svmkit 0.7.2 → 0.7.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/HISTORY.md +5 -1
- data/lib/svmkit.rb +1 -0
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +1 -1
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +1 -1
- data/lib/svmkit/ensemble/random_forest_classifier.rb +1 -1
- data/lib/svmkit/ensemble/random_forest_regressor.rb +1 -1
- data/lib/svmkit/model_selection/grid_search_cv.rb +247 -0
- data/lib/svmkit/pipeline/pipeline.rb +11 -1
- data/lib/svmkit/utils.rb +1 -1
- data/lib/svmkit/version.rb +1 -1
- metadata +3 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ca1916101dd6c77c5be1a157c2bfa8dafe9c543e
|
4
|
+
data.tar.gz: c4751b21fd3d0667bb7d378f8b524fc2f70069d9
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: db878c8b28e88649fed654b292358c11ec91369cd52ec03e01d06d053fbeb90ebff87248be628c8ab081fd820c1460bb3783448242531ef5f30b4b06337af87c
|
7
|
+
data.tar.gz: bfbfc580897a4a3161afa865cd14ac15a0a322cf80ae728f7b70c8d45cb41ff4566b1f1e748e6c1eb9412a4c401b737a569bf6b9af12a113a4ca4a6d75f8b9b8
|
data/HISTORY.md
CHANGED
@@ -1,6 +1,10 @@
|
|
1
|
+
# 0.7.3
|
2
|
+
- Add class for grid search performing hyperparameter optimization.
|
3
|
+
- Add argument validations to Pipeline.
|
4
|
+
|
1
5
|
# 0.7.2
|
2
6
|
- Add class for Pipeline that constructs chain of transformers and estimators.
|
3
|
-
- Fix some typos on document.
|
7
|
+
- Fix some typos on document ([#1](https://github.com/yoshoku/SVMKit/pull/1)).
|
4
8
|
|
5
9
|
# 0.7.1
|
6
10
|
- Fix to use CSV class in parsing libsvm format file.
|
data/lib/svmkit.rb
CHANGED
@@ -55,6 +55,7 @@ require 'svmkit/preprocessing/one_hot_encoder'
|
|
55
55
|
require 'svmkit/model_selection/k_fold'
|
56
56
|
require 'svmkit/model_selection/stratified_k_fold'
|
57
57
|
require 'svmkit/model_selection/cross_validation'
|
58
|
+
require 'svmkit/model_selection/grid_search_cv'
|
58
59
|
require 'svmkit/evaluation_measure/accuracy'
|
59
60
|
require 'svmkit/evaluation_measure/precision'
|
60
61
|
require 'svmkit/evaluation_measure/recall'
|
@@ -109,7 +109,7 @@ module SVMKit
|
|
109
109
|
tree = Tree::DecisionTreeClassifier.new(
|
110
110
|
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
111
111
|
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
112
|
-
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values
|
112
|
+
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max)
|
113
113
|
)
|
114
114
|
tree.fit(x[ids, true], y[ids])
|
115
115
|
# Calculate estimator error.
|
@@ -111,7 +111,7 @@ module SVMKit
|
|
111
111
|
tree = Tree::DecisionTreeRegressor.new(
|
112
112
|
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
113
113
|
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
114
|
-
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values
|
114
|
+
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max)
|
115
115
|
)
|
116
116
|
tree.fit(x[ids, true], y[ids])
|
117
117
|
p = tree.predict(x)
|
@@ -97,7 +97,7 @@ module SVMKit
|
|
97
97
|
tree = Tree::DecisionTreeClassifier.new(
|
98
98
|
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
99
99
|
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
100
|
-
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values
|
100
|
+
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max)
|
101
101
|
)
|
102
102
|
bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
|
103
103
|
tree.fit(x[bootstrap_ids, true], y[bootstrap_ids])
|
@@ -91,7 +91,7 @@ module SVMKit
|
|
91
91
|
tree = Tree::DecisionTreeRegressor.new(
|
92
92
|
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
93
93
|
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
94
|
-
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values
|
94
|
+
max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max)
|
95
95
|
)
|
96
96
|
bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
|
97
97
|
tree.fit(x[bootstrap_ids, true], single_target ? y[bootstrap_ids] : y[bootstrap_ids, true])
|
@@ -0,0 +1,247 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'svmkit/validation'
|
4
|
+
require 'svmkit/base/base_estimator'
|
5
|
+
require 'svmkit/base/evaluator'
|
6
|
+
require 'svmkit/base/splitter'
|
7
|
+
require 'svmkit/pipeline/pipeline'
|
8
|
+
|
9
|
+
module SVMKit
|
10
|
+
module ModelSelection
|
11
|
+
# GridSearchCV is a class that performs hyperparameter optimization with grid search method.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# rfc = SVMKit::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
15
|
+
# pg = { n_estimators: [5, 10], max_depth: [3, 5], max_leaf_nodes: [15, 31] }
|
16
|
+
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
17
|
+
# gs = SVMKit::ModelSelection::GridSearchCV.new(estimator: rfc, param_grid: pg, splitter: kf)
|
18
|
+
# gs.fit(samples, labels)
|
19
|
+
# p gs.cv_results
|
20
|
+
# p gs.best_params
|
21
|
+
#
|
22
|
+
# @example
|
23
|
+
# rbf = SVMKit::KernelApproximation::RBF.new(random_seed: 1)
|
24
|
+
# svc = SVMKit::LinearModel::SVC.new(random_seed: 1)
|
25
|
+
# pipe = SVMKit::Pipeline::Pipeline.new(steps: { rbf: rbf, svc: svc })
|
26
|
+
# pg = { rbf__gamma: [32.0, 1.0], rbf__n_components: [4, 128], svc__reg_param: [16.0, 0.1] }
|
27
|
+
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
28
|
+
# gs = SVMKit::ModelSelection::GridSearchCV.new(estimator: pipe, param_grid: pg, splitter: kf)
|
29
|
+
# gs.fit(samples, labels)
|
30
|
+
# p gs.cv_results
|
31
|
+
# p gs.best_params
|
32
|
+
#
|
33
|
+
class GridSearchCV
|
34
|
+
include Base::BaseEstimator
|
35
|
+
include Validation
|
36
|
+
|
37
|
+
# Return the result of cross validation for each parameter.
|
38
|
+
# @return [Hash]
|
39
|
+
attr_reader :cv_results
|
40
|
+
|
41
|
+
# Return the score of the estimator learned with the best parameter.
|
42
|
+
# @return [Float]
|
43
|
+
attr_reader :best_score
|
44
|
+
|
45
|
+
# Return the best parameter set.
|
46
|
+
# @return [Hash]
|
47
|
+
attr_reader :best_params
|
48
|
+
|
49
|
+
# Return the index of the best parameter.
|
50
|
+
# @return [Integer]
|
51
|
+
attr_reader :best_index
|
52
|
+
|
53
|
+
# Return the estimator learned with the best parameter.
|
54
|
+
# @return [Estimator]
|
55
|
+
attr_reader :best_estimator
|
56
|
+
|
57
|
+
# Create a new grid search method.
|
58
|
+
#
|
59
|
+
# @param estimator [Classifier/Regresor] The estimator to be searched for optimal parameters with grid search method.
|
60
|
+
# @param param_grid [Array<Hash>] The parameter sets is represented with array of hash that
|
61
|
+
# consists of parameter names as keys and array of parameter values as values.
|
62
|
+
# @param splitter [Splitter] The splitter that divides dataset to training and testing dataset on cross validation.
|
63
|
+
# @param evaluator [Evaluator] The evaluator that calculates score of estimator results on cross validation.
|
64
|
+
# If nil is given, the score method of estimator is used to evaluation.
|
65
|
+
# @param greater_is_better [Boolean] The flag that indicates whether the estimator is better as
|
66
|
+
# evaluation score is larger.
|
67
|
+
def initialize(estimator: nil, param_grid: nil, splitter: nil, evaluator: nil, greater_is_better: true)
|
68
|
+
check_params_type(SVMKit::Base::BaseEstimator, estimator: estimator)
|
69
|
+
check_params_type(SVMKit::Base::Splitter, splitter: splitter)
|
70
|
+
check_params_type_or_nil(SVMKit::Base::Evaluator, evaluator: evaluator)
|
71
|
+
check_params_boolean(greater_is_better: greater_is_better)
|
72
|
+
@params = {}
|
73
|
+
@params[:param_grid] = valid_param_grid(param_grid)
|
74
|
+
@params[:estimator] = Marshal.load(Marshal.dump(estimator))
|
75
|
+
@params[:splitter] = Marshal.load(Marshal.dump(splitter))
|
76
|
+
@params[:evaluator] = Marshal.load(Marshal.dump(evaluator))
|
77
|
+
@params[:greater_is_better] = greater_is_better
|
78
|
+
@cv_results = nil
|
79
|
+
@best_score = nil
|
80
|
+
@best_params = nil
|
81
|
+
@best_index = nil
|
82
|
+
@best_estimator = nil
|
83
|
+
end
|
84
|
+
|
85
|
+
# Fit the model with given training data and all sets of parameters.
|
86
|
+
#
|
87
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
89
|
+
# @return [GridSearchCV] The learned estimator with grid search.
|
90
|
+
def fit(x, y)
|
91
|
+
check_sample_array(x)
|
92
|
+
|
93
|
+
init_attrs
|
94
|
+
|
95
|
+
param_combinations.each do |prm_set|
|
96
|
+
prm_set.each do |prms|
|
97
|
+
report = perform_cross_validation(x, y, prms)
|
98
|
+
store_cv_result(prms, report)
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
find_best_params
|
103
|
+
|
104
|
+
@best_estimator = configurated_estimator(@best_params)
|
105
|
+
@best_estimator.fit(x, y)
|
106
|
+
self
|
107
|
+
end
|
108
|
+
|
109
|
+
# Call the decision_function method of learned estimator with the best parameter.
|
110
|
+
#
|
111
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
112
|
+
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
113
|
+
def decision_function(x)
|
114
|
+
check_sample_array(x)
|
115
|
+
@best_estimator.decision_function(x)
|
116
|
+
end
|
117
|
+
|
118
|
+
# Call the predict method of learned estimator with the best parameter.
|
119
|
+
#
|
120
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
121
|
+
# @return [Numo::NArray] Predicted results.
|
122
|
+
def predict(x)
|
123
|
+
check_sample_array(x)
|
124
|
+
@best_estimator.predict(x)
|
125
|
+
end
|
126
|
+
|
127
|
+
# Call the predict_log_proba method of learned estimator with the best parameter.
|
128
|
+
#
|
129
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
130
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
131
|
+
def predict_log_proba(x)
|
132
|
+
check_sample_array(x)
|
133
|
+
@best_estimator.predict_log_proba(x)
|
134
|
+
end
|
135
|
+
|
136
|
+
# Call the predict_proba method of learned estimator with the best parameter.
|
137
|
+
#
|
138
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
139
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
140
|
+
def predict_proba(x)
|
141
|
+
check_sample_array(x)
|
142
|
+
@best_estimator.predict_proba(x)
|
143
|
+
end
|
144
|
+
|
145
|
+
# Call the score method of learned estimator with the best parameter.
|
146
|
+
#
|
147
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
148
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
149
|
+
# @return [Float] The score of estimator.
|
150
|
+
def score(x, y)
|
151
|
+
check_sample_array(x)
|
152
|
+
@best_estimator.score(x, y)
|
153
|
+
end
|
154
|
+
|
155
|
+
# Dump marshal data.
|
156
|
+
# @return [Hash] The marshal data about GridSearchCV.
|
157
|
+
def marshal_dump
|
158
|
+
{ params: @params,
|
159
|
+
cv_results: @cv_results,
|
160
|
+
best_score: @best_score,
|
161
|
+
best_params: @best_params,
|
162
|
+
best_index: @best_index,
|
163
|
+
best_estimator: @best_estimator }
|
164
|
+
end
|
165
|
+
|
166
|
+
# Load marshal data.
|
167
|
+
# @return [nil]
|
168
|
+
def marshal_load(obj)
|
169
|
+
@params = obj[:params]
|
170
|
+
@cv_results = obj[:cv_results]
|
171
|
+
@best_score = obj[:best_score]
|
172
|
+
@best_params = obj[:best_params]
|
173
|
+
@best_index = obj[:best_index]
|
174
|
+
@best_estimator = obj[:best_estimator]
|
175
|
+
nil
|
176
|
+
end
|
177
|
+
|
178
|
+
private
|
179
|
+
|
180
|
+
def valid_param_grid(grid)
|
181
|
+
raise TypeError, 'Expect class of param_grid to be Hash or Array' unless grid.is_a?(Hash) || grid.is_a?(Array)
|
182
|
+
grid = [grid] if grid.is_a?(Hash)
|
183
|
+
grid.each do |h|
|
184
|
+
raise TypeError, 'Expect class of elements in param_grid to be Hash' unless h.is_a?(Hash)
|
185
|
+
raise TypeError, 'Expect class of parameter values in param_grid to be Array' unless h.values.all? { |v| v.is_a?(Array) }
|
186
|
+
end
|
187
|
+
grid
|
188
|
+
end
|
189
|
+
|
190
|
+
def param_combinations
|
191
|
+
@param_combinations ||= @params[:param_grid].map do |prm|
|
192
|
+
x = Hash[prm.sort].map { |k, v| [k].product(v) }
|
193
|
+
x[0].product(*x[1...x.size]).map { |v| Hash[v] }
|
194
|
+
end
|
195
|
+
end
|
196
|
+
|
197
|
+
def perform_cross_validation(x, y, prms)
|
198
|
+
est = configurated_estimator(prms)
|
199
|
+
cv = CrossValidation.new(estimator: est, splitter: @params[:splitter],
|
200
|
+
evaluator: @params[:evaluator], return_train_score: true)
|
201
|
+
cv.perform(x, y)
|
202
|
+
end
|
203
|
+
|
204
|
+
def configurated_estimator(prms)
|
205
|
+
estimator = Marshal.load(Marshal.dump(@params[:estimator]))
|
206
|
+
if @params[:estimator].is_a?(SVMKit::Pipeline::Pipeline)
|
207
|
+
prms.each do |k, v|
|
208
|
+
est_name, prm_name = k.to_s.split('__')
|
209
|
+
estimator.steps[est_name.to_sym].params[prm_name.to_sym] = v
|
210
|
+
end
|
211
|
+
else
|
212
|
+
prms.each { |k, v| estimator.params[k] = v }
|
213
|
+
end
|
214
|
+
estimator
|
215
|
+
end
|
216
|
+
|
217
|
+
def init_attrs
|
218
|
+
@cv_results = %i[mean_test_score std_test_score
|
219
|
+
mean_train_score std_train_score
|
220
|
+
mean_fit_time std_fit_time params].map { |v| [v, []] }.to_h
|
221
|
+
@best_score = nil
|
222
|
+
@best_params = nil
|
223
|
+
@best_index = nil
|
224
|
+
@best_estimator = nil
|
225
|
+
end
|
226
|
+
|
227
|
+
def store_cv_result(prms, report)
|
228
|
+
test_scores = Numo::DFloat[*report[:test_score]]
|
229
|
+
train_scores = Numo::DFloat[*report[:train_score]]
|
230
|
+
fit_times = Numo::DFloat[*report[:fit_time]]
|
231
|
+
@cv_results[:mean_test_score].push(test_scores.mean)
|
232
|
+
@cv_results[:std_test_score].push(test_scores.stddev)
|
233
|
+
@cv_results[:mean_train_score].push(train_scores.mean)
|
234
|
+
@cv_results[:std_train_score].push(train_scores.stddev)
|
235
|
+
@cv_results[:mean_fit_time].push(fit_times.mean)
|
236
|
+
@cv_results[:std_fit_time].push(fit_times.stddev)
|
237
|
+
@cv_results[:params].push(prms)
|
238
|
+
end
|
239
|
+
|
240
|
+
def find_best_params
|
241
|
+
@best_score = @params[:greater_is_better] ? @cv_results[:mean_test_score].max : @cv_results[:mean_test_score].min
|
242
|
+
@best_index = @cv_results[:mean_test_score].index(@best_score)
|
243
|
+
@best_params = @cv_results[:params][@best_index]
|
244
|
+
end
|
245
|
+
end
|
246
|
+
end
|
247
|
+
end
|
@@ -40,6 +40,7 @@ module SVMKit
|
|
40
40
|
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
41
41
|
# @return [Pipeline] The learned pipeline itself.
|
42
42
|
def fit(x, y)
|
43
|
+
check_sample_array(x)
|
43
44
|
trans_x = apply_transforms(x, y, fit: true)
|
44
45
|
last_estimator.fit(trans_x, y) unless last_estimator.nil?
|
45
46
|
self
|
@@ -51,6 +52,7 @@ module SVMKit
|
|
51
52
|
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
52
53
|
# @return [Numo::NArray] The predicted results by last estimator.
|
53
54
|
def fit_predict(x, y = nil)
|
55
|
+
check_sample_array(x)
|
54
56
|
trans_x = apply_transforms(x, y, fit: true)
|
55
57
|
last_estimator.fit_predict(trans_x)
|
56
58
|
end
|
@@ -61,6 +63,7 @@ module SVMKit
|
|
61
63
|
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
62
64
|
# @return [Numo::NArray] The predicted results by last estimator.
|
63
65
|
def fit_transform(x, y = nil)
|
66
|
+
check_sample_array(x)
|
64
67
|
trans_x = apply_transforms(x, y, fit: true)
|
65
68
|
last_estimator.fit_transform(trans_x, y)
|
66
69
|
end
|
@@ -70,6 +73,7 @@ module SVMKit
|
|
70
73
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
71
74
|
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
72
75
|
def decision_function(x)
|
76
|
+
check_sample_array(x)
|
73
77
|
trans_x = apply_transforms(x)
|
74
78
|
last_estimator.decision_function(trans_x)
|
75
79
|
end
|
@@ -79,6 +83,7 @@ module SVMKit
|
|
79
83
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
80
84
|
# @return [Numo::NArray] The predicted results by last estimator.
|
81
85
|
def predict(x)
|
86
|
+
check_sample_array(x)
|
82
87
|
trans_x = apply_transforms(x)
|
83
88
|
last_estimator.predict(trans_x)
|
84
89
|
end
|
@@ -88,6 +93,7 @@ module SVMKit
|
|
88
93
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
89
94
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
90
95
|
def predict_log_proba(x)
|
96
|
+
check_sample_array(x)
|
91
97
|
trans_x = apply_transforms(x)
|
92
98
|
last_estimator.predict_log_proba(trans_x)
|
93
99
|
end
|
@@ -97,6 +103,7 @@ module SVMKit
|
|
97
103
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
98
104
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
99
105
|
def predict_proba(x)
|
106
|
+
check_sample_array(x)
|
100
107
|
trans_x = apply_transforms(x)
|
101
108
|
last_estimator.predict_proba(trans_x)
|
102
109
|
end
|
@@ -106,6 +113,7 @@ module SVMKit
|
|
106
113
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed.
|
107
114
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples.
|
108
115
|
def transform(x)
|
116
|
+
check_sample_array(x)
|
109
117
|
trans_x = apply_transforms(x)
|
110
118
|
last_estimator.nil? ? trans_x : last_estimator.transform(trans_x)
|
111
119
|
end
|
@@ -115,8 +123,9 @@ module SVMKit
|
|
115
123
|
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples to be restored into original space.
|
116
124
|
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored samples.
|
117
125
|
def inverse_transform(z)
|
126
|
+
check_sample_array(z)
|
118
127
|
itrans_z = z
|
119
|
-
@steps.keys.
|
128
|
+
@steps.keys.reverse_each do |name|
|
120
129
|
transformer = @steps[name]
|
121
130
|
next if transformer.nil?
|
122
131
|
itrans_z = transformer.inverse_transform(itrans_z)
|
@@ -130,6 +139,7 @@ module SVMKit
|
|
130
139
|
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
131
140
|
# @return [Float] The score of last estimator
|
132
141
|
def score(x, y)
|
142
|
+
check_sample_array(x)
|
133
143
|
trans_x = apply_transforms(x)
|
134
144
|
last_estimator.score(trans_x, y)
|
135
145
|
end
|
data/lib/svmkit/utils.rb
CHANGED
data/lib/svmkit/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: svmkit
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.7.
|
4
|
+
version: 0.7.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-
|
11
|
+
date: 2019-02-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -146,6 +146,7 @@ files:
|
|
146
146
|
- lib/svmkit/linear_model/svc.rb
|
147
147
|
- lib/svmkit/linear_model/svr.rb
|
148
148
|
- lib/svmkit/model_selection/cross_validation.rb
|
149
|
+
- lib/svmkit/model_selection/grid_search_cv.rb
|
149
150
|
- lib/svmkit/model_selection/k_fold.rb
|
150
151
|
- lib/svmkit/model_selection/stratified_k_fold.rb
|
151
152
|
- lib/svmkit/multiclass/one_vs_rest_classifier.rb
|