svmkit 0.2.1 → 0.2.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.travis.yml +7 -2
- data/HISTORY.md +3 -0
- data/lib/svmkit/base/splitter.rb +16 -0
- data/lib/svmkit/model_selection/k_fold.rb +72 -0
- data/lib/svmkit/model_selection/stratified_k_fold.rb +81 -0
- data/lib/svmkit/version.rb +1 -1
- data/lib/svmkit.rb +3 -0
- data/svmkit.gemspec +12 -11
- metadata +14 -11
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: c7c326db290b1847234f890914fe5d670a4b1d36
|
4
|
+
data.tar.gz: ee5a624c92bf6b35edcccf4df469f9f552c2174d
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9256fc3d36e6247fae44ac1a14672eaf9b3ba414176b48c592be5aa8631d232dbaddba9f3884198e0ba751616a3017ad461da2fb7ec40ef26b9ab2b2417aadf5
|
7
|
+
data.tar.gz: e198dcbe0c7e782162a31e7131b961f619e76bf509b43b596299412ba5bb5ea16ea02e21bb2a79909d70bb230c81484083df94ec65db6e770e4e5adc712da174
|
data/.travis.yml
CHANGED
data/HISTORY.md
CHANGED
@@ -0,0 +1,16 @@
|
|
1
|
+
|
2
|
+
module SVMKit
|
3
|
+
module Base
|
4
|
+
# Module for all validation methods in SVMKit.
|
5
|
+
module Splitter
|
6
|
+
# Return the number of splits.
|
7
|
+
# @return [Integer]
|
8
|
+
attr_reader :n_splits
|
9
|
+
|
10
|
+
# An abstract method for splitting dataset.
|
11
|
+
def split
|
12
|
+
raise NoImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
@@ -0,0 +1,72 @@
|
|
1
|
+
require 'svmkit/base/splitter'
|
2
|
+
|
3
|
+
module SVMKit
|
4
|
+
# This module consists of the classes for model validation techniques.
|
5
|
+
module ModelSelection
|
6
|
+
# KFold is a class that generates the set of data indices for K-fold cross-validation.
|
7
|
+
#
|
8
|
+
# @example
|
9
|
+
# kf = SVMKit::ModelSelection::KFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
10
|
+
# kf.split(samples, labels).each do |train_ids, test_ids|
|
11
|
+
# train_samples = samples[train_ids, true]
|
12
|
+
# test_samples = samples[test_ids, true]
|
13
|
+
# ...
|
14
|
+
# end
|
15
|
+
#
|
16
|
+
class KFold
|
17
|
+
include Base::Splitter
|
18
|
+
|
19
|
+
# Return the proportion of the test set to the dataset.
|
20
|
+
# @return [Boolean]
|
21
|
+
attr_reader :shuffle
|
22
|
+
|
23
|
+
# Return the random generator for shuffling the dataset.
|
24
|
+
# @return [Random]
|
25
|
+
attr_reader :rng
|
26
|
+
|
27
|
+
# Create a new data splitter for K-fold cross validation.
|
28
|
+
#
|
29
|
+
# @param n_splits [Integer] The number of folds.
|
30
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
31
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
32
|
+
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
33
|
+
@n_splits = n_splits
|
34
|
+
@shuffle = shuffle
|
35
|
+
@random_seed = random_seed
|
36
|
+
@random_seed ||= srand
|
37
|
+
@rng = Random.new(@random_seed)
|
38
|
+
end
|
39
|
+
|
40
|
+
# Generate data indices for K-fold cross validation.
|
41
|
+
#
|
42
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
43
|
+
# The dataset to be used to generate data indices for K-fold cross validation.
|
44
|
+
# @param y [Numo::Int32] (shape: [n_samples])
|
45
|
+
# The labels to be used to generate data indices for stratified K-fold cross validation.
|
46
|
+
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
47
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
48
|
+
def split(x, y) # rubocop:disable Lint/UnusedMethodArgument
|
49
|
+
# Initialize and check some variables.
|
50
|
+
n_samples, = x.shape
|
51
|
+
unless @n_splits.between?(2, n_samples)
|
52
|
+
raise ArgumentError,
|
53
|
+
'The value of n_splits must be not less than 2 and not more than the number of samples.'
|
54
|
+
end
|
55
|
+
# Splits dataset ids to each fold.
|
56
|
+
dataset_ids = [*0...n_samples]
|
57
|
+
dataset_ids.shuffle!(random: @rng) if @shuffle
|
58
|
+
fold_sets = Array.new(@n_splits) do |n|
|
59
|
+
n_fold_samples = n_samples / @n_splits
|
60
|
+
n_fold_samples += 1 if n < n_samples % @n_splits
|
61
|
+
dataset_ids.shift(n_fold_samples)
|
62
|
+
end
|
63
|
+
# Returns array consisting of the training and testing ids for each fold.
|
64
|
+
Array.new(@n_splits) do |n|
|
65
|
+
train_ids = fold_sets.select.with_index { |_, id| id != n }.flatten
|
66
|
+
test_ids = fold_sets[n]
|
67
|
+
[train_ids, test_ids]
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
71
|
+
end
|
72
|
+
end
|
@@ -0,0 +1,81 @@
|
|
1
|
+
require 'svmkit/base/splitter'
|
2
|
+
|
3
|
+
module SVMKit
|
4
|
+
module ModelSelection
|
5
|
+
# StratifiedKFold is a class that generates the set of data indices for K-fold cross-validation.
|
6
|
+
# The proportion of the number of samples in each class will be almost equal for each fold.
|
7
|
+
#
|
8
|
+
# @example
|
9
|
+
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
10
|
+
# kf.split(samples, labels).each do |train_ids, test_ids|
|
11
|
+
# train_samples = samples[train_ids, true]
|
12
|
+
# test_samples = samples[test_ids, true]
|
13
|
+
# ...
|
14
|
+
# end
|
15
|
+
#
|
16
|
+
class StratifiedKFold
|
17
|
+
include Base::Splitter
|
18
|
+
|
19
|
+
# Return the proportion of the test set to the dataset.
|
20
|
+
# @return [Boolean]
|
21
|
+
attr_reader :shuffle
|
22
|
+
|
23
|
+
# Return the random generator for shuffling the dataset.
|
24
|
+
# @return [Random]
|
25
|
+
attr_reader :rng
|
26
|
+
|
27
|
+
# Create a new data splitter for K-fold cross validation.
|
28
|
+
#
|
29
|
+
# @param n_splits [Integer] The number of folds.
|
30
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
31
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
32
|
+
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
33
|
+
@n_splits = n_splits
|
34
|
+
@shuffle = shuffle
|
35
|
+
@random_seed = random_seed
|
36
|
+
@random_seed ||= srand
|
37
|
+
@rng = Random.new(@random_seed)
|
38
|
+
end
|
39
|
+
|
40
|
+
# Generate data indices for stratified K-fold cross validation.
|
41
|
+
#
|
42
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
43
|
+
# The dataset to be used to generate data indices for stratified K-fold cross validation.
|
44
|
+
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
45
|
+
# @param y [Numo::Int32] (shape: [n_samples])
|
46
|
+
# The labels to be used to generate data indices for stratified K-fold cross validation.
|
47
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
48
|
+
def split(x, y) # rubocop:disable Lint/UnusedMethodArgument
|
49
|
+
# Check the number of samples in each class.
|
50
|
+
unless y.bincount.to_a.all? { |n_samples| @n_splits.between?(2, n_samples) }
|
51
|
+
raise ArgumentError,
|
52
|
+
'The value of n_splits must be not less than 2 and not more than the number of samples in each class.'
|
53
|
+
end
|
54
|
+
# Splits dataset ids of each class to each fold.
|
55
|
+
fold_sets_each_class = y.to_a.uniq.map { |label| fold_sets(y, label) }
|
56
|
+
# Returns array consisting of the training and testing ids for each fold.
|
57
|
+
Array.new(@n_splits) { |fold_id| train_test_sets(fold_sets_each_class, fold_id) }
|
58
|
+
end
|
59
|
+
|
60
|
+
private
|
61
|
+
|
62
|
+
def fold_sets(y, label)
|
63
|
+
sample_ids = y.eq(label).where.to_a
|
64
|
+
sample_ids.shuffle!(random: @rng) if @shuffle
|
65
|
+
n_samples = sample_ids.size
|
66
|
+
Array.new(@n_splits) do |n|
|
67
|
+
n_fold_samples = n_samples / @n_splits
|
68
|
+
n_fold_samples += 1 if n < n_samples % @n_splits
|
69
|
+
sample_ids.shift(n_fold_samples)
|
70
|
+
end
|
71
|
+
end
|
72
|
+
|
73
|
+
def train_test_sets(fold_sets_each_class, fold_id)
|
74
|
+
train_test_sets_each_class = fold_sets_each_class.map do |folds|
|
75
|
+
folds.partition.with_index { |_, id| id != fold_id }.map(&:flatten)
|
76
|
+
end
|
77
|
+
train_test_sets_each_class.transpose.map(&:flatten)
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
data/lib/svmkit/version.rb
CHANGED
data/lib/svmkit.rb
CHANGED
@@ -7,6 +7,7 @@ require 'svmkit/dataset'
|
|
7
7
|
require 'svmkit/base/base_estimator'
|
8
8
|
require 'svmkit/base/classifier'
|
9
9
|
require 'svmkit/base/transformer'
|
10
|
+
require 'svmkit/base/splitter'
|
10
11
|
require 'svmkit/kernel_approximation/rbf'
|
11
12
|
require 'svmkit/linear_model/svc'
|
12
13
|
require 'svmkit/linear_model/logistic_regression'
|
@@ -16,3 +17,5 @@ require 'svmkit/nearest_neighbors/k_neighbors_classifier'
|
|
16
17
|
require 'svmkit/preprocessing/l2_normalizer'
|
17
18
|
require 'svmkit/preprocessing/min_max_scaler'
|
18
19
|
require 'svmkit/preprocessing/standard_scaler'
|
20
|
+
require 'svmkit/model_selection/k_fold'
|
21
|
+
require 'svmkit/model_selection/stratified_k_fold'
|
data/svmkit.gemspec
CHANGED
@@ -3,11 +3,6 @@ lib = File.expand_path('../lib', __FILE__)
|
|
3
3
|
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
4
|
require 'svmkit/version'
|
5
5
|
|
6
|
-
SVMKit::DESCRIPTION = <<MSG
|
7
|
-
SVMKit is a library for machine learninig in Ruby.
|
8
|
-
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
|
9
|
-
However, since SVMKit is an experimental library, there are few machine learning algorithms implemented.
|
10
|
-
MSG
|
11
6
|
|
12
7
|
Gem::Specification.new do |spec|
|
13
8
|
spec.name = 'svmkit'
|
@@ -15,8 +10,14 @@ Gem::Specification.new do |spec|
|
|
15
10
|
spec.authors = ['yoshoku']
|
16
11
|
spec.email = ['yoshoku@outlook.com']
|
17
12
|
|
18
|
-
spec.summary =
|
19
|
-
|
13
|
+
spec.summary = <<MSG
|
14
|
+
SVMKit is an experimental library of machine learning in Ruby.
|
15
|
+
MSG
|
16
|
+
spec.description = <<MSG
|
17
|
+
SVMKit is a library for machine learninig in Ruby.
|
18
|
+
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
|
19
|
+
However, since SVMKit is an experimental library, there are few machine learning algorithms implemented.
|
20
|
+
MSG
|
20
21
|
spec.homepage = 'https://github.com/yoshoku/svmkit'
|
21
22
|
spec.license = 'BSD-2-Clause'
|
22
23
|
|
@@ -29,12 +30,12 @@ Gem::Specification.new do |spec|
|
|
29
30
|
|
30
31
|
spec.required_ruby_version = '>= 2.1'
|
31
32
|
|
32
|
-
spec.add_runtime_dependency 'numo-narray', '~> 0.9.0
|
33
|
+
spec.add_runtime_dependency 'numo-narray', '~> 0.9.0'
|
33
34
|
|
34
|
-
spec.add_development_dependency 'bundler', '~> 1.
|
35
|
-
spec.add_development_dependency 'rake', '~>
|
35
|
+
spec.add_development_dependency 'bundler', '~> 1.16'
|
36
|
+
spec.add_development_dependency 'rake', '~> 12.0'
|
36
37
|
spec.add_development_dependency 'rspec', '~> 3.0'
|
37
|
-
spec.add_development_dependency 'simplecov', '~> 0.15
|
38
|
+
spec.add_development_dependency 'simplecov', '~> 0.15'
|
38
39
|
|
39
40
|
spec.post_install_message = <<MSG
|
40
41
|
*************************************************************************
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: svmkit
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.2.
|
4
|
+
version: 0.2.2
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2018-01-13 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -16,42 +16,42 @@ dependencies:
|
|
16
16
|
requirements:
|
17
17
|
- - "~>"
|
18
18
|
- !ruby/object:Gem::Version
|
19
|
-
version: 0.9.0
|
19
|
+
version: 0.9.0
|
20
20
|
type: :runtime
|
21
21
|
prerelease: false
|
22
22
|
version_requirements: !ruby/object:Gem::Requirement
|
23
23
|
requirements:
|
24
24
|
- - "~>"
|
25
25
|
- !ruby/object:Gem::Version
|
26
|
-
version: 0.9.0
|
26
|
+
version: 0.9.0
|
27
27
|
- !ruby/object:Gem::Dependency
|
28
28
|
name: bundler
|
29
29
|
requirement: !ruby/object:Gem::Requirement
|
30
30
|
requirements:
|
31
31
|
- - "~>"
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version: '1.
|
33
|
+
version: '1.16'
|
34
34
|
type: :development
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version: '1.
|
40
|
+
version: '1.16'
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: rake
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: '
|
47
|
+
version: '12.0'
|
48
48
|
type: :development
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: '
|
54
|
+
version: '12.0'
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: rspec
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
@@ -72,14 +72,14 @@ dependencies:
|
|
72
72
|
requirements:
|
73
73
|
- - "~>"
|
74
74
|
- !ruby/object:Gem::Version
|
75
|
-
version: 0.15
|
75
|
+
version: '0.15'
|
76
76
|
type: :development
|
77
77
|
prerelease: false
|
78
78
|
version_requirements: !ruby/object:Gem::Requirement
|
79
79
|
requirements:
|
80
80
|
- - "~>"
|
81
81
|
- !ruby/object:Gem::Version
|
82
|
-
version: 0.15
|
82
|
+
version: '0.15'
|
83
83
|
description: |
|
84
84
|
SVMKit is a library for machine learninig in Ruby.
|
85
85
|
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
|
@@ -105,12 +105,15 @@ files:
|
|
105
105
|
- lib/svmkit.rb
|
106
106
|
- lib/svmkit/base/base_estimator.rb
|
107
107
|
- lib/svmkit/base/classifier.rb
|
108
|
+
- lib/svmkit/base/splitter.rb
|
108
109
|
- lib/svmkit/base/transformer.rb
|
109
110
|
- lib/svmkit/dataset.rb
|
110
111
|
- lib/svmkit/kernel_approximation/rbf.rb
|
111
112
|
- lib/svmkit/kernel_machine/kernel_svc.rb
|
112
113
|
- lib/svmkit/linear_model/logistic_regression.rb
|
113
114
|
- lib/svmkit/linear_model/svc.rb
|
115
|
+
- lib/svmkit/model_selection/k_fold.rb
|
116
|
+
- lib/svmkit/model_selection/stratified_k_fold.rb
|
114
117
|
- lib/svmkit/multiclass/one_vs_rest_classifier.rb
|
115
118
|
- lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb
|
116
119
|
- lib/svmkit/pairwise_metric.rb
|
@@ -145,7 +148,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
145
148
|
version: '0'
|
146
149
|
requirements: []
|
147
150
|
rubyforge_project:
|
148
|
-
rubygems_version: 2.
|
151
|
+
rubygems_version: 2.4.5.4
|
149
152
|
signing_key:
|
150
153
|
specification_version: 4
|
151
154
|
summary: SVMKit is an experimental library of machine learning in Ruby.
|