t_learn 0.1.1.5 → 0.1.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Gemfile +0 -1
- data/README.md +1 -1
- data/lib/t_learn/em.rb +48 -70
- data/lib/t_learn/version.rb +1 -1
- metadata +2 -3
- data/.rake_tasks~ +0 -7
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 498f21fc8a9db10db42ac7cad564f372eb5e9b0c
|
4
|
+
data.tar.gz: 9b1c1a70545014cc35dde9191660cdb502948e1c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6d91f5751e8fda7d1d99e513dab12bd281b572b8beaf6f2eef99c78418a50583ed39a27538925aeaa90062c45adb7361e94b03756aa76002d5f519bd681bf227
|
7
|
+
data.tar.gz: 947dc97fdd84c07bf3f395f339b16f93a72719a66ed47203f092843871500ebf0dbc11b5ddf1c5569cb999568dead4f6b6422dd9126689f5ca6446f81e6d2ae0
|
data/Gemfile
CHANGED
data/README.md
CHANGED
@@ -90,7 +90,7 @@ To install this gem onto your local machine, run `bundle exec rake install`. To
|
|
90
90
|
|
91
91
|
## Contributing
|
92
92
|
|
93
|
-
Bug reports and pull requests are welcome on GitHub at https://github.com/
|
93
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/Tcom242242/t_learn. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
94
94
|
|
95
95
|
|
96
96
|
## License
|
data/lib/t_learn/em.rb
CHANGED
@@ -4,6 +4,7 @@
|
|
4
4
|
require "yaml"
|
5
5
|
require "json"
|
6
6
|
require "pry"
|
7
|
+
require "matrix"
|
7
8
|
|
8
9
|
module TLearn
|
9
10
|
|
@@ -11,11 +12,11 @@ module TLearn
|
|
11
12
|
attr_accessor :mu_list, :conv_list, :pi_list, :log_likelihood, :k_num,:data_list, :real_data_list
|
12
13
|
|
13
14
|
def init(data_list, k_num)
|
14
|
-
@k_num = k_num
|
15
|
+
@k_num = k_num
|
15
16
|
@data_list = data_list
|
16
17
|
@dim = @data_list[0].size
|
17
18
|
# @data_list = scale(@data_list)
|
18
|
-
data_ave_std =calc_first_ave_std(@data_list)
|
19
|
+
data_ave_std = calc_first_ave_std(@data_list)
|
19
20
|
@real_data_list = Marshal.load(Marshal.dump(@data_list))
|
20
21
|
@mu_list = Array.new(@k_num).map{ini_ave(data_ave_std[:ave_list])}
|
21
22
|
@conv_list = Array.new(@k_num).map{ini_conv(data_ave_std[:std_list])}
|
@@ -51,8 +52,9 @@ module TLearn
|
|
51
52
|
return array
|
52
53
|
end
|
53
54
|
|
54
|
-
def create_log(cycle)
|
55
|
+
def create_log(cycle, likelihood)
|
55
56
|
log = {:cycle => cycle,
|
57
|
+
:likelihood => likelihood,
|
56
58
|
:mu => @mu_list.clone,
|
57
59
|
:conv => @conv_list.clone,
|
58
60
|
:pi_list => @pi_list.clone}
|
@@ -72,7 +74,7 @@ module TLearn
|
|
72
74
|
diff = (likelihood - last_likelihood).abs
|
73
75
|
last_likelihood = likelihood
|
74
76
|
puts "likelihood: #{likelihood}"
|
75
|
-
result.push(create_log(cycle))
|
77
|
+
result.push(create_log(cycle, likelihood))
|
76
78
|
cycle += 1
|
77
79
|
break if diff < 0.000001
|
78
80
|
end
|
@@ -120,7 +122,6 @@ module TLearn
|
|
120
122
|
return mu
|
121
123
|
end
|
122
124
|
|
123
|
-
|
124
125
|
def calc_conv(k, nk)
|
125
126
|
conv = Array.new(@dim).map{Array.new(@dim, 0)}
|
126
127
|
@dim.times{|i|
|
@@ -130,7 +131,11 @@ module TLearn
|
|
130
131
|
}
|
131
132
|
}
|
132
133
|
}
|
133
|
-
conv = conv.map{|arr|
|
134
|
+
conv = conv.map{|arr|
|
135
|
+
arr.map{|v|
|
136
|
+
(v/nk) != 0.0 ? (v/nk) : 0.1
|
137
|
+
}
|
138
|
+
}
|
134
139
|
return conv
|
135
140
|
end
|
136
141
|
|
@@ -146,23 +151,6 @@ module TLearn
|
|
146
151
|
return log_likelihood
|
147
152
|
end
|
148
153
|
|
149
|
-
|
150
|
-
#
|
151
|
-
# === 混合正規分布を生成する
|
152
|
-
#
|
153
|
-
def gaussian_mix()
|
154
|
-
r1_x = normal_rand()
|
155
|
-
r1_y = normal_rand()
|
156
|
-
r2_x = normal_rand(10.0, 50.0)
|
157
|
-
r2_y = normal_rand(10.0, 50.0)
|
158
|
-
|
159
|
-
if (rand() < 0.15)
|
160
|
-
return [r1_x, r1_y]
|
161
|
-
else
|
162
|
-
return [r2_x, r2_y]
|
163
|
-
end
|
164
|
-
end
|
165
|
-
|
166
154
|
#
|
167
155
|
# === gauusian distribution
|
168
156
|
#
|
@@ -175,24 +163,20 @@ module TLearn
|
|
175
163
|
f2 = Math.exp(-(((x-mu)**2)/((2.0*sigma))))
|
176
164
|
return f1 * f2
|
177
165
|
else
|
178
|
-
return
|
166
|
+
return gauusian_over_2dim(x, mu, sigma)
|
179
167
|
end
|
180
168
|
end
|
181
169
|
|
182
170
|
|
183
171
|
#
|
184
|
-
# === gauusian distribution
|
172
|
+
# === gauusian distribution over 2 dim version
|
185
173
|
#
|
186
|
-
def
|
174
|
+
def gauusian_over_2dim(x, mu, conv)
|
187
175
|
x = Matrix[x]
|
188
176
|
mu = Matrix[mu]
|
189
177
|
conv = Matrix[*conv]
|
190
|
-
|
191
|
-
|
192
|
-
f2 = Math.exp((-1.0/2.0)*((x-mu) * conv.inverse * (x-mu).transpose)[0, 0])
|
193
|
-
rescue
|
194
|
-
binding.pry ;
|
195
|
-
end
|
178
|
+
f1 = 1.0/(((2.0 * Math::PI)**(@dim/2.0)) * ( conv.det**(0.5) ))
|
179
|
+
f2 = Math.exp((-1.0/2.0)*((x-mu) * conv.inverse * (x-mu).transpose)[0, 0])
|
196
180
|
|
197
181
|
return (f1 * f2)
|
198
182
|
end
|
@@ -203,7 +187,7 @@ module TLearn
|
|
203
187
|
std_list = []
|
204
188
|
x.each{|vec|
|
205
189
|
vec.each_with_index{|data, i|
|
206
|
-
sum_each_vec[i] = (sum_each_vec[i] == nil) ? data : sum_each_vec[i]+data
|
190
|
+
sum_each_vec[i] = (sum_each_vec[i] == nil) ? data : sum_each_vec[i] + data
|
207
191
|
}
|
208
192
|
}
|
209
193
|
x[0].size.times{|i| ave_list.push(sum_each_vec[i]/x.size)}
|
@@ -214,53 +198,47 @@ module TLearn
|
|
214
198
|
sum_each_vec[i] = (sum_each_vec[i] == nil) ? (ave_list[i]-data)**2 : (sum_each_vec[i]+(ave_list[i]-data)**2)
|
215
199
|
}
|
216
200
|
}
|
217
|
-
x[0].size.times{|i|
|
201
|
+
x[0].size.times{|i|
|
202
|
+
std = Math.sqrt(sum_each_vec[i]/x.size)
|
203
|
+
std = 0.1 if std == 0.0
|
204
|
+
std_list.push(std)
|
205
|
+
}
|
218
206
|
|
219
207
|
return {:ave_list => ave_list, :std_list => std_list}
|
220
208
|
end
|
221
209
|
|
210
|
+
|
222
211
|
def scale(x)
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
sum_each_vec[i] = (sum_each_vec[i] == nil) ? data : sum_each_vec[i]+data
|
230
|
-
}
|
231
|
-
}
|
232
|
-
x[0].size.times{|i|
|
233
|
-
ave_list.push(sum_each_vec[i]/x.size)
|
212
|
+
sum_each_vec = []
|
213
|
+
ave_list = []
|
214
|
+
std_list = []
|
215
|
+
x.each{|vec|
|
216
|
+
vec.each_with_index{|data, i|
|
217
|
+
sum_each_vec[i] = (sum_each_vec[i] == nil) ? data : sum_each_vec[i]+data
|
234
218
|
}
|
219
|
+
}
|
220
|
+
x[0].size.times{|i|
|
221
|
+
ave_list.push(sum_each_vec[i]/x.size)
|
222
|
+
}
|
235
223
|
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
}
|
241
|
-
}
|
242
|
-
x[0].size.times{|i|
|
243
|
-
std_list.push(Math.sqrt(sum_each_vec[i]/x.size))
|
224
|
+
sum_each_vec = []
|
225
|
+
x.each{|vec|
|
226
|
+
vec.each_with_index{|data, i|
|
227
|
+
sum_each_vec[i] = (sum_each_vec[i] == nil) ? (ave_list[i]-data)**2 : (sum_each_vec[i]+(ave_list[i]-data)**2)
|
244
228
|
}
|
229
|
+
}
|
230
|
+
x[0].size.times{|i|
|
231
|
+
std_list.push(Math.sqrt(sum_each_vec[i]/x.size))
|
232
|
+
}
|
245
233
|
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
}
|
234
|
+
scaled_x = []
|
235
|
+
x.each_with_index{|vec, i|
|
236
|
+
scaled_x[i] ||= []
|
237
|
+
vec.each_with_index{|data, j|
|
238
|
+
scaled_x[i][j] ||= (data-ave_list[j])/std_list[j]
|
252
239
|
}
|
253
|
-
|
254
|
-
|
255
|
-
mu = x.each.inject(0.0){|sum, data| sum+=data}/x.size
|
256
|
-
var = (x.each.inject(0.0){|sum, data| sum+=(data-mu)**2}/x.size)
|
257
|
-
std = Math.sqrt(var)
|
258
|
-
scaled_x = []
|
259
|
-
x.each{|sum,data|
|
260
|
-
scaled_x.push((mu-data)/std)
|
261
|
-
}
|
262
|
-
return scaled_x
|
263
|
-
end
|
240
|
+
}
|
241
|
+
return scaled_x
|
264
242
|
end
|
265
243
|
end
|
266
244
|
end
|
data/lib/t_learn/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: t_learn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.1.
|
4
|
+
version: 0.1.1.6
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Tcom242242
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2017-06-
|
11
|
+
date: 2017-06-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -60,7 +60,6 @@ extensions: []
|
|
60
60
|
extra_rdoc_files: []
|
61
61
|
files:
|
62
62
|
- ".gitignore"
|
63
|
-
- ".rake_tasks~"
|
64
63
|
- ".rspec"
|
65
64
|
- ".travis.yml"
|
66
65
|
- CODE_OF_CONDUCT.md
|