stl-rb 0.1.3 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: a71b48c0e3da1cc0b03002261e90a7ecb4001dc54fba6592a3639c97544e49fd
4
- data.tar.gz: b0c1a624f4ec360bae0a0ad9e22d78adb28d448553198fae905b9954fdc279ff
3
+ metadata.gz: 2aa2dc89bcf68293681a8fc62b7806ae94ba76561350e26679cbc776093dd2c6
4
+ data.tar.gz: 7c5e650e295730e29f344108bfdb802210c9db3b20b742adb7d64028c95e6c59
5
5
  SHA512:
6
- metadata.gz: 0e20f51dbe1ee17114708c8ced912c8cc3bdbae731ac3f92fb27bbcc13bae0fa1a8c7b4848d06b79f89210084d08b01e8293639dedc4582795e6455d856a3413
7
- data.tar.gz: 37ac79cd61e39b5b26c174057230e19c18bfb4d022ea288a4d1c8d540974c479290c35981339b8f42bfe766dd858f1aec4daa2a38b654c1bfb72f1ec29b61400
6
+ metadata.gz: 608fac4b9b1f16372f32e664a0887d2bb36e9842acbc51e6f524ec09f1cbcdbb680b1033235943e1c70ad0d8d093df76236005f064addddcc35d6d58eb233bf7
7
+ data.tar.gz: b931fd2c683e457c8845f824e3a5915775b1f671ac23ab4e70471f7424c45dc92bf58fb00e114d884b5d9ce859fbe5aac6314e5f11d8debfbfd82a923eb1ef6d
data/CHANGELOG.md CHANGED
@@ -1,3 +1,8 @@
1
+ ## 0.2.0 (2023-02-01)
2
+
3
+ - Raise error when `period` is less than 2
4
+ - Dropped support for Ruby < 2.7
5
+
1
6
  ## 0.1.3 (2021-12-16)
2
7
 
3
8
  - Fixed installation error on macOS 12
data/README.md CHANGED
@@ -9,7 +9,7 @@ Seasonal-trend decomposition for Ruby
9
9
  Add this line to your application’s Gemfile:
10
10
 
11
11
  ```ruby
12
- gem 'stl-rb'
12
+ gem "stl-rb"
13
13
  ```
14
14
 
15
15
  ## Getting Started
@@ -75,7 +75,7 @@ Stl.decompose(
75
75
  Add [Vega](https://github.com/ankane/vega) to your application’s Gemfile:
76
76
 
77
77
  ```ruby
78
- gem 'vega'
78
+ gem "vega"
79
79
  ```
80
80
 
81
81
  And use:
data/ext/stl/stl.hpp CHANGED
@@ -1,5 +1,5 @@
1
1
  /*!
2
- * STL C++ v0.1.0
2
+ * STL C++ v0.1.2
3
3
  * https://github.com/ankane/stl-cpp
4
4
  * Unlicense OR MIT License
5
5
  *
@@ -14,6 +14,7 @@
14
14
 
15
15
  #include <algorithm>
16
16
  #include <cmath>
17
+ #include <numeric>
17
18
  #include <optional>
18
19
  #include <stdexcept>
19
20
  #include <vector>
@@ -91,14 +92,14 @@ void ess(const float* y, size_t n, size_t len, int ideg, size_t njump, bool user
91
92
  return;
92
93
  }
93
94
 
94
- auto nleft = 0;
95
- auto nright = 0;
95
+ size_t nleft = 0;
96
+ size_t nright = 0;
96
97
 
97
98
  auto newnj = std::min(njump, n - 1);
98
99
  if (len >= n) {
99
100
  nleft = 1;
100
101
  nright = n;
101
- for (auto i = 1; i <= n; i += newnj) {
102
+ for (size_t i = 1; i <= n; i += newnj) {
102
103
  auto ok = est(y, n, len, ideg, (float) i, &ys[i - 1], nleft, nright, res, userw, rw);
103
104
  if (!ok) {
104
105
  ys[i - 1] = y[i - 1];
@@ -108,7 +109,7 @@ void ess(const float* y, size_t n, size_t len, int ideg, size_t njump, bool user
108
109
  auto nsh = (len + 1) / 2;
109
110
  nleft = 1;
110
111
  nright = len;
111
- for (auto i = 1; i <= n; i++) { // fitted value at i
112
+ for (size_t i = 1; i <= n; i++) { // fitted value at i
112
113
  if (i > nsh && nright != n) {
113
114
  nleft += 1;
114
115
  nright += 1;
@@ -120,7 +121,7 @@ void ess(const float* y, size_t n, size_t len, int ideg, size_t njump, bool user
120
121
  }
121
122
  } else { // newnj greater than one, len less than n
122
123
  auto nsh = (len + 1) / 2;
123
- for (auto i = 1; i <= n; i += newnj) { // fitted value at i
124
+ for (size_t i = 1; i <= n; i += newnj) { // fitted value at i
124
125
  if (i < nsh) {
125
126
  nleft = 1;
126
127
  nright = len;
@@ -139,7 +140,7 @@ void ess(const float* y, size_t n, size_t len, int ideg, size_t njump, bool user
139
140
  }
140
141
 
141
142
  if (newnj != 1) {
142
- for (auto i = 1; i <= n - newnj; i += newnj) {
143
+ for (size_t i = 1; i <= n - newnj; i += newnj) {
143
144
  auto delta = (ys[i + newnj - 1] - ys[i - 1]) / ((float) newnj);
144
145
  for (auto j = i + 1; j <= i + newnj - 1; j++) {
145
146
  ys[j - 1] = ys[i - 1] + delta * ((float) (j - i));
@@ -167,7 +168,7 @@ void ma(const float* x, size_t n, size_t len, float* ave) {
167
168
  auto v = 0.0;
168
169
 
169
170
  // get the first average
170
- for (auto i = 0; i < len; i++) {
171
+ for (size_t i = 0; i < len; i++) {
171
172
  v += x[i];
172
173
  }
173
174
 
@@ -175,7 +176,7 @@ void ma(const float* x, size_t n, size_t len, float* ave) {
175
176
  if (newn > 1) {
176
177
  auto k = len;
177
178
  auto m = 0;
178
- for (auto j = 1; j < newn; j++) {
179
+ for (size_t j = 1; j < newn; j++) {
179
180
  // window down the array
180
181
  v = v - x[m] + x[k];
181
182
  ave[j] = v / flen;
@@ -192,7 +193,7 @@ void fts(const float* x, size_t n, size_t np, float* trend, float* work) {
192
193
  }
193
194
 
194
195
  void rwts(const float* y, size_t n, const float* fit, float* rw) {
195
- for (auto i = 0; i < n; i++) {
196
+ for (size_t i = 0; i < n; i++) {
196
197
  rw[i] = fabs(y[i] - fit[i]);
197
198
  }
198
199
 
@@ -206,7 +207,7 @@ void rwts(const float* y, size_t n, const float* fit, float* rw) {
206
207
  auto c9 = 0.999 * cmad;
207
208
  auto c1 = 0.001 * cmad;
208
209
 
209
- for (auto i = 0; i < n; i++) {
210
+ for (size_t i = 0; i < n; i++) {
210
211
  auto r = fabs(y[i] - fit[i]);
211
212
  if (r <= c1) {
212
213
  rw[i] = 1.0;
@@ -219,14 +220,14 @@ void rwts(const float* y, size_t n, const float* fit, float* rw) {
219
220
  }
220
221
 
221
222
  void ss(const float* y, size_t n, size_t np, size_t ns, int isdeg, size_t nsjump, bool userw, float* rw, float* season, float* work1, float* work2, float* work3, float* work4) {
222
- for (auto j = 1; j <= np; j++) {
223
- auto k = (n - j) / np + 1;
223
+ for (size_t j = 1; j <= np; j++) {
224
+ size_t k = (n - j) / np + 1;
224
225
 
225
- for (auto i = 1; i <= k; i++) {
226
+ for (size_t i = 1; i <= k; i++) {
226
227
  work1[i - 1] = y[(i - 1) * np + j - 1];
227
228
  }
228
229
  if (userw) {
229
- for (auto i = 1; i <= k; i++) {
230
+ for (size_t i = 1; i <= k; i++) {
230
231
  work3[i - 1] = rw[(i - 1) * np + j - 1];
231
232
  }
232
233
  }
@@ -243,25 +244,25 @@ void ss(const float* y, size_t n, size_t np, size_t ns, int isdeg, size_t nsjump
243
244
  if (!ok) {
244
245
  work2[k + 1] = work2[k];
245
246
  }
246
- for (auto m = 1; m <= k + 2; m++) {
247
+ for (size_t m = 1; m <= k + 2; m++) {
247
248
  season[(m - 1) * np + j - 1] = work2[m - 1];
248
249
  }
249
250
  }
250
251
  }
251
252
 
252
253
  void onestp(const float* y, size_t n, size_t np, size_t ns, size_t nt, size_t nl, int isdeg, int itdeg, int ildeg, size_t nsjump, size_t ntjump, size_t nljump, size_t ni, bool userw, float* rw, float* season, float* trend, float* work1, float* work2, float* work3, float* work4, float* work5) {
253
- for (auto j = 0; j < ni; j++) {
254
- for (auto i = 0; i < n; i++) {
254
+ for (size_t j = 0; j < ni; j++) {
255
+ for (size_t i = 0; i < n; i++) {
255
256
  work1[i] = y[i] - trend[i];
256
257
  }
257
258
 
258
259
  ss(work1, n, np, ns, isdeg, nsjump, userw, rw, work2, work3, work4, work5, season);
259
260
  fts(work2, n + 2 * np, np, work3, work1);
260
261
  ess(work3, n, nl, ildeg, nljump, false, work4, work1, work5);
261
- for (auto i = 0; i < n; i++) {
262
+ for (size_t i = 0; i < n; i++) {
262
263
  season[i] = work2[np + i] - work1[i];
263
264
  }
264
- for (auto i = 0; i < n; i++) {
265
+ for (size_t i = 0; i < n; i++) {
265
266
  work1[i] = y[i] - season[i];
266
267
  }
267
268
  ess(work1, n, nt, itdeg, ntjump, userw, rw, trend, work3);
@@ -269,15 +270,6 @@ void onestp(const float* y, size_t n, size_t np, size_t ns, size_t nt, size_t nl
269
270
  }
270
271
 
271
272
  void stl(const float* y, size_t n, size_t np, size_t ns, size_t nt, size_t nl, int isdeg, int itdeg, int ildeg, size_t nsjump, size_t ntjump, size_t nljump, size_t ni, size_t no, float* rw, float* season, float* trend) {
272
- auto work1 = std::vector<float>(n + 2 * np);
273
- auto work2 = std::vector<float>(n + 2 * np);
274
- auto work3 = std::vector<float>(n + 2 * np);
275
- auto work4 = std::vector<float>(n + 2 * np);
276
- auto work5 = std::vector<float>(n + 2 * np);
277
-
278
- auto userw = false;
279
- auto k = 0;
280
-
281
273
  if (ns < 3) {
282
274
  throw std::invalid_argument("seasonal_length must be at least 3");
283
275
  }
@@ -311,13 +303,22 @@ void stl(const float* y, size_t n, size_t np, size_t ns, size_t nt, size_t nl, i
311
303
  throw std::invalid_argument("low_pass_length must be odd");
312
304
  }
313
305
 
306
+ auto work1 = std::vector<float>(n + 2 * np);
307
+ auto work2 = std::vector<float>(n + 2 * np);
308
+ auto work3 = std::vector<float>(n + 2 * np);
309
+ auto work4 = std::vector<float>(n + 2 * np);
310
+ auto work5 = std::vector<float>(n + 2 * np);
311
+
312
+ auto userw = false;
313
+ size_t k = 0;
314
+
314
315
  while (true) {
315
316
  onestp(y, n, np, ns, nt, nl, isdeg, itdeg, ildeg, nsjump, ntjump, nljump, ni, userw, rw, season, trend, work1.data(), work2.data(), work3.data(), work4.data(), work5.data());
316
317
  k += 1;
317
318
  if (k > no) {
318
319
  break;
319
320
  }
320
- for (auto i = 0; i < n; i++) {
321
+ for (size_t i = 0; i < n; i++) {
321
322
  work1[i] = trend[i] + season[i];
322
323
  }
323
324
  rwts(y, n, work1.data(), rw);
@@ -325,18 +326,46 @@ void stl(const float* y, size_t n, size_t np, size_t ns, size_t nt, size_t nl, i
325
326
  }
326
327
 
327
328
  if (no <= 0) {
328
- for (auto i = 0; i < n; i++) {
329
+ for (size_t i = 0; i < n; i++) {
329
330
  rw[i] = 1.0;
330
331
  }
331
332
  }
332
333
  }
333
334
 
335
+ float var(const std::vector<float>& series) {
336
+ auto mean = std::accumulate(series.begin(), series.end(), 0.0) / series.size();
337
+ std::vector<float> tmp;
338
+ tmp.reserve(series.size());
339
+ for (auto v : series) {
340
+ tmp.push_back(pow(v - mean, 2));
341
+ }
342
+ return std::accumulate(tmp.begin(), tmp.end(), 0.0) / (series.size() - 1);
343
+ }
344
+
334
345
  class StlResult {
335
346
  public:
336
347
  std::vector<float> seasonal;
337
348
  std::vector<float> trend;
338
349
  std::vector<float> remainder;
339
350
  std::vector<float> weights;
351
+
352
+ inline float seasonal_strength() {
353
+ std::vector<float> sr;
354
+ sr.reserve(remainder.size());
355
+ for (size_t i = 0; i < remainder.size(); i++) {
356
+ sr.push_back(seasonal[i] + remainder[i]);
357
+ }
358
+ return std::max(0.0, 1.0 - var(remainder) / var(sr));
359
+ }
360
+
361
+ inline float trend_strength() {
362
+ std::vector<float> tr;
363
+ tr.reserve(remainder.size());
364
+ for (size_t i = 0; i < remainder.size(); i++) {
365
+ tr.push_back(trend[i] + remainder[i]);
366
+ }
367
+ return std::max(0.0, 1.0 - var(remainder) / var(tr));
368
+ }
340
369
  };
341
370
 
342
371
  class StlParams {
@@ -357,62 +386,62 @@ public:
357
386
  inline StlParams seasonal_length(size_t ns) {
358
387
  this->ns_ = ns;
359
388
  return *this;
360
- };
389
+ }
361
390
 
362
391
  inline StlParams trend_length(size_t nt) {
363
392
  this->nt_ = nt;
364
393
  return *this;
365
- };
394
+ }
366
395
 
367
396
  inline StlParams low_pass_length(size_t nl) {
368
397
  this->nl_ = nl;
369
398
  return *this;
370
- };
399
+ }
371
400
 
372
401
  inline StlParams seasonal_degree(int isdeg) {
373
402
  this->isdeg_ = isdeg;
374
403
  return *this;
375
- };
404
+ }
376
405
 
377
406
  inline StlParams trend_degree(int itdeg) {
378
407
  this->itdeg_ = itdeg;
379
408
  return *this;
380
- };
409
+ }
381
410
 
382
411
  inline StlParams low_pass_degree(int ildeg) {
383
412
  this->ildeg_ = ildeg;
384
413
  return *this;
385
- };
414
+ }
386
415
 
387
416
  inline StlParams seasonal_jump(size_t nsjump) {
388
417
  this->nsjump_ = nsjump;
389
418
  return *this;
390
- };
419
+ }
391
420
 
392
421
  inline StlParams trend_jump(size_t ntjump) {
393
422
  this->ntjump_ = ntjump;
394
423
  return *this;
395
- };
424
+ }
396
425
 
397
426
  inline StlParams low_pass_jump(size_t nljump) {
398
427
  this->nljump_ = nljump;
399
428
  return *this;
400
- };
429
+ }
401
430
 
402
431
  inline StlParams inner_loops(bool ni) {
403
432
  this->ni_ = ni;
404
433
  return *this;
405
- };
434
+ }
406
435
 
407
436
  inline StlParams outer_loops(bool no) {
408
437
  this->no_ = no;
409
438
  return *this;
410
- };
439
+ }
411
440
 
412
441
  inline StlParams robust(bool robust) {
413
442
  this->robust_ = robust;
414
443
  return *this;
415
- };
444
+ }
416
445
 
417
446
  StlResult fit(const float* y, size_t n, size_t np);
418
447
  StlResult fit(const std::vector<float>& y, size_t np);
@@ -468,7 +497,7 @@ StlResult StlParams::fit(const float* y, size_t n, size_t np) {
468
497
  stl(y, n, newnp, newns, nt, nl, isdeg, itdeg, ildeg, nsjump, ntjump, nljump, ni, no, res.weights.data(), res.seasonal.data(), res.trend.data());
469
498
 
470
499
  res.remainder.reserve(n);
471
- for (auto i = 0; i < n; i++) {
500
+ for (size_t i = 0; i < n; i++) {
472
501
  res.remainder.push_back(y[i] - res.seasonal[i] - res.trend[i]);
473
502
  }
474
503
 
data/lib/stl/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module Stl
2
- VERSION = "0.1.3"
2
+ VERSION = "0.2.0"
3
3
  end
data/lib/stl-rb.rb CHANGED
@@ -1 +1 @@
1
- require "stl"
1
+ require_relative "stl"
data/lib/stl.rb CHANGED
@@ -1,8 +1,8 @@
1
1
  # ext
2
- require "stl/ext"
2
+ require_relative "stl/ext"
3
3
 
4
4
  # modules
5
- require "stl/version"
5
+ require_relative "stl/version"
6
6
 
7
7
  module Stl
8
8
  class << self
@@ -13,6 +13,10 @@ module Stl
13
13
  seasonal_jump: nil, trend_jump: nil, low_pass_jump: nil,
14
14
  inner_loops: nil, outer_loops: nil, robust: false
15
15
  )
16
+ if period < 2
17
+ raise ArgumentError, "period must be greater than 1"
18
+ end
19
+
16
20
  params = StlParams.new
17
21
 
18
22
  params.seasonal_length(seasonal_length) unless seasonal_length.nil?
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: stl-rb
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.3
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrew Kane
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-12-17 00:00:00.000000000 Z
11
+ date: 2023-02-02 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rice
@@ -51,14 +51,14 @@ required_ruby_version: !ruby/object:Gem::Requirement
51
51
  requirements:
52
52
  - - ">="
53
53
  - !ruby/object:Gem::Version
54
- version: '2.6'
54
+ version: '2.7'
55
55
  required_rubygems_version: !ruby/object:Gem::Requirement
56
56
  requirements:
57
57
  - - ">="
58
58
  - !ruby/object:Gem::Version
59
59
  version: '0'
60
60
  requirements: []
61
- rubygems_version: 3.2.32
61
+ rubygems_version: 3.4.1
62
62
  signing_key:
63
63
  specification_version: 4
64
64
  summary: Seasonal-trend decomposition for Ruby