tensor_stream 0.1.2 → 0.1.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +72 -1
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +11 -3
- data/lib/tensor_stream/math_gradients.rb +14 -6
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/iris.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: adb3c1e45383170db2d5c9f5f3568c251cdddb64
|
4
|
+
data.tar.gz: 99cd0f23353e8f72af2bda3bb84cf4b61c615445
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 62eb911e080ba894d6c349870d86286fecbd02f8ad0b762fe33ca311ffbd500f18f78f80520d5e875dc821b1c0f8d556f45fe913142bc02ae33d931af0fb840c
|
7
|
+
data.tar.gz: d599f839bd0d6ba706d3c7fafb3e903a17070af7dfd5dbe733ce21e2641bc4428f8e0d204f649f7f80c843aa48ff2e3c98880c36822a071279de5cd62a39b3dc
|
data/README.md
CHANGED
@@ -6,10 +6,11 @@ The goal of this gem is to have a high performance machine learning and compute
|
|
6
6
|
|
7
7
|
## Features
|
8
8
|
|
9
|
-
- Replicates most of the commonly used low-level tensorflow ops
|
9
|
+
- Replicates most of the commonly used low-level tensorflow ops (tf.add, tf.constant, tf.placeholder, tf.matmul, tf.sin etc...)
|
10
10
|
- Supports auto-differentiation via tf.gradients (mostly)
|
11
11
|
- Provision to use your own opcode evaluator (opencl, sciruby and tensorflow backends planned)
|
12
12
|
- Goal is to be as close to TensorFlow in behavior but with some freedom to add ruby specific enhancements (with lots of test cases)
|
13
|
+
- eager execution (experimental)
|
13
14
|
|
14
15
|
Since this is a pure ruby implementation for now, performance is not there yet. However it should be a good enough environment to learn about tensorflow and experiment with some models.
|
15
16
|
|
@@ -93,6 +94,76 @@ tf.session do |sess|
|
|
93
94
|
end
|
94
95
|
```
|
95
96
|
|
97
|
+
## python to ruby guide
|
98
|
+
|
99
|
+
Not all ops are available. Available ops are defined in lib/tensor_stream/ops.rb, corresponding gradients are found at lib/tensor_stream/math_gradients.
|
100
|
+
|
101
|
+
There are also certain differences with regards to naming conventions, and named parameters:
|
102
|
+
|
103
|
+
# Variables
|
104
|
+
|
105
|
+
To make referencing python examples easier it is recommended to use "tf" as the TensorStream namespace
|
106
|
+
|
107
|
+
At the beginning
|
108
|
+
```ruby
|
109
|
+
tf = TensorStream # recommended to use tf since most sample models on the net use this
|
110
|
+
ts = TensorStream # use this if you plan to use TensorStream only features, so other devs will know about that
|
111
|
+
```
|
112
|
+
|
113
|
+
Note the difference in named and optional parameters
|
114
|
+
|
115
|
+
Python
|
116
|
+
|
117
|
+
```python
|
118
|
+
w = tf.Variable(0, name='weights')
|
119
|
+
w = tf.Variable(0, 'weights')
|
120
|
+
```
|
121
|
+
|
122
|
+
Ruby
|
123
|
+
|
124
|
+
```ruby
|
125
|
+
w =tf.variable(0, name: 'weights')
|
126
|
+
```
|
127
|
+
|
128
|
+
# Shapes
|
129
|
+
|
130
|
+
Python
|
131
|
+
```python
|
132
|
+
x = tf.placeholder(tf.float32, shape=(1024, 1024))
|
133
|
+
x = tf.placeholder(tf.float32, shape=(None, 1024))
|
134
|
+
```
|
135
|
+
|
136
|
+
ruby supports symbols for specifying data types, nil can be used for None
|
137
|
+
|
138
|
+
Ruby
|
139
|
+
```ruby
|
140
|
+
x = tf.placeholder(:float32, shape: [1024, 1024])
|
141
|
+
x = tf.placeholder(:float32, shape: [nil, 1024])
|
142
|
+
```
|
143
|
+
|
144
|
+
For debugging, each operation or tensor supports the to_math method
|
145
|
+
|
146
|
+
```ruby
|
147
|
+
X = tf.placeholder("float")
|
148
|
+
Y = tf.placeholder("float")
|
149
|
+
W = tf.variable(rand, name: "weight")
|
150
|
+
b = tf.variable(rand, name: "bias")
|
151
|
+
pred = X * W + b
|
152
|
+
cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / ( 2 * 10)
|
153
|
+
cost.to_math # "(reduce_sum(|((((Placeholder: * weight) + bias) - Placeholder_2:)^2)|) / 10.0)"
|
154
|
+
```
|
155
|
+
|
156
|
+
breakpoints can also be set, block will be evaluated during computation
|
157
|
+
|
158
|
+
```ruby
|
159
|
+
a = tf.constant([2,2])
|
160
|
+
b = tf.constant([3,3])
|
161
|
+
|
162
|
+
f = tf.matmul(a, b).breakpoint! { |tensor, a, b, result_value| binding.pry }
|
163
|
+
|
164
|
+
tf.session.run(f)
|
165
|
+
```
|
166
|
+
|
96
167
|
## Roadmap
|
97
168
|
|
98
169
|
- Docs
|
@@ -175,8 +175,7 @@ module TensorStream
|
|
175
175
|
|
176
176
|
generate_vector(tensor.options[:shape], generator: generator)
|
177
177
|
when :flow_group
|
178
|
-
|
179
|
-
threads.collect(&:value)
|
178
|
+
tensor.items.collect { |item| run(item, child_context) }
|
180
179
|
when :assign
|
181
180
|
assign = tensor.items[0] || tensor
|
182
181
|
assign.value = complete_eval(tensor.items[1], child_context)
|
@@ -634,7 +633,16 @@ module TensorStream
|
|
634
633
|
raise FullEvalNotPossible.new, "full eval not possible for #{eval_vector.name}" if eval_vector.is_a?(Tensor) || constant.is_a?(Tensor)
|
635
634
|
|
636
635
|
eval_vector.each_with_index.collect do |item, index|
|
637
|
-
c = constant.is_a?(Array)
|
636
|
+
c = if constant.is_a?(Array)
|
637
|
+
if index < constant.size
|
638
|
+
constant[index]
|
639
|
+
else
|
640
|
+
raise "incompatible tensor shapes used during op" if constant.size != 1
|
641
|
+
constant[0]
|
642
|
+
end
|
643
|
+
else
|
644
|
+
constant
|
645
|
+
end
|
638
646
|
if item.is_a?(Array)
|
639
647
|
constant_op(item, c, child_context, op, switch)
|
640
648
|
elsif item.respond_to?(:value)
|
@@ -51,9 +51,9 @@ module TensorStream
|
|
51
51
|
when :cos
|
52
52
|
-i_op(:sin, tensor.items[0]) * grad
|
53
53
|
when :add
|
54
|
-
|
54
|
+
_grad_with_broadcast(tensor, wrt_dx, ->(a, b) { i_op(:add, a, b, name: 'grad_sum') }, options)
|
55
55
|
when :sub
|
56
|
-
|
56
|
+
_grad_with_broadcast(tensor, wrt_dx, ->(a, b) { i_op(:sub, a, b, name: 'grad_sub') }, options)
|
57
57
|
when :pow
|
58
58
|
gx = _ds(tensor.items[1]) * (_ds(tensor.items[0])**(_ds(tensor.items[1]) - 1)) * grad
|
59
59
|
|
@@ -66,10 +66,10 @@ module TensorStream
|
|
66
66
|
gx = i_op(:div, grad, _ds(tensor.items[1]))
|
67
67
|
gy = grad2 * i_op(:div, i_op(:div, -_ds(tensor.items[0]), _ds(tensor.items[1])), _ds(tensor.items[1]))
|
68
68
|
|
69
|
-
gx + gy
|
69
|
+
_reduce_when_necessary(gx + gy, wrt_dx)
|
70
70
|
when :mul
|
71
71
|
# apply the product rule
|
72
|
-
grad * _ds(tensor.items[1]) + _ds(tensor.items[0]) * grad2
|
72
|
+
_reduce_when_necessary(grad * _ds(tensor.items[1]) + _ds(tensor.items[0]) * grad2, wrt_dx)
|
73
73
|
when :reduce_mean
|
74
74
|
input_size = i_op(:reduce_prod, i_op(:shape, tensor.items[0]))
|
75
75
|
output_size = i_op(:reduce_prod, i_op(:shape, tensor))
|
@@ -115,6 +115,7 @@ module TensorStream
|
|
115
115
|
# norm_b = i_op(:cond, norm_b[0], norm_b, pred: i_op(:rank, matmul_db) > i_op(:rank, derivative_b))
|
116
116
|
|
117
117
|
i_op(:cond, norm_a, zero_vect, pred: i_op(:reduce_sum, norm_a) != 0) + i_op(:cond, norm_b, zero_vect, pred: i_op(:reduce_sum, norm_b) != 0)
|
118
|
+
# m.breakpoint! { |t, a, b, v| binding.pry }
|
118
119
|
else
|
119
120
|
raise "no derivative implementation found for op #{tensor.operation}"
|
120
121
|
end
|
@@ -140,18 +141,25 @@ module TensorStream
|
|
140
141
|
end
|
141
142
|
end
|
142
143
|
|
143
|
-
def self.
|
144
|
+
def self._grad_with_broadcast(tensor, wrt_dx, func, options)
|
144
145
|
grad = derivative(tensor.items[0], wrt_dx, options)
|
145
146
|
grad2 = derivative(tensor.items[1], wrt_dx, options)
|
146
147
|
elements1 = i_op(:reduce_prod, i_op(:shape, tensor.items[0]), data_type: :float32)
|
147
148
|
elements2 = i_op(:reduce_prod, i_op(:shape, tensor.items[1]), data_type: :float32)
|
148
149
|
multiplier = elements1 / elements2
|
149
|
-
func.call(grad, grad2 * multiplier)
|
150
|
+
_reduce_when_necessary(func.call(grad, grad2 * multiplier), wrt_dx)
|
150
151
|
end
|
151
152
|
|
152
153
|
def self._include?(arr, obj)
|
153
154
|
arr.each { |a| return true if a.equal?(obj) }
|
154
155
|
false
|
155
156
|
end
|
157
|
+
|
158
|
+
def self._reduce_when_necessary(tensor, wrt_dx)
|
159
|
+
rank = op(:rank, tensor)
|
160
|
+
dx_rank = op(:rank, wrt_dx)
|
161
|
+
reduced = op(:reduce_sum, tensor, nil, axis: 0)
|
162
|
+
op(:cond, ->{ reduced }, tensor, pred: rank > dx_rank)
|
163
|
+
end
|
156
164
|
end
|
157
165
|
end
|
data/samples/iris.rb
CHANGED
@@ -83,7 +83,7 @@ biases = {
|
|
83
83
|
# Create model
|
84
84
|
def neural_net(x, weights, biases)
|
85
85
|
# Hidden fully connected layer with 256 neurons
|
86
|
-
layer_1 = TensorStream.add(TensorStream.matmul(x, weights[:h1]), biases[:b1]
|
86
|
+
layer_1 = TensorStream.add(TensorStream.matmul(x, weights[:h1]), biases[:b1], name: 'layer1_add')
|
87
87
|
# Hidden fully connected layer with 256 neurons
|
88
88
|
layer_2 = TensorStream.add(TensorStream.matmul(layer_1, weights[:h2]), biases[:b2], name: 'layer2_add')
|
89
89
|
# Output fully connected layer with a neuron for each class
|
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: tensor_stream
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Joseph Emmanuel Dayo
|
@@ -193,7 +193,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
193
193
|
version: '0'
|
194
194
|
requirements: []
|
195
195
|
rubyforge_project:
|
196
|
-
rubygems_version: 2.6.
|
196
|
+
rubygems_version: 2.6.8
|
197
197
|
signing_key:
|
198
198
|
specification_version: 4
|
199
199
|
summary: A Pure ruby tensorflow implementation
|