462
|
+
int i;
|
1463
|
+
int l = prob->l;
|
1464
|
+
double nu = param->nu;
|
1465
|
+
|
1466
|
+
schar *y = new schar[l];
|
1467
|
+
|
1468
|
+
for(i=0;i<l;i++)
|
1469
|
+
if(prob->y[i]>0)
|
1470
|
+
y[i] = +1;
|
1471
|
+
else
|
1472
|
+
y[i] = -1;
|
1473
|
+
|
1474
|
+
double sum_pos = nu*l/2;
|
1475
|
+
double sum_neg = nu*l/2;
|
1476
|
+
|
1477
|
+
for(i=0;i<l;i++)
|
1478
|
+
if(y[i] == +1)
|
1479
|
+
{
|
1480
|
+
alpha[i] = min(1.0,sum_pos);
|
1481
|
+
sum_pos -= alpha[i];
|
1482
|
+
}
|
1483
|
+
else
|
1484
|
+
{
|
1485
|
+
alpha[i] = min(1.0,sum_neg);
|
1486
|
+
sum_neg -= alpha[i];
|
1487
|
+
}
|
1488
|
+
|
1489
|
+
double *zeros = new double[l];
|
1490
|
+
|
1491
|
+
for(i=0;i<l;i++)
|
1492
|
+
zeros[i] = 0;
|
1493
|
+
|
1494
|
+
Solver_NU s;
|
1495
|
+
s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
|
1496
|
+
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
|
1497
|
+
double r = si->r;
|
1498
|
+
|
1499
|
+
info("C = %f\n",1/r);
|
1500
|
+
|
1501
|
+
for(i=0;i<l;i++)
|
1502
|
+
alpha[i] *= y[i]/r;
|
1503
|
+
|
1504
|
+
si->rho /= r;
|
1505
|
+
si->obj /= (r*r);
|
1506
|
+
si->upper_bound_p = 1/r;
|
1507
|
+
si->upper_bound_n = 1/r;
|
1508
|
+
|
1509
|
+
delete[] y;
|
1510
|
+
delete[] zeros;
|
1511
|
+
}
|
1512
|
+
|
1513
|
+
static void solve_one_class(
|
1514
|
+
const svm_problem *prob, const svm_parameter *param,
|
1515
|
+
double *alpha, Solver::SolutionInfo* si)
|
1516
|
+
{
|
1517
|
+
int l = prob->l;
|
1518
|
+
double *zeros = new double[l];
|
1519
|
+
schar *ones = new schar[l];
|
1520
|
+
int i;
|
1521
|
+
|
1522
|
+
int n = (int)(param->nu*prob->l); // # of alpha's at upper bound
|
1523
|
+
|
1524
|
+
for(i=0;i<n;i++)
|
1525
|
+
alpha[i] = 1;
|
1526
|
+
if(n<prob->l)
|
1527
|
+
alpha[n] = param->nu * prob->l - n;
|
1528
|
+
for(i=n+1;i<l;i++)
|
1529
|
+
alpha[i] = 0;
|
1530
|
+
|
1531
|
+
for(i=0;i<l;i++)
|
1532
|
+
{
|
1533
|
+
zeros[i] = 0;
|
1534
|
+
ones[i] = 1;
|
1535
|
+
}
|
1536
|
+
|
1537
|
+
Solver s;
|
1538
|
+
s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
|
1539
|
+
alpha, 1.0, 1.0, param->eps, si, param->shrinking);
|
1540
|
+
|
1541
|
+
delete[] zeros;
|
1542
|
+
delete[] ones;
|
1543
|
+
}
|
1544
|
+
|
1545
|
+
static void solve_epsilon_svr(
|
1546
|
+
const svm_problem *prob, const svm_parameter *param,
|
1547
|
+
double *alpha, Solver::SolutionInfo* si)
|
1548
|
+
{
|
1549
|
+
int l = prob->l;
|
1550
|
+
double *alpha2 = new double[2*l];
|
1551
|
+
double *linear_term = new double[2*l];
|
1552
|
+
schar *y = new schar[2*l];
|
1553
|
+
int i;
|
1554
|
+
|
1555
|
+
for(i=0;i<l;i++)
|
1556
|
+
{
|
1557
|
+
alpha2[i] = 0;
|
1558
|
+
linear_term[i] = param->p - prob->y[i];
|
1559
|
+
y[i] = 1;
|
1560
|
+
|
1561
|
+
alpha2[i+l] = 0;
|
1562
|
+
linear_term[i+l] = param->p + prob->y[i];
|
1563
|
+
y[i+l] = -1;
|
1564
|
+
}
|
1565
|
+
|
1566
|
+
Solver s;
|
1567
|
+
s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
|
1568
|
+
alpha2, param->C, param->C, param->eps, si, param->shrinking);
|
1569
|
+
|
1570
|
+
double sum_alpha = 0;
|
1571
|
+
for(i=0;i<l;i++)
|
1572
|
+
{
|
1573
|
+
alpha[i] = alpha2[i] - alpha2[i+l];
|
1574
|
+
sum_alpha += fabs(alpha[i]);
|
1575
|
+
}
|
1576
|
+
info("nu = %f\n",sum_alpha/(param->C*l));
|
1577
|
+
|
1578
|
+
delete[] alpha2;
|
1579
|
+
delete[] linear_term;
|
1580
|
+
delete[] y;
|
1581
|
+
}
|
1582
|
+
|
1583
|
+
static void solve_nu_svr(
|
1584
|
+
const svm_problem *prob, const svm_parameter *param,
|
1585
|
+
double *alpha, Solver::SolutionInfo* si)
|
1586
|
+
{
|
1587
|
+
int l = prob->l;
|
1588
|
+
double C = param->C;
|
1589
|
+
double *alpha2 = new double[2*l];
|
1590
|
+
double *linear_term = new double[2*l];
|
1591
|
+
schar *y = new schar[2*l];
|
1592
|
+
int i;
|
1593
|
+
|
1594
|
+
double sum = C * param->nu * l / 2;
|
1595
|
+
for(i=0;i<l;i++)
|
1596
|
+
{
|
1597
|
+
alpha2[i] = alpha2[i+l] = min(sum,C);
|
1598
|
+
sum -= alpha2[i];
|
1599
|
+
|
1600
|
+
linear_term[i] = - prob->y[i];
|
1601
|
+
y[i] = 1;
|
1602
|
+
|
1603
|
+
linear_term[i+l] = prob->y[i];
|
1604
|
+
y[i+l] = -1;
|
1605
|
+
}
|
1606
|
+
|
1607
|
+
Solver_NU s;
|
1608
|
+
s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
|
1609
|
+
alpha2, C, C, param->eps, si, param->shrinking);
|
1610
|
+
|
1611
|
+
info("epsilon = %f\n",-si->r);
|
1612
|
+
|
1613
|
+
for(i=0;i<l;i++)
|
1614
|
+
alpha[i] = alpha2[i] - alpha2[i+l];
|
1615
|
+
|
1616
|
+
delete[] alpha2;
|
1617
|
+
delete[] linear_term;
|
1618
|
+
delete[] y;
|
1619
|
+
}
|
1620
|
+
|
1621
|
+
//
|
1622
|
+
// decision_function
|
1623
|
+
//
|
1624
|
+
struct decision_function
|
1625
|
+
{
|
1626
|
+
double *alpha;
|
1627
|
+
double rho;
|
1628
|
+
double obj;
|
1629
|
+
};
|
1630
|
+
|
1631
|
+
decision_function svm_train_one(
|
1632
|
+
const svm_problem *prob, const svm_parameter *param,
|
1633
|
+
double Cp, double Cn)
|
1634
|
+
{
|
1635
|
+
double *alpha = Malloc(double,prob->l);
|
1636
|
+
Solver::SolutionInfo si;
|
1637
|
+
switch(param->svm_type)
|
1638
|
+
{
|
1639
|
+
case C_SVC:
|
1640
|
+
solve_c_svc(prob,param,alpha,&si,Cp,Cn);
|
1641
|
+
break;
|
1642
|
+
case NU_SVC:
|
1643
|
+
solve_nu_svc(prob,param,alpha,&si);
|
1644
|
+
break;
|
1645
|
+
case ONE_CLASS:
|
1646
|
+
solve_one_class(prob,param,alpha,&si);
|
1647
|
+
break;
|
1648
|
+
case EPSILON_SVR:
|
1649
|
+
solve_epsilon_svr(prob,param,alpha,&si);
|
1650
|
+
break;
|
1651
|
+
case NU_SVR:
|
1652
|
+
solve_nu_svr(prob,param,alpha,&si);
|
1653
|
+
break;
|
1654
|
+
}
|
1655
|
+
|
1656
|
+
info("obj = %f, rho = %f\n",si.obj,si.rho);
|
1657
|
+
|
1658
|
+
// output SVs
|
1659
|
+
|
1660
|
+
int nSV = 0;
|
1661
|
+
int nBSV = 0;
|
1662
|
+
for(int i=0;i<prob->l;i++)
|
1663
|
+
{
|
1664
|
+
if(fabs(alpha[i]) > 0)
|
1665
|
+
{
|
1666
|
+
++nSV;
|
1667
|
+
if(prob->y[i] > 0)
|
1668
|
+
{
|
1669
|
+
if(fabs(alpha[i]) >= si.upper_bound_p)
|
1670
|
+
++nBSV;
|
1671
|
+
}
|
1672
|
+
else
|
1673
|
+
{
|
1674
|
+
if(fabs(alpha[i]) >= si.upper_bound_n)
|
1675
|
+
++nBSV;
|
1676
|
+
}
|
1677
|
+
}
|
1678
|
+
}
|
1679
|
+
|
1680
|
+
info("nSV = %d, nBSV = %d\n",nSV,nBSV);
|
1681
|
+
|
1682
|
+
decision_function f;
|
1683
|
+
f.alpha = alpha;
|
1684
|
+
f.rho = si.rho;
|
1685
|
+
f.obj = si.obj;
|
1686
|
+
return f;
|
1687
|
+
}
|
1688
|
+
|
1689
|
+
//
|
1690
|
+
// svm_model
|
1691
|
+
//
|
1692
|
+
struct svm_model
|
1693
|
+
{
|
1694
|
+
svm_parameter param; // parameter
|
1695
|
+
int nr_class; // number of classes, = 2 in regression/one class svm
|
1696
|
+
int l; // total #SV
|
1697
|
+
svm_node **SV; // SVs (SV[l])
|
1698
|
+
double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
|
1699
|
+
double *rho; // constants in decision functions (rho[k*(k-1)/2])
|
1700
|
+
double *probA; // pariwise probability information
|
1701
|
+
double *probB;
|
1702
|
+
|
1703
|
+
double *obj;
|
1704
|
+
|
1705
|
+
// for classification only
|
1706
|
+
|
1707
|
+
int *label; // label of each class (label[k])
|
1708
|
+
int *nSV; // number of SVs for each class (nSV[k])
|
1709
|
+
// nSV[0] + nSV[1] + ... + nSV[k-1] = l
|
1710
|
+
// XXX
|
1711
|
+
int free_sv; // 1 if svm_model is created by svm_load_model
|
1712
|
+
// 0 if svm_model is created by svm_train
|
1713
|
+
};
|
1714
|
+
|
1715
|
+
// Get the rho element of the model. Only works when there are two
|
1716
|
+
// labels (1 classifier).
|
1717
|
+
double svm_get_model_rho(struct svm_model *model)
|
1718
|
+
{
|
1719
|
+
if (model->nr_class > 2)
|
1720
|
+
info("warning: rho requested for model with more than 2 labels");
|
1721
|
+
return model->rho[0];
|
1722
|
+
}
|
1723
|
+
|
1724
|
+
int svm_get_model_num_coefs(struct svm_model *model)
|
1725
|
+
{
|
1726
|
+
return model->l;
|
1727
|
+
}
|
1728
|
+
|
1729
|
+
// Get the coefficients of the model. Only works when there are two
|
1730
|
+
// labels (1 classifier).
|
1731
|
+
void svm_get_model_coefs(struct svm_model *model, double* out_array)
|
1732
|
+
{
|
1733
|
+
if (model->nr_class > 2)
|
1734
|
+
info("warning: coefficients requested for model with more than 2 labels");
|
1735
|
+
memcpy(out_array, model->sv_coef[0], sizeof(double) * model->l);
|
1736
|
+
}
|
1737
|
+
|
1738
|
+
// Get the permutation of the indices of the coefficients w.r.t. to the input problem.
|
1739
|
+
void svm_get_model_perm(struct svm_model *model, int* out_array)
|
1740
|
+
{
|
1741
|
+
if (model->nr_class > 2)
|
1742
|
+
info("warning: permutation requested for model with more than 2 labels");
|
1743
|
+
int i;
|
1744
|
+
for ( i = 0; i < model->l; ++i)
|
1745
|
+
{
|
1746
|
+
struct svm_node* n = model->SV[i];
|
1747
|
+
if (0 != n->index)
|
1748
|
+
{
|
1749
|
+
info("warning: missing 0 index");
|
1750
|
+
out_array[i] = -1;
|
1751
|
+
}
|
1752
|
+
else
|
1753
|
+
out_array[i] = (int)n->value;
|
1754
|
+
}
|
1755
|
+
}
|
1756
|
+
|
1757
|
+
// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
|
1758
|
+
void sigmoid_train(
|
1759
|
+
int l, const double *dec_values, const double *labels,
|
1760
|
+
double& A, double& B)
|
1761
|
+
{
|
1762
|
+
double prior1=0, prior0 = 0;
|
1763
|
+
int i;
|
1764
|
+
|
1765
|
+
for (i=0;i<l;i++)
|
1766
|
+
if (labels[i] > 0) prior1+=1;
|
1767
|
+
else prior0+=1;
|
1768
|
+
|
1769
|
+
int max_iter=100; // Maximal number of iterations
|
1770
|
+
double min_step=1e-10; // Minimal step taken in line search
|
1771
|
+
double sigma=1e-12; // For numerically strict PD of Hessian
|
1772
|
+
double eps=1e-5;
|
1773
|
+
double hiTarget=(prior1+1.0)/(prior1+2.0);
|
1774
|
+
double loTarget=1/(prior0+2.0);
|
1775
|
+
double *t=Malloc(double,l);
|
1776
|
+
double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
|
1777
|
+
double newA,newB,newf,d1,d2;
|
1778
|
+
int iter;
|
1779
|
+
|
1780
|
+
// Initial Point and Initial Fun Value
|
1781
|
+
A=0.0; B=log((prior0+1.0)/(prior1+1.0));
|
1782
|
+
double fval = 0.0;
|
1783
|
+
|
1784
|
+
for (i=0;i<l;i++)
|
1785
|
+
{
|
1786
|
+
if (labels[i]>0) t[i]=hiTarget;
|
1787
|
+
else t[i]=loTarget;
|
1788
|
+
fApB = dec_values[i]*A+B;
|
1789
|
+
if (fApB>=0)
|
1790
|
+
fval += t[i]*fApB + log(1+exp(-fApB));
|
1791
|
+
else
|
1792
|
+
fval += (t[i] - 1)*fApB +log(1+exp(fApB));
|
1793
|
+
}
|
1794
|
+
for (iter=0;iter<max_iter;iter++)
|
1795
|
+
{
|
1796
|
+
// Update Gradient and Hessian (use H' = H + sigma I)
|
1797
|
+
h11=sigma; // numerically ensures strict PD
|
1798
|
+
h22=sigma;
|
1799
|
+
h21=0.0;g1=0.0;g2=0.0;
|
1800
|
+
for (i=0;i<l;i++)
|
1801
|
+
{
|
1802
|
+
fApB = dec_values[i]*A+B;
|
1803
|
+
if (fApB >= 0)
|
1804
|
+
{
|
1805
|
+
p=exp(-fApB)/(1.0+exp(-fApB));
|
1806
|
+
q=1.0/(1.0+exp(-fApB));
|
1807
|
+
}
|
1808
|
+
else
|
1809
|
+
{
|
1810
|
+
p=1.0/(1.0+exp(fApB));
|
1811
|
+
q=exp(fApB)/(1.0+exp(fApB));
|
1812
|
+
}
|
1813
|
+
d2=p*q;
|
1814
|
+
h11+=dec_values[i]*dec_values[i]*d2;
|
1815
|
+
h22+=d2;
|
1816
|
+
h21+=dec_values[i]*d2;
|
1817
|
+
d1=t[i]-p;
|
1818
|
+
g1+=dec_values[i]*d1;
|
1819
|
+
g2+=d1;
|
1820
|
+
}
|
1821
|
+
|
1822
|
+
// Stopping Criteria
|
1823
|
+
if (fabs(g1)<eps && fabs(g2)<eps)
|
1824
|
+
break;
|
1825
|
+
|
1826
|
+
// Finding Newton direction: -inv(H') * g
|
1827
|
+
det=h11*h22-h21*h21;
|
1828
|
+
dA=-(h22*g1 - h21 * g2) / det;
|
1829
|
+
dB=-(-h21*g1+ h11 * g2) / det;
|
1830
|
+
gd=g1*dA+g2*dB;
|
1831
|
+
|
1832
|
+
|
1833
|
+
stepsize = 1; // Line Search
|
1834
|
+
while (stepsize >= min_step)
|
1835
|
+
{
|
1836
|
+
newA = A + stepsize * dA;
|
1837
|
+
newB = B + stepsize * dB;
|
1838
|
+
|
1839
|
+
// New function value
|
1840
|
+
newf = 0.0;
|
1841
|
+
for (i=0;i<l;i++)
|
1842
|
+
{
|
1843
|
+
fApB = dec_values[i]*newA+newB;
|
1844
|
+
if (fApB >= 0)
|
1845
|
+
newf += t[i]*fApB + log(1+exp(-fApB));
|
1846
|
+
else
|
1847
|
+
newf += (t[i] - 1)*fApB +log(1+exp(fApB));
|
1848
|
+
}
|
1849
|
+
// Check sufficient decrease
|
1850
|
+
if (newf<fval+0.0001*stepsize*gd)
|
1851
|
+
{
|
1852
|
+
A=newA;B=newB;fval=newf;
|
1853
|
+
break;
|
1854
|
+
}
|
1855
|
+
else
|
1856
|
+
stepsize = stepsize / 2.0;
|
1857
|
+
}
|
1858
|
+
|
1859
|
+
if (stepsize < min_step)
|
1860
|
+
{
|
1861
|
+
info("Line search fails in two-class probability estimates\n");
|
1862
|
+
break;
|
1863
|
+
}
|
1864
|
+
}
|
1865
|
+
|
1866
|
+
if (iter>=max_iter)
|
1867
|
+
info("Reaching maximal iterations in two-class probability estimates\n");
|
1868
|
+
free(t);
|
1869
|
+
}
|
1870
|
+
|
1871
|
+
double sigmoid_predict(double decision_value, double A, double B)
|
1872
|
+
{
|
1873
|
+
double fApB = decision_value*A+B;
|
1874
|
+
if (fApB >= 0)
|
1875
|
+
return exp(-fApB)/(1.0+exp(-fApB));
|
1876
|
+
else
|
1877
|
+
return 1.0/(1+exp(fApB)) ;
|
1878
|
+
}
|
1879
|
+
|
1880
|
+
// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
|
1881
|
+
void multiclass_probability(int k, double **r, double *p)
|
1882
|
+
{
|
1883
|
+
int t,j;
|
1884
|
+
int iter = 0, max_iter=max(100,k);
|
1885
|
+
double **Q=Malloc(double *,k);
|
1886
|
+
double *Qp=Malloc(double,k);
|
1887
|
+
double pQp, eps=0.005/k;
|
1888
|
+
|
1889
|
+
for (t=0;t<k;t++)
|
1890
|
+
{
|
1891
|
+
p[t]=1.0/k; // Valid if k = 1
|
1892
|
+
Q[t]=Malloc(double,k);
|
1893
|
+
Q[t][t]=0;
|
1894
|
+
for (j=0;j<t;j++)
|
1895
|
+
{
|
1896
|
+
Q[t][t]+=r[j][t]*r[j][t];
|
1897
|
+
Q[t][j]=Q[j][t];
|
1898
|
+
}
|
1899
|
+
for (j=t+1;j<k;j++)
|
1900
|
+
{
|
1901
|
+
Q[t][t]+=r[j][t]*r[j][t];
|
1902
|
+
Q[t][j]=-r[j][t]*r[t][j];
|
1903
|
+
}
|
1904
|
+
}
|
1905
|
+
for (iter=0;iter<max_iter;iter++)
|
1906
|
+
{
|
1907
|
+
// stopping condition, recalculate QP,pQP for numerical accuracy
|
1908
|
+
pQp=0;
|
1909
|
+
for (t=0;t<k;t++)
|
1910
|
+
{
|
1911
|
+
Qp[t]=0;
|
1912
|
+
for (j=0;j<k;j++)
|
1913
|
+
Qp[t]+=Q[t][j]*p[j];
|
1914
|
+
pQp+=p[t]*Qp[t];
|
1915
|
+
}
|
1916
|
+
double max_error=0;
|
1917
|
+
for (t=0;t<k;t++)
|
1918
|
+
{
|
1919
|
+
double error=fabs(Qp[t]-pQp);
|
1920
|
+
if (error>max_error)
|
1921
|
+
max_error=error;
|
1922
|
+
}
|
1923
|
+
if (max_error<eps) break;
|
1924
|
+
|
1925
|
+
for (t=0;t<k;t++)
|
1926
|
+
{
|
1927
|
+
double diff=(-Qp[t]+pQp)/Q[t][t];
|
1928
|
+
p[t]+=diff;
|
1929
|
+
pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
|
1930
|
+
for (j=0;j<k;j++)
|
1931
|
+
{
|
1932
|
+
Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
|
1933
|
+
p[j]/=(1+diff);
|
1934
|
+
}
|
1935
|
+
}
|
1936
|
+
}
|
1937
|
+
if (iter>=max_iter)
|
1938
|
+
info("Exceeds max_iter in multiclass_prob\n");
|
1939
|
+
for(t=0;t<k;t++) free(Q[t]);
|
1940
|
+
free(Q);
|
1941
|
+
free(Qp);
|
1942
|
+
}
|
1943
|
+
|
1944
|
+
// Cross-validation decision values for probability estimates
|
1945
|
+
void svm_binary_svc_probability(
|
1946
|
+
const svm_problem *prob, const svm_parameter *param,
|
1947
|
+
double Cp, double Cn, double& probA, double& probB)
|
1948
|
+
{
|
1949
|
+
int i;
|
1950
|
+
int nr_fold = 5;
|
1951
|
+
int *perm = Malloc(int,prob->l);
|
1952
|
+
double *dec_values = Malloc(double,prob->l);
|
1953
|
+
|
1954
|
+
// random shuffle
|
1955
|
+
for(i=0;i<prob->l;i++) perm[i]=i;
|
1956
|
+
for(i=0;i<prob->l;i++)
|
1957
|
+
{
|
1958
|
+
int j = i+rand()%(prob->l-i);
|
1959
|
+
swap(perm[i],perm[j]);
|
1960
|
+
}
|
1961
|
+
for(i=0;i<nr_fold;i++)
|
1962
|
+
{
|
1963
|
+
int begin = i*prob->l/nr_fold;
|
1964
|
+
int end = (i+1)*prob->l/nr_fold;
|
1965
|
+
int j,k;
|
1966
|
+
struct svm_problem subprob;
|
1967
|
+
|
1968
|
+
subprob.l = prob->l-(end-begin);
|
1969
|
+
subprob.x = Malloc(struct svm_node*,subprob.l);
|
1970
|
+
subprob.y = Malloc(double,subprob.l);
|
1971
|
+
|
1972
|
+
k=0;
|
1973
|
+
for(j=0;j<begin;j++)
|
1974
|
+
{
|
1975
|
+
subprob.x[k] = prob->x[perm[j]];
|
1976
|
+
subprob.y[k] = prob->y[perm[j]];
|
1977
|
+
++k;
|
1978
|
+
}
|
1979
|
+
for(j=end;j<prob->l;j++)
|
1980
|
+
{
|
1981
|
+
subprob.x[k] = prob->x[perm[j]];
|
1982
|
+
subprob.y[k] = prob->y[perm[j]];
|
1983
|
+
++k;
|
1984
|
+
}
|
1985
|
+
int p_count=0,n_count=0;
|
1986
|
+
for(j=0;j<k;j++)
|
1987
|
+
if(subprob.y[j]>0)
|
1988
|
+
p_count++;
|
1989
|
+
else
|
1990
|
+
n_count++;
|
1991
|
+
|
1992
|
+
if(p_count==0 && n_count==0)
|
1993
|
+
for(j=begin;j<end;j++)
|
1994
|
+
dec_values[perm[j]] = 0;
|
1995
|
+
else if(p_count > 0 && n_count == 0)
|
1996
|
+
for(j=begin;j<end;j++)
|
1997
|
+
dec_values[perm[j]] = 1;
|
1998
|
+
else if(p_count == 0 && n_count > 0)
|
1999
|
+
for(j=begin;j<end;j++)
|
2000
|
+
dec_values[perm[j]] = -1;
|
2001
|
+
else
|
2002
|
+
{
|
2003
|
+
svm_parameter subparam = *param;
|
2004
|
+
subparam.probability=0;
|
2005
|
+
subparam.C=1.0;
|
2006
|
+
subparam.nr_weight=2;
|
2007
|
+
subparam.weight_label = Malloc(int,2);
|
2008
|
+
subparam.weight = Malloc(double,2);
|
2009
|
+
subparam.weight_label[0]=+1;
|
2010
|
+
subparam.weight_label[1]=-1;
|
2011
|
+
subparam.weight[0]=Cp;
|
2012
|
+
subparam.weight[1]=Cn;
|
2013
|
+
struct svm_model *submodel = svm_train(&subprob,&subparam);
|
2014
|
+
for(j=begin;j<end;j++)
|
2015
|
+
{
|
2016
|
+
svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
|
2017
|
+
// ensure +1 -1 order; reason not using CV subroutine
|
2018
|
+
dec_values[perm[j]] *= submodel->label[0];
|
2019
|
+
}
|
2020
|
+
svm_destroy_model(submodel);
|
2021
|
+
svm_destroy_param(&subparam);
|
2022
|
+
}
|
2023
|
+
free(subprob.x);
|
2024
|
+
free(subprob.y);
|
2025
|
+
}
|
2026
|
+
sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
|
2027
|
+
free(dec_values);
|
2028
|
+
free(perm);
|
2029
|
+
}
|
2030
|
+
|
2031
|
+
// Return parameter of a Laplace distribution
|
2032
|
+
double svm_svr_probability(
|
2033
|
+
const svm_problem *prob, const svm_parameter *param)
|
2034
|
+
{
|
2035
|
+
int i;
|
2036
|
+
int nr_fold = 5;
|
2037
|
+
double *ymv = Malloc(double,prob->l);
|
2038
|
+
double mae = 0;
|
2039
|
+
|
2040
|
+
svm_parameter newparam = *param;
|
2041
|
+
newparam.probability = 0;
|
2042
|
+
svm_cross_validation(prob,&newparam,nr_fold,ymv);
|
2043
|
+
for(i=0;i<prob->l;i++)
|
2044
|
+
{
|
2045
|
+
ymv[i]=prob->y[i]-ymv[i];
|
2046
|
+
mae += fabs(ymv[i]);
|
2047
|
+
}
|
2048
|
+
mae /= prob->l;
|
2049
|
+
double std=sqrt(2*mae*mae);
|
2050
|
+
int count=0;
|
2051
|
+
mae=0;
|
2052
|
+
for(i=0;i<prob->l;i++)
|
2053
|
+
if (fabs(ymv[i]) > 5*std)
|
2054
|
+
count=count+1;
|
2055
|
+
else
|
2056
|
+
mae+=fabs(ymv[i]);
|
2057
|
+
mae /= (prob->l-count);
|
2058
|
+
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
|
2059
|
+
free(ymv);
|
2060
|
+
return mae;
|
2061
|
+
}
|
2062
|
+
|
2063
|
+
|
2064
|
+
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
|
2065
|
+
// perm, length l, must be allocated before calling this subroutine
|
2066
|
+
void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
|
2067
|
+
{
|
2068
|
+
int l = prob->l;
|
2069
|
+
int max_nr_class = 16;
|
2070
|
+
int nr_class = 0;
|
2071
|
+
int *label = Malloc(int,max_nr_class);
|
2072
|
+
int *count = Malloc(int,max_nr_class);
|
2073
|
+
int *data_label = Malloc(int,l);
|
2074
|
+
int i;
|
2075
|
+
|
2076
|
+
for(i=0;i<l;i++)
|
2077
|
+
{
|
2078
|
+
int this_label = (int)prob->y[i];
|
2079
|
+
int j;
|
2080
|
+
for(j=0;j<nr_class;j++)
|
2081
|
+
{
|
2082
|
+
if(this_label == label[j])
|
2083
|
+
{
|
2084
|
+
++count[j];
|
2085
|
+
break;
|
2086
|
+
}
|
2087
|
+
}
|
2088
|
+
data_label[i] = j;
|
2089
|
+
if(j == nr_class)
|
2090
|
+
{
|
2091
|
+
if(nr_class == max_nr_class)
|
2092
|
+
{
|
2093
|
+
max_nr_class *= 2;
|
2094
|
+
label = (int *)realloc(label,max_nr_class*sizeof(int));
|
2095
|
+
count = (int *)realloc(count,max_nr_class*sizeof(int));
|
2096
|
+
}
|
2097
|
+
label[nr_class] = this_label;
|
2098
|
+
count[nr_class] = 1;
|
2099
|
+
++nr_class;
|
2100
|
+
}
|
2101
|
+
}
|
2102
|
+
|
2103
|
+
int *start = Malloc(int,nr_class);
|
2104
|
+
start[0] = 0;
|
2105
|
+
for(i=1;i<nr_class;i++)
|
2106
|
+
start[i] = start[i-1]+count[i-1];
|
2107
|
+
for(i=0;i<l;i++)
|
2108
|
+
{
|
2109
|
+
perm[start[data_label[i]]] = i;
|
2110
|
+
++start[data_label[i]];
|
2111
|
+
}
|
2112
|
+
start[0] = 0;
|
2113
|
+
for(i=1;i<nr_class;i++)
|
2114
|
+
start[i] = start[i-1]+count[i-1];
|
2115
|
+
|
2116
|
+
*nr_class_ret = nr_class;
|
2117
|
+
*label_ret = label;
|
2118
|
+
*start_ret = start;
|
2119
|
+
*count_ret = count;
|
2120
|
+
free(data_label);
|
2121
|
+
}
|
2122
|
+
|
2123
|
+
//
|
2124
|
+
// Interface functions
|
2125
|
+
//
|
2126
|
+
svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
|
2127
|
+
{
|
2128
|
+
svm_model *model = Malloc(svm_model,1);
|
2129
|
+
model->param = *param;
|
2130
|
+
model->free_sv = 0; // XXX
|
2131
|
+
|
2132
|
+
if(param->svm_type == ONE_CLASS ||
|
2133
|
+
param->svm_type == EPSILON_SVR ||
|
2134
|
+
param->svm_type == NU_SVR)
|
2135
|
+
{
|
2136
|
+
// regression or one-class-svm
|
2137
|
+
model->nr_class = 2;
|
2138
|
+
model->label = NULL;
|
2139
|
+
model->nSV = NULL;
|
2140
|
+
model->probA = NULL; model->probB = NULL;
|
2141
|
+
model->sv_coef = Malloc(double *,1);
|
2142
|
+
|
2143
|
+
if(param->probability &&
|
2144
|
+
(param->svm_type == EPSILON_SVR ||
|
2145
|
+
param->svm_type == NU_SVR))
|
2146
|
+
{
|
2147
|
+
model->probA = Malloc(double,1);
|
2148
|
+
model->probA[0] = svm_svr_probability(prob,param);
|
2149
|
+
}
|
2150
|
+
|
2151
|
+
decision_function f = svm_train_one(prob,param,0,0);
|
2152
|
+
model->rho = Malloc(double,1);
|
2153
|
+
model->rho[0] = f.rho;
|
2154
|
+
model->obj = Malloc(double,1);
|
2155
|
+
model->obj[0] = f.obj;
|
2156
|
+
|
2157
|
+
int nSV = 0;
|
2158
|
+
int i;
|
2159
|
+
for(i=0;i<prob->l;i++)
|
2160
|
+
if(fabs(f.alpha[i]) > 0) ++nSV;
|
2161
|
+
model->l = nSV;
|
2162
|
+
model->SV = Malloc(svm_node *,nSV);
|
2163
|
+
model->sv_coef[0] = Malloc(double,nSV);
|
2164
|
+
int j = 0;
|
2165
|
+
for(i=0;i<prob->l;i++)
|
2166
|
+
if(fabs(f.alpha[i]) > 0)
|
2167
|
+
{
|
2168
|
+
model->SV[j] = prob->x[i];
|
2169
|
+
model->sv_coef[0][j] = f.alpha[i];
|
2170
|
+
++j;
|
2171
|
+
}
|
2172
|
+
|
2173
|
+
free(f.alpha);
|
2174
|
+
}
|
2175
|
+
else
|
2176
|
+
{
|
2177
|
+
// classification
|
2178
|
+
int l = prob->l;
|
2179
|
+
int nr_class;
|
2180
|
+
int *label = NULL;
|
2181
|
+
int *start = NULL;
|
2182
|
+
int *count = NULL;
|
2183
|
+
int *perm = Malloc(int,l);
|
2184
|
+
|
2185
|
+
// group training data of the same class
|
2186
|
+
svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
|
2187
|
+
svm_node **x = Malloc(svm_node *,l);
|
2188
|
+
int i;
|
2189
|
+
for(i=0;i<l;i++)
|
2190
|
+
x[i] = prob->x[perm[i]];
|
2191
|
+
|
2192
|
+
// calculate weighted C
|
2193
|
+
|
2194
|
+
double *weighted_C = Malloc(double, nr_class);
|
2195
|
+
for(i=0;i<nr_class;i++)
|
2196
|
+
weighted_C[i] = param->C;
|
2197
|
+
for(i=0;i<param->nr_weight;i++)
|
2198
|
+
{
|
2199
|
+
int j;
|
2200
|
+
for(j=0;j<nr_class;j++)
|
2201
|
+
if(param->weight_label[i] == label[j])
|
2202
|
+
break;
|
2203
|
+
if(j == nr_class)
|
2204
|
+
fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);
|
2205
|
+
else
|
2206
|
+
weighted_C[j] *= param->weight[i];
|
2207
|
+
}
|
2208
|
+
|
2209
|
+
// train k*(k-1)/2 models
|
2210
|
+
|
2211
|
+
bool *nonzero = Malloc(bool,l);
|
2212
|
+
for(i=0;i<l;i++)
|
2213
|
+
nonzero[i] = false;
|
2214
|
+
decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
|
2215
|
+
|
2216
|
+
double *probA=NULL,*probB=NULL;
|
2217
|
+
if (param->probability)
|
2218
|
+
{
|
2219
|
+
probA=Malloc(double,nr_class*(nr_class-1)/2);
|
2220
|
+
probB=Malloc(double,nr_class*(nr_class-1)/2);
|
2221
|
+
}
|
2222
|
+
|
2223
|
+
int p = 0;
|
2224
|
+
for(i=0;i<nr_class;i++)
|
2225
|
+
for(int j=i+1;j<nr_class;j++)
|
2226
|
+
{
|
2227
|
+
svm_problem sub_prob;
|
2228
|
+
int si = start[i], sj = start[j];
|
2229
|
+
int ci = count[i], cj = count[j];
|
2230
|
+
sub_prob.l = ci+cj;
|
2231
|
+
sub_prob.x = Malloc(svm_node *,sub_prob.l);
|
2232
|
+
sub_prob.y = Malloc(double,sub_prob.l);
|
2233
|
+
int k;
|
2234
|
+
for(k=0;k<ci;k++)
|
2235
|
+
{
|
2236
|
+
sub_prob.x[k] = x[si+k];
|
2237
|
+
sub_prob.y[k] = +1;
|
2238
|
+
}
|
2239
|
+
for(k=0;k<cj;k++)
|
2240
|
+
{
|
2241
|
+
sub_prob.x[ci+k] = x[sj+k];
|
2242
|
+
sub_prob.y[ci+k] = -1;
|
2243
|
+
}
|
2244
|
+
|
2245
|
+
if(param->probability)
|
2246
|
+
svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
|
2247
|
+
|
2248
|
+
f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
|
2249
|
+
for(k=0;k<ci;k++)
|
2250
|
+
if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
|
2251
|
+
nonzero[si+k] = true;
|
2252
|
+
for(k=0;k<cj;k++)
|
2253
|
+
if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
|
2254
|
+
nonzero[sj+k] = true;
|
2255
|
+
free(sub_prob.x);
|
2256
|
+
free(sub_prob.y);
|
2257
|
+
++p;
|
2258
|
+
}
|
2259
|
+
|
2260
|
+
// build output
|
2261
|
+
|
2262
|
+
model->nr_class = nr_class;
|
2263
|
+
|
2264
|
+
model->label = Malloc(int,nr_class);
|
2265
|
+
for(i=0;i<nr_class;i++)
|
2266
|
+
model->label[i] = label[i];
|
2267
|
+
|
2268
|
+
model->rho = Malloc(double,nr_class*(nr_class-1)/2);
|
2269
|
+
model->obj = Malloc(double,nr_class*(nr_class-1)/2);
|
2270
|
+
for(i=0;i<nr_class*(nr_class-1)/2;i++)
|
2271
|
+
{
|
2272
|
+
model->rho[i] = f[i].rho;
|
2273
|
+
model->obj[i] = f[i].obj;
|
2274
|
+
}
|
2275
|
+
|
2276
|
+
|
2277
|
+
if(param->probability)
|
2278
|
+
{
|
2279
|
+
model->probA = Malloc(double,nr_class*(nr_class-1)/2);
|
2280
|
+
model->probB = Malloc(double,nr_class*(nr_class-1)/2);
|
2281
|
+
for(i=0;i<nr_class*(nr_class-1)/2;i++)
|
2282
|
+
{
|
2283
|
+
model->probA[i] = probA[i];
|
2284
|
+
model->probB[i] = probB[i];
|
2285
|
+
}
|
2286
|
+
}
|
2287
|
+
else
|
2288
|
+
{
|
2289
|
+
model->probA=NULL;
|
2290
|
+
model->probB=NULL;
|
2291
|
+
}
|
2292
|
+
|
2293
|
+
int total_sv = 0;
|
2294
|
+
int *nz_count = Malloc(int,nr_class);
|
2295
|
+
model->nSV = Malloc(int,nr_class);
|
2296
|
+
for(i=0;i<nr_class;i++)
|
2297
|
+
{
|
2298
|
+
int nSV = 0;
|
2299
|
+
for(int j=0;j<count[i];j++)
|
2300
|
+
if(nonzero[start[i]+j])
|
2301
|
+
{
|
2302
|
+
++nSV;
|
2303
|
+
++total_sv;
|
2304
|
+
}
|
2305
|
+
model->nSV[i] = nSV;
|
2306
|
+
nz_count[i] = nSV;
|
2307
|
+
}
|
2308
|
+
|
2309
|
+
info("Total nSV = %d\n",total_sv);
|
2310
|
+
|
2311
|
+
model->l = total_sv;
|
2312
|
+
model->SV = Malloc(svm_node *,total_sv);
|
2313
|
+
p = 0;
|
2314
|
+
for(i=0;i<l;i++)
|
2315
|
+
if(nonzero[i]) model->SV[p++] = x[i];
|
2316
|
+
|
2317
|
+
int *nz_start = Malloc(int,nr_class);
|
2318
|
+
nz_start[0] = 0;
|
2319
|
+
for(i=1;i<nr_class;i++)
|
2320
|
+
nz_start[i] = nz_start[i-1]+nz_count[i-1];
|
2321
|
+
|
2322
|
+
model->sv_coef = Malloc(double *,nr_class-1);
|
2323
|
+
for(i=0;i<nr_class-1;i++)
|
2324
|
+
model->sv_coef[i] = Malloc(double,total_sv);
|
2325
|
+
|
2326
|
+
p = 0;
|
2327
|
+
for(i=0;i<nr_class;i++)
|
2328
|
+
for(int j=i+1;j<nr_class;j++)
|
2329
|
+
{
|
2330
|
+
// classifier (i,j): coefficients with
|
2331
|
+
// i are in sv_coef[j-1][nz_start[i]...],
|
2332
|
+
// j are in sv_coef[i][nz_start[j]...]
|
2333
|
+
|
2334
|
+
int si = start[i];
|
2335
|
+
int sj = start[j];
|
2336
|
+
int ci = count[i];
|
2337
|
+
int cj = count[j];
|
2338
|
+
|
2339
|
+
int q = nz_start[i];
|
2340
|
+
int k;
|
2341
|
+
for(k=0;k<ci;k++)
|
2342
|
+
if(nonzero[si+k])
|
2343
|
+
model->sv_coef[j-1][q++] = f[p].alpha[k];
|
2344
|
+
q = nz_start[j];
|
2345
|
+
for(k=0;k<cj;k++)
|
2346
|
+
if(nonzero[sj+k])
|
2347
|
+
model->sv_coef[i][q++] = f[p].alpha[ci+k];
|
2348
|
+
++p;
|
2349
|
+
}
|
2350
|
+
|
2351
|
+
free(label);
|
2352
|
+
free(probA);
|
2353
|
+
free(probB);
|
2354
|
+
free(count);
|
2355
|
+
free(perm);
|
2356
|
+
free(start);
|
2357
|
+
free(x);
|
2358
|
+
free(weighted_C);
|
2359
|
+
free(nonzero);
|
2360
|
+
for(i=0;i<nr_class*(nr_class-1)/2;i++)
|
2361
|
+
free(f[i].alpha);
|
2362
|
+
free(f);
|
2363
|
+
free(nz_count);
|
2364
|
+
free(nz_start);
|
2365
|
+
}
|
2366
|
+
return model;
|
2367
|
+
}
|
2368
|
+
|
2369
|
+
// Stratified cross validation
|
2370
|
+
void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
|
2371
|
+
{
|
2372
|
+
int i;
|
2373
|
+
int *fold_start = Malloc(int,nr_fold+1);
|
2374
|
+
int l = prob->l;
|
2375
|
+
int *perm = Malloc(int,l);
|
2376
|
+
int nr_class;
|
2377
|
+
|
2378
|
+
// stratified cv may not give leave-one-out rate
|
2379
|
+
// Each class to l folds -> some folds may have zero elements
|
2380
|
+
if((param->svm_type == C_SVC ||
|
2381
|
+
param->svm_type == NU_SVC) && nr_fold < l)
|
2382
|
+
{
|
2383
|
+
int *start = NULL;
|
2384
|
+
int *label = NULL;
|
2385
|
+
int *count = NULL;
|
2386
|
+
svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
|
2387
|
+
|
2388
|
+
// random shuffle and then data grouped by fold using the array perm
|
2389
|
+
int *fold_count = Malloc(int,nr_fold);
|
2390
|
+
int c;
|
2391
|
+
int *index = Malloc(int,l);
|
2392
|
+
for(i=0;i<l;i++)
|
2393
|
+
index[i]=perm[i];
|
2394
|
+
for (c=0; c<nr_class; c++)
|
2395
|
+
for(i=0;i<count[c];i++)
|
2396
|
+
{
|
2397
|
+
int j = i+rand()%(count[c]-i);
|
2398
|
+
swap(index[start[c]+j],index[start[c]+i]);
|
2399
|
+
}
|
2400
|
+
for(i=0;i<nr_fold;i++)
|
2401
|
+
{
|
2402
|
+
fold_count[i] = 0;
|
2403
|
+
for (c=0; c<nr_class;c++)
|
2404
|
+
fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
|
2405
|
+
}
|
2406
|
+
fold_start[0]=0;
|
2407
|
+
for (i=1;i<=nr_fold;i++)
|
2408
|
+
fold_start[i] = fold_start[i-1]+fold_count[i-1];
|
2409
|
+
for (c=0; c<nr_class;c++)
|
2410
|
+
for(i=0;i<nr_fold;i++)
|
2411
|
+
{
|
2412
|
+
int begin = start[c]+i*count[c]/nr_fold;
|
2413
|
+
int end = start[c]+(i+1)*count[c]/nr_fold;
|
2414
|
+
for(int j=begin;j<end;j++)
|
2415
|
+
{
|
2416
|
+
perm[fold_start[i]] = index[j];
|
2417
|
+
fold_start[i]++;
|
2418
|
+
}
|
2419
|
+
}
|
2420
|
+
fold_start[0]=0;
|
2421
|
+
for (i=1;i<=nr_fold;i++)
|
2422
|
+
fold_start[i] = fold_start[i-1]+fold_count[i-1];
|
2423
|
+
free(start);
|
2424
|
+
free(label);
|
2425
|
+
free(count);
|
2426
|
+
free(index);
|
2427
|
+
free(fold_count);
|
2428
|
+
}
|
2429
|
+
else
|
2430
|
+
{
|
2431
|
+
for(i=0;i<l;i++) perm[i]=i;
|
2432
|
+
for(i=0;i<l;i++)
|
2433
|
+
{
|
2434
|
+
int j = i+rand()%(l-i);
|
2435
|
+
swap(perm[i],perm[j]);
|
2436
|
+
}
|
2437
|
+
for(i=0;i<=nr_fold;i++)
|
2438
|
+
fold_start[i]=i*l/nr_fold;
|
2439
|
+
}
|
2440
|
+
|
2441
|
+
for(i=0;i<nr_fold;i++)
|
2442
|
+
{
|
2443
|
+
int begin = fold_start[i];
|
2444
|
+
int end = fold_start[i+1];
|
2445
|
+
int j,k;
|
2446
|
+
struct svm_problem subprob;
|
2447
|
+
|
2448
|
+
subprob.l = l-(end-begin);
|
2449
|
+
subprob.x = Malloc(struct svm_node*,subprob.l);
|
2450
|
+
subprob.y = Malloc(double,subprob.l);
|
2451
|
+
|
2452
|
+
k=0;
|
2453
|
+
for(j=0;j<begin;j++)
|
2454
|
+
{
|
2455
|
+
subprob.x[k] = prob->x[perm[j]];
|
2456
|
+
subprob.y[k] = prob->y[perm[j]];
|
2457
|
+
++k;
|
2458
|
+
}
|
2459
|
+
for(j=end;j<l;j++)
|
2460
|
+
{
|
2461
|
+
subprob.x[k] = prob->x[perm[j]];
|
2462
|
+
subprob.y[k] = prob->y[perm[j]];
|
2463
|
+
++k;
|
2464
|
+
}
|
2465
|
+
struct svm_model *submodel = svm_train(&subprob,param);
|
2466
|
+
if(param->probability &&
|
2467
|
+
(param->svm_type == C_SVC || param->svm_type == NU_SVC))
|
2468
|
+
{
|
2469
|
+
double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
|
2470
|
+
for(j=begin;j<end;j++)
|
2471
|
+
target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
|
2472
|
+
free(prob_estimates);
|
2473
|
+
}
|
2474
|
+
else
|
2475
|
+
for(j=begin;j<end;j++)
|
2476
|
+
target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
|
2477
|
+
svm_destroy_model(submodel);
|
2478
|
+
free(subprob.x);
|
2479
|
+
free(subprob.y);
|
2480
|
+
}
|
2481
|
+
free(fold_start);
|
2482
|
+
free(perm);
|
2483
|
+
}
|
2484
|
+
|
2485
|
+
double svm_get_obj(const svm_model *model, const int i)
|
2486
|
+
{
|
2487
|
+
return model->obj[i];
|
2488
|
+
}
|
2489
|
+
|
2490
|
+
int svm_get_svm_type(const svm_model *model)
|
2491
|
+
{
|
2492
|
+
return model->param.svm_type;
|
2493
|
+
}
|
2494
|
+
|
2495
|
+
int svm_get_nr_class(const svm_model *model)
|
2496
|
+
{
|
2497
|
+
return model->nr_class;
|
2498
|
+
}
|
2499
|
+
|
2500
|
+
void svm_get_labels(const svm_model *model, int* label)
|
2501
|
+
{
|
2502
|
+
if (model->label != NULL)
|
2503
|
+
for(int i=0;i<model->nr_class;i++)
|
2504
|
+
label[i] = model->label[i];
|
2505
|
+
}
|
2506
|
+
|
2507
|
+
double svm_get_svr_probability(const svm_model *model)
|
2508
|
+
{
|
2509
|
+
if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
|
2510
|
+
model->probA!=NULL)
|
2511
|
+
return model->probA[0];
|
2512
|
+
else
|
2513
|
+
{
|
2514
|
+
info("Model doesn't contain information for SVR probability inference\n");
|
2515
|
+
return 0;
|
2516
|
+
}
|
2517
|
+
}
|
2518
|
+
|
2519
|
+
void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
|
2520
|
+
{
|
2521
|
+
if(model->param.svm_type == ONE_CLASS ||
|
2522
|
+
model->param.svm_type == EPSILON_SVR ||
|
2523
|
+
model->param.svm_type == NU_SVR)
|
2524
|
+
{
|
2525
|
+
double *sv_coef = model->sv_coef[0];
|
2526
|
+
double sum = 0;
|
2527
|
+
for(int i=0;i<model->l;i++)
|
2528
|
+
sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
|
2529
|
+
sum -= model->rho[0];
|
2530
|
+
*dec_values = sum;
|
2531
|
+
}
|
2532
|
+
else
|
2533
|
+
{
|
2534
|
+
int i;
|
2535
|
+
int nr_class = model->nr_class;
|
2536
|
+
int l = model->l;
|
2537
|
+
|
2538
|
+
double *kvalue = Malloc(double,l);
|
2539
|
+
for(i=0;i<l;i++)
|
2540
|
+
kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
|
2541
|
+
|
2542
|
+
int *start = Malloc(int,nr_class);
|
2543
|
+
start[0] = 0;
|
2544
|
+
for(i=1;i<nr_class;i++)
|
2545
|
+
start[i] = start[i-1]+model->nSV[i-1];
|
2546
|
+
|
2547
|
+
int p=0;
|
2548
|
+
for(i=0;i<nr_class;i++)
|
2549
|
+
for(int j=i+1;j<nr_class;j++)
|
2550
|
+
{
|
2551
|
+
double sum = 0;
|
2552
|
+
int si = start[i];
|
2553
|
+
int sj = start[j];
|
2554
|
+
int ci = model->nSV[i];
|
2555
|
+
int cj = model->nSV[j];
|
2556
|
+
|
2557
|
+
int k;
|
2558
|
+
double *coef1 = model->sv_coef[j-1];
|
2559
|
+
double *coef2 = model->sv_coef[i];
|
2560
|
+
for(k=0;k<ci;k++)
|
2561
|
+
sum += coef1[si+k] * kvalue[si+k];
|
2562
|
+
for(k=0;k<cj;k++)
|
2563
|
+
sum += coef2[sj+k] * kvalue[sj+k];
|
2564
|
+
sum -= model->rho[p];
|
2565
|
+
dec_values[p] = sum;
|
2566
|
+
p++;
|
2567
|
+
}
|
2568
|
+
|
2569
|
+
free(kvalue);
|
2570
|
+
free(start);
|
2571
|
+
}
|
2572
|
+
}
|
2573
|
+
|
2574
|
+
double svm_predict(const svm_model *model, const svm_node *x)
|
2575
|
+
{
|
2576
|
+
if(model->param.svm_type == ONE_CLASS ||
|
2577
|
+
model->param.svm_type == EPSILON_SVR ||
|
2578
|
+
model->param.svm_type == NU_SVR)
|
2579
|
+
{
|
2580
|
+
double res;
|
2581
|
+
svm_predict_values(model, x, &res);
|
2582
|
+
|
2583
|
+
if(model->param.svm_type == ONE_CLASS)
|
2584
|
+
return (res>0)?1:-1;
|
2585
|
+
else
|
2586
|
+
return res;
|
2587
|
+
}
|
2588
|
+
else
|
2589
|
+
{
|
2590
|
+
int i;
|
2591
|
+
int nr_class = model->nr_class;
|
2592
|
+
double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
|
2593
|
+
svm_predict_values(model, x, dec_values);
|
2594
|
+
|
2595
|
+
int *vote = Malloc(int,nr_class);
|
2596
|
+
for(i=0;i<nr_class;i++)
|
2597
|
+
vote[i] = 0;
|
2598
|
+
int pos=0;
|
2599
|
+
for(i=0;i<nr_class;i++)
|
2600
|
+
for(int j=i+1;j<nr_class;j++)
|
2601
|
+
{
|
2602
|
+
if(dec_values[pos++] > 0)
|
2603
|
+
++vote[i];
|
2604
|
+
else
|
2605
|
+
++vote[j];
|
2606
|
+
}
|
2607
|
+
|
2608
|
+
int vote_max_idx = 0;
|
2609
|
+
for(i=1;i<nr_class;i++)
|
2610
|
+
if(vote[i] > vote[vote_max_idx])
|
2611
|
+
vote_max_idx = i;
|
2612
|
+
free(vote);
|
2613
|
+
free(dec_values);
|
2614
|
+
return model->label[vote_max_idx];
|
2615
|
+
}
|
2616
|
+
}
|
2617
|
+
|
2618
|
+
double svm_predict_probability(
|
2619
|
+
const svm_model *model, const svm_node *x, double *prob_estimates)
|
2620
|
+
{
|
2621
|
+
if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
|
2622
|
+
model->probA!=NULL && model->probB!=NULL)
|
2623
|
+
{
|
2624
|
+
int i;
|
2625
|
+
int nr_class = model->nr_class;
|
2626
|
+
double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
|
2627
|
+
svm_predict_values(model, x, dec_values);
|
2628
|
+
|
2629
|
+
double min_prob=1e-7;
|
2630
|
+
double **pairwise_prob=Malloc(double *,nr_class);
|
2631
|
+
for(i=0;i<nr_class;i++)
|
2632
|
+
pairwise_prob[i]=Malloc(double,nr_class);
|
2633
|
+
int k=0;
|
2634
|
+
for(i=0;i<nr_class;i++)
|
2635
|
+
for(int j=i+1;j<nr_class;j++)
|
2636
|
+
{
|
2637
|
+
pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
|
2638
|
+
pairwise_prob[j][i]=1-pairwise_prob[i][j];
|
2639
|
+
k++;
|
2640
|
+
}
|
2641
|
+
multiclass_probability(nr_class,pairwise_prob,prob_estimates);
|
2642
|
+
|
2643
|
+
int prob_max_idx = 0;
|
2644
|
+
for(i=1;i<nr_class;i++)
|
2645
|
+
if(prob_estimates[i] > prob_estimates[prob_max_idx])
|
2646
|
+
prob_max_idx = i;
|
2647
|
+
for(i=0;i<nr_class;i++)
|
2648
|
+
free(pairwise_prob[i]);
|
2649
|
+
free(dec_values);
|
2650
|
+
free(pairwise_prob);
|
2651
|
+
return model->label[prob_max_idx];
|
2652
|
+
}
|
2653
|
+
else
|
2654
|
+
return svm_predict(model, x);
|
2655
|
+
}
|
2656
|
+
|
2657
|
+
const char *svm_type_table[] =
|
2658
|
+
{
|
2659
|
+
"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
|
2660
|
+
};
|
2661
|
+
|
2662
|
+
const char *kernel_type_table[]=
|
2663
|
+
{
|
2664
|
+
"linear","polynomial","rbf","sigmoid","precomputed",NULL
|
2665
|
+
};
|
2666
|
+
|
2667
|
+
int svm_save_model(const char *model_file_name, const svm_model *model)
|
2668
|
+
{
|
2669
|
+
FILE *fp = fopen(model_file_name,"w");
|
2670
|
+
if(fp==NULL) return -1;
|
2671
|
+
|
2672
|
+
const svm_parameter& param = model->param;
|
2673
|
+
|
2674
|
+
fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
|
2675
|
+
fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
|
2676
|
+
|
2677
|
+
if(param.kernel_type == POLY)
|
2678
|
+
fprintf(fp,"degree %d\n", param.degree);
|
2679
|
+
|
2680
|
+
if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
|
2681
|
+
fprintf(fp,"gamma %g\n", param.gamma);
|
2682
|
+
|
2683
|
+
if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
|
2684
|
+
fprintf(fp,"coef0 %g\n", param.coef0);
|
2685
|
+
|
2686
|
+
int nr_class = model->nr_class;
|
2687
|
+
int l = model->l;
|
2688
|
+
fprintf(fp, "nr_class %d\n", nr_class);
|
2689
|
+
fprintf(fp, "total_sv %d\n",l);
|
2690
|
+
|
2691
|
+
{
|
2692
|
+
fprintf(fp, "rho");
|
2693
|
+
for(int i=0;i<nr_class*(nr_class-1)/2;i++)
|
2694
|
+
fprintf(fp," %g",model->rho[i]);
|
2695
|
+
fprintf(fp, "\n");
|
2696
|
+
}
|
2697
|
+
|
2698
|
+
if(model->label)
|
2699
|
+
{
|
2700
|
+
fprintf(fp, "label");
|
2701
|
+
for(int i=0;i<nr_class;i++)
|
2702
|
+
fprintf(fp," %d",model->label[i]);
|
2703
|
+
fprintf(fp, "\n");
|
2704
|
+
}
|
2705
|
+
|
2706
|
+
if(model->probA) // regression has probA only
|
2707
|
+
{
|
2708
|
+
fprintf(fp, "probA");
|
2709
|
+
for(int i=0;i<nr_class*(nr_class-1)/2;i++)
|
2710
|
+
fprintf(fp," %g",model->probA[i]);
|
2711
|
+
fprintf(fp, "\n");
|
2712
|
+
}
|
2713
|
+
if(model->probB)
|
2714
|
+
{
|
2715
|
+
fprintf(fp, "probB");
|
2716
|
+
for(int i=0;i<nr_class*(nr_class-1)/2;i++)
|
2717
|
+
fprintf(fp," %g",model->probB[i]);
|
2718
|
+
fprintf(fp, "\n");
|
2719
|
+
}
|
2720
|
+
|
2721
|
+
if(model->nSV)
|
2722
|
+
{
|
2723
|
+
fprintf(fp, "nr_sv");
|
2724
|
+
for(int i=0;i<nr_class;i++)
|
2725
|
+
fprintf(fp," %d",model->nSV[i]);
|
2726
|
+
fprintf(fp, "\n");
|
2727
|
+
}
|
2728
|
+
|
2729
|
+
fprintf(fp, "SV\n");
|
2730
|
+
const double * const *sv_coef = model->sv_coef;
|
2731
|
+
const svm_node * const *SV = model->SV;
|
2732
|
+
|
2733
|
+
for(int i=0;i<l;i++)
|
2734
|
+
{
|
2735
|
+
for(int j=0;j<nr_class-1;j++)
|
2736
|
+
fprintf(fp, "%.16g ",sv_coef[j][i]);
|
2737
|
+
|
2738
|
+
const svm_node *p = SV[i];
|
2739
|
+
|
2740
|
+
if(param.kernel_type == PRECOMPUTED)
|
2741
|
+
fprintf(fp,"0:%d ",(int)(p->value));
|
2742
|
+
else
|
2743
|
+
while(p->index != -1)
|
2744
|
+
{
|
2745
|
+
fprintf(fp,"%d:%.8g ",p->index,p->value);
|
2746
|
+
p++;
|
2747
|
+
}
|
2748
|
+
fprintf(fp, "\n");
|
2749
|
+
}
|
2750
|
+
if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
|
2751
|
+
else return 0;
|
2752
|
+
}
|
2753
|
+
|
2754
|
+
svm_model *svm_load_model(const char *model_file_name)
|
2755
|
+
{
|
2756
|
+
FILE *fp = fopen(model_file_name,"rb");
|
2757
|
+
if(fp==NULL) return NULL;
|
2758
|
+
|
2759
|
+
// read parameters
|
2760
|
+
|
2761
|
+
svm_model *model = Malloc(svm_model,1);
|
2762
|
+
svm_parameter& param = model->param;
|
2763
|
+
model->rho = NULL;
|
2764
|
+
model->probA = NULL;
|
2765
|
+
model->probB = NULL;
|
2766
|
+
model->label = NULL;
|
2767
|
+
model->nSV = NULL;
|
2768
|
+
|
2769
|
+
model->obj = NULL;
|
2770
|
+
|
2771
|
+
char cmd[81];
|
2772
|
+
while(1)
|
2773
|
+
{
|
2774
|
+
fscanf(fp,"%80s",cmd);
|
2775
|
+
|
2776
|
+
if(strcmp(cmd,"svm_type")==0)
|
2777
|
+
{
|
2778
|
+
fscanf(fp,"%80s",cmd);
|
2779
|
+
int i;
|
2780
|
+
for(i=0;svm_type_table[i];i++)
|
2781
|
+
{
|
2782
|
+
if(strcmp(svm_type_table[i],cmd)==0)
|
2783
|
+
{
|
2784
|
+
param.svm_type=i;
|
2785
|
+
break;
|
2786
|
+
}
|
2787
|
+
}
|
2788
|
+
if(svm_type_table[i] == NULL)
|
2789
|
+
{
|
2790
|
+
fprintf(stderr,"unknown svm type.\n");
|
2791
|
+
free(model->rho);
|
2792
|
+
free(model->obj);
|
2793
|
+
free(model->label);
|
2794
|
+
free(model->nSV);
|
2795
|
+
free(model);
|
2796
|
+
return NULL;
|
2797
|
+
}
|
2798
|
+
}
|
2799
|
+
else if(strcmp(cmd,"kernel_type")==0)
|
2800
|
+
{
|
2801
|
+
fscanf(fp,"%80s",cmd);
|
2802
|
+
int i;
|
2803
|
+
for(i=0;kernel_type_table[i];i++)
|
2804
|
+
{
|
2805
|
+
if(strcmp(kernel_type_table[i],cmd)==0)
|
2806
|
+
{
|
2807
|
+
param.kernel_type=i;
|
2808
|
+
break;
|
2809
|
+
}
|
2810
|
+
}
|
2811
|
+
if(kernel_type_table[i] == NULL)
|
2812
|
+
{
|
2813
|
+
fprintf(stderr,"unknown kernel function.\n");
|
2814
|
+
free(model->rho);
|
2815
|
+
free(model->obj);
|
2816
|
+
free(model->label);
|
2817
|
+
free(model->nSV);
|
2818
|
+
free(model);
|
2819
|
+
return NULL;
|
2820
|
+
}
|
2821
|
+
}
|
2822
|
+
else if(strcmp(cmd,"degree")==0)
|
2823
|
+
fscanf(fp,"%d",¶m.degree);
|
2824
|
+
else if(strcmp(cmd,"gamma")==0)
|
2825
|
+
fscanf(fp,"%lf",¶m.gamma);
|
2826
|
+
else if(strcmp(cmd,"coef0")==0)
|
2827
|
+
fscanf(fp,"%lf",¶m.coef0);
|
2828
|
+
else if(strcmp(cmd,"nr_class")==0)
|
2829
|
+
fscanf(fp,"%d",&model->nr_class);
|
2830
|
+
else if(strcmp(cmd,"total_sv")==0)
|
2831
|
+
fscanf(fp,"%d",&model->l);
|
2832
|
+
else if(strcmp(cmd,"rho")==0)
|
2833
|
+
{
|
2834
|
+
int n = model->nr_class * (model->nr_class-1)/2;
|
2835
|
+
model->rho = Malloc(double,n);
|
2836
|
+
for(int i=0;i<n;i++)
|
2837
|
+
fscanf(fp,"%lf",&model->rho[i]);
|
2838
|
+
}
|
2839
|
+
else if(strcmp(cmd,"label")==0)
|
2840
|
+
{
|
2841
|
+
int n = model->nr_class;
|
2842
|
+
model->label = Malloc(int,n);
|
2843
|
+
for(int i=0;i<n;i++)
|
2844
|
+
fscanf(fp,"%d",&model->label[i]);
|
2845
|
+
}
|
2846
|
+
else if(strcmp(cmd,"probA")==0)
|
2847
|
+
{
|
2848
|
+
int n = model->nr_class * (model->nr_class-1)/2;
|
2849
|
+
model->probA = Malloc(double,n);
|
2850
|
+
for(int i=0;i<n;i++)
|
2851
|
+
fscanf(fp,"%lf",&model->probA[i]);
|
2852
|
+
}
|
2853
|
+
else if(strcmp(cmd,"probB")==0)
|
2854
|
+
{
|
2855
|
+
int n = model->nr_class * (model->nr_class-1)/2;
|
2856
|
+
model->probB = Malloc(double,n);
|
2857
|
+
for(int i=0;i<n;i++)
|
2858
|
+
fscanf(fp,"%lf",&model->probB[i]);
|
2859
|
+
}
|
2860
|
+
else if(strcmp(cmd,"nr_sv")==0)
|
2861
|
+
{
|
2862
|
+
int n = model->nr_class;
|
2863
|
+
model->nSV = Malloc(int,n);
|
2864
|
+
for(int i=0;i<n;i++)
|
2865
|
+
fscanf(fp,"%d",&model->nSV[i]);
|
2866
|
+
}
|
2867
|
+
else if(strcmp(cmd,"SV")==0)
|
2868
|
+
{
|
2869
|
+
while(1)
|
2870
|
+
{
|
2871
|
+
int c = getc(fp);
|
2872
|
+
if(c==EOF || c=='\n') break;
|
2873
|
+
}
|
2874
|
+
break;
|
2875
|
+
}
|
2876
|
+
else
|
2877
|
+
{
|
2878
|
+
fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
|
2879
|
+
free(model->rho);
|
2880
|
+
free(model->obj);
|
2881
|
+
free(model->label);
|
2882
|
+
free(model->nSV);
|
2883
|
+
free(model);
|
2884
|
+
return NULL;
|
2885
|
+
}
|
2886
|
+
}
|
2887
|
+
|
2888
|
+
// read sv_coef and SV
|
2889
|
+
|
2890
|
+
int elements = 0;
|
2891
|
+
long pos = ftell(fp);
|
2892
|
+
|
2893
|
+
while(1)
|
2894
|
+
{
|
2895
|
+
int c = fgetc(fp);
|
2896
|
+
switch(c)
|
2897
|
+
{
|
2898
|
+
case '\n':
|
2899
|
+
// count the '-1' element
|
2900
|
+
case ':':
|
2901
|
+
++elements;
|
2902
|
+
break;
|
2903
|
+
case EOF:
|
2904
|
+
goto out;
|
2905
|
+
default:
|
2906
|
+
;
|
2907
|
+
}
|
2908
|
+
}
|
2909
|
+
out:
|
2910
|
+
fseek(fp,pos,SEEK_SET);
|
2911
|
+
|
2912
|
+
int m = model->nr_class - 1;
|
2913
|
+
int l = model->l;
|
2914
|
+
model->sv_coef = Malloc(double *,m);
|
2915
|
+
int i;
|
2916
|
+
for(i=0;i<m;i++)
|
2917
|
+
model->sv_coef[i] = Malloc(double,l);
|
2918
|
+
model->SV = Malloc(svm_node*,l);
|
2919
|
+
svm_node *x_space=NULL;
|
2920
|
+
if(l>0) x_space = Malloc(svm_node,elements);
|
2921
|
+
|
2922
|
+
int j=0;
|
2923
|
+
for(i=0;i<l;i++)
|
2924
|
+
{
|
2925
|
+
model->SV[i] = &x_space[j];
|
2926
|
+
for(int k=0;k<m;k++)
|
2927
|
+
fscanf(fp,"%lf",&model->sv_coef[k][i]);
|
2928
|
+
while(1)
|
2929
|
+
{
|
2930
|
+
int c;
|
2931
|
+
do {
|
2932
|
+
c = getc(fp);
|
2933
|
+
if(c=='\n') goto out2;
|
2934
|
+
} while(isspace(c));
|
2935
|
+
ungetc(c,fp);
|
2936
|
+
fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value));
|
2937
|
+
++j;
|
2938
|
+
}
|
2939
|
+
out2:
|
2940
|
+
x_space[j++].index = -1;
|
2941
|
+
}
|
2942
|
+
if (ferror(fp) != 0 || fclose(fp) != 0) return NULL;
|
2943
|
+
|
2944
|
+
model->free_sv = 1; // XXX
|
2945
|
+
return model;
|
2946
|
+
}
|
2947
|
+
|
2948
|
+
void svm_destroy_model(svm_model* model)
|
2949
|
+
{
|
2950
|
+
if(model->free_sv && model->l > 0)
|
2951
|
+
free((void *)(model->SV[0]));
|
2952
|
+
for(int i=0;i<model->nr_class-1;i++)
|
2953
|
+
free(model->sv_coef[i]);
|
2954
|
+
free(model->SV);
|
2955
|
+
free(model->sv_coef);
|
2956
|
+
free(model->rho);
|
2957
|
+
free(model->obj);
|
2958
|
+
free(model->label);
|
2959
|
+
free(model->probA);
|
2960
|
+
free(model->probB);
|
2961
|
+
free(model->nSV);
|
2962
|
+
free(model);
|
2963
|
+
}
|
2964
|
+
|
2965
|
+
void svm_destroy_param(svm_parameter* param)
|
2966
|
+
{
|
2967
|
+
free(param->weight_label);
|
2968
|
+
free(param->weight);
|
2969
|
+
}
|
2970
|
+
|
2971
|
+
const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
|
2972
|
+
{
|
2973
|
+
// svm_type
|
2974
|
+
|
2975
|
+
int svm_type = param->svm_type;
|
2976
|
+
if(svm_type != C_SVC &&
|
2977
|
+
svm_type != NU_SVC &&
|
2978
|
+
svm_type != ONE_CLASS &&
|
2979
|
+
svm_type != EPSILON_SVR &&
|
2980
|
+
svm_type != NU_SVR)
|
2981
|
+
return "unknown svm type";
|
2982
|
+
|
2983
|
+
// kernel_type, degree
|
2984
|
+
|
2985
|
+
int kernel_type = param->kernel_type;
|
2986
|
+
if(kernel_type != LINEAR &&
|
2987
|
+
kernel_type != POLY &&
|
2988
|
+
kernel_type != RBF &&
|
2989
|
+
kernel_type != SIGMOID &&
|
2990
|
+
kernel_type != PRECOMPUTED)
|
2991
|
+
return "unknown kernel type";
|
2992
|
+
|
2993
|
+
if(param->degree < 0)
|
2994
|
+
return "degree of polynomial kernel < 0";
|
2995
|
+
|
2996
|
+
// cache_size,eps,C,nu,p,shrinking
|
2997
|
+
|
2998
|
+
if(param->cache_size <= 0)
|
2999
|
+
return "cache_size <= 0";
|
3000
|
+
|
3001
|
+
if(param->eps <= 0)
|
3002
|
+
return "eps <= 0";
|
3003
|
+
|
3004
|
+
if(svm_type == C_SVC ||
|
3005
|
+
svm_type == EPSILON_SVR ||
|
3006
|
+
svm_type == NU_SVR)
|
3007
|
+
if(param->C <= 0)
|
3008
|
+
return "C <= 0";
|
3009
|
+
|
3010
|
+
if(svm_type == NU_SVC ||
|
3011
|
+
svm_type == ONE_CLASS ||
|
3012
|
+
svm_type == NU_SVR)
|
3013
|
+
if(param->nu <= 0 || param->nu > 1)
|
3014
|
+
return "nu <= 0 or nu > 1";
|
3015
|
+
|
3016
|
+
if(svm_type == EPSILON_SVR)
|
3017
|
+
if(param->p < 0)
|
3018
|
+
return "p < 0";
|
3019
|
+
|
3020
|
+
if(param->shrinking != 0 &&
|
3021
|
+
param->shrinking != 1)
|
3022
|
+
return "shrinking != 0 and shrinking != 1";
|
3023
|
+
|
3024
|
+
if(param->probability != 0 &&
|
3025
|
+
param->probability != 1)
|
3026
|
+
return "probability != 0 and probability != 1";
|
3027
|
+
|
3028
|
+
if(param->probability == 1 &&
|
3029
|
+
svm_type == ONE_CLASS)
|
3030
|
+
return "one-class SVM probability output not supported yet";
|
3031
|
+
|
3032
|
+
|
3033
|
+
// check whether nu-svc is feasible
|
3034
|
+
|
3035
|
+
if(svm_type == NU_SVC)
|
3036
|
+
{
|
3037
|
+
int l = prob->l;
|
3038
|
+
int max_nr_class = 16;
|
3039
|
+
int nr_class = 0;
|
3040
|
+
int *label = Malloc(int,max_nr_class);
|
3041
|
+
int *count = Malloc(int,max_nr_class);
|
3042
|
+
|
3043
|
+
int i;
|
3044
|
+
for(i=0;i<l;i++)
|
3045
|
+
{
|
3046
|
+
int this_label = (int)prob->y[i];
|
3047
|
+
int j;
|
3048
|
+
for(j=0;j<nr_class;j++)
|
3049
|
+
if(this_label == label[j])
|
3050
|
+
{
|
3051
|
+
++count[j];
|
3052
|
+
break;
|
3053
|
+
}
|
3054
|
+
if(j == nr_class)
|
3055
|
+
{
|
3056
|
+
if(nr_class == max_nr_class)
|
3057
|
+
{
|
3058
|
+
max_nr_class *= 2;
|
3059
|
+
label = (int *)realloc(label,max_nr_class*sizeof(int));
|
3060
|
+
count = (int *)realloc(count,max_nr_class*sizeof(int));
|
3061
|
+
}
|
3062
|
+
label[nr_class] = this_label;
|
3063
|
+
count[nr_class] = 1;
|
3064
|
+
++nr_class;
|
3065
|
+
}
|
3066
|
+
}
|
3067
|
+
|
3068
|
+
for(i=0;i<nr_class;i++)
|
3069
|
+
{
|
3070
|
+
int n1 = count[i];
|
3071
|
+
for(int j=i+1;j<nr_class;j++)
|
3072
|
+
{
|
3073
|
+
int n2 = count[j];
|
3074
|
+
if(param->nu*(n1+n2)/2 > min(n1,n2))
|
3075
|
+
{
|
3076
|
+
free(label);
|
3077
|
+
free(count);
|
3078
|
+
return "specified nu is infeasible";
|
3079
|
+
}
|
3080
|
+
}
|
3081
|
+
}
|
3082
|
+
free(label);
|
3083
|
+
free(count);
|
3084
|
+
}
|
3085
|
+
|
3086
|
+
return NULL;
|
3087
|
+
}
|
3088
|
+
|
3089
|
+
int svm_check_probability_model(const svm_model *model)
|
3090
|
+
{
|
3091
|
+
return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
|
3092
|
+
model->probA!=NULL && model->probB!=NULL) ||
|
3093
|
+
((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
|
3094
|
+
model->probA!=NULL);
|
3095
|
+
}
|