statsample 1.1.0 → 1.2.0
Sign up to get free protection for your applications and to get access to all the features.
- data.tar.gz.sig +0 -0
- data/History.txt +7 -0
- data/Manifest.txt +3 -0
- data/README.txt +2 -0
- data/Rakefile +9 -3
- data/grab_references.rb +1 -0
- data/lib/statsample.rb +2 -1
- data/lib/statsample/matrix.rb +5 -5
- data/lib/statsample/regression/simple.rb +1 -1
- data/lib/statsample/timeseries.rb +169 -0
- data/test/fixtures/stock_data.csv +500 -0
- data/test/test_factor_map.rb +1 -1
- data/test/test_tseries.rb +94 -0
- metadata +251 -214
- metadata.gz.sig +0 -0
data.tar.gz.sig
ADDED
Binary file
|
data/History.txt
CHANGED
@@ -1,3 +1,10 @@
|
|
1
|
+
=== 1.2.0 / 2011-12-15
|
2
|
+
|
3
|
+
* Added support for time series (TimeSeries object): MA, EMA, MACD, acf, lag and delta. [Rob Britton]
|
4
|
+
* Changed summary attribute to properly display 'b' value for simple linear regression [hstove]
|
5
|
+
* Merge pull request #6 from hstove/patch-1Changed summary attribute to properly display 'b' value for simple linear regression [Claudio Bustos]
|
6
|
+
* fix example code for CovariateMatrix [James Kebinger]
|
7
|
+
|
1
8
|
=== 1.1.0 / 2011-06-02
|
2
9
|
|
3
10
|
* New Statsample::Anova::Contrast
|
data/Manifest.txt
CHANGED
@@ -102,6 +102,7 @@ lib/statsample/test/kolmogorovsmirnov.rb
|
|
102
102
|
lib/statsample/test/levene.rb
|
103
103
|
lib/statsample/test/t.rb
|
104
104
|
lib/statsample/test/umannwhitney.rb
|
105
|
+
lib/statsample/timeseries.rb
|
105
106
|
lib/statsample/vector.rb
|
106
107
|
lib/statsample/vector/gsl.rb
|
107
108
|
po/es/statsample.mo
|
@@ -114,6 +115,7 @@ test/fixtures/correlation_matrix.rb
|
|
114
115
|
test/fixtures/crime.txt
|
115
116
|
test/fixtures/hartman_23.matrix
|
116
117
|
test/fixtures/repeated_fields.csv
|
118
|
+
test/fixtures/stock_data.csv
|
117
119
|
test/fixtures/test_binomial.csv
|
118
120
|
test/fixtures/test_csv.csv
|
119
121
|
test/fixtures/test_xls.xls
|
@@ -156,6 +158,7 @@ test/test_stratified.rb
|
|
156
158
|
test/test_test_f.rb
|
157
159
|
test/test_test_kolmogorovsmirnov.rb
|
158
160
|
test/test_test_t.rb
|
161
|
+
test/test_tseries.rb
|
159
162
|
test/test_umannwhitney.rb
|
160
163
|
test/test_vector.rb
|
161
164
|
test/test_xls.rb
|
data/README.txt
CHANGED
@@ -17,6 +17,7 @@ Include:
|
|
17
17
|
* Regression: Simple, Multiple (OLS), Probit and Logit
|
18
18
|
* Factorial Analysis: Extraction (PCA and Principal Axis), Rotation (Varimax, Equimax, Quartimax) and Parallel Analysis and Velicer's MAP test, for estimation of number of factors.
|
19
19
|
* Reliability analysis for simple scale and a DSL to easily analyze multiple scales using factor analysis and correlations, if you want it.
|
20
|
+
* Basic time series support
|
20
21
|
* Dominance Analysis, with multivariate dependent and bootstrap (Azen & Budescu)
|
21
22
|
* Sample calculation related formulas
|
22
23
|
* Structural Equation Modeling (SEM), using R libraries +sem+ and +OpenMx+
|
@@ -89,6 +90,7 @@ Include:
|
|
89
90
|
* Statsample::Graph::Boxplot
|
90
91
|
* Statsample::Graph::Histogram
|
91
92
|
* Statsample::Graph::Scatterplot
|
93
|
+
* Module Statsample::TimeSeries provides basic support for time series.
|
92
94
|
* Gem +statsample-sem+ provides a DSL to R libraries +sem+ and +OpenMx+
|
93
95
|
* Close integration with gem <tt>reportbuilder</tt>, to easily create reports on text, html and rtf formats.
|
94
96
|
|
data/Rakefile
CHANGED
@@ -6,8 +6,10 @@ $:.unshift(File.dirname(__FILE__)+'/lib/')
|
|
6
6
|
require 'rubygems'
|
7
7
|
require 'statsample'
|
8
8
|
require 'hoe'
|
9
|
-
|
9
|
+
require 'rdoc'
|
10
10
|
|
11
|
+
Hoe.plugin :git
|
12
|
+
Hoe.plugin :doofus
|
11
13
|
desc "Ruby Lint"
|
12
14
|
task :lint do
|
13
15
|
executable=Config::CONFIG['RUBY_INSTALL_NAME']
|
@@ -22,6 +24,9 @@ task :release do
|
|
22
24
|
system %{git push origin master}
|
23
25
|
end
|
24
26
|
|
27
|
+
task "clobber_docs" do
|
28
|
+
# Only to omit warnings
|
29
|
+
end
|
25
30
|
desc "Update pot/po files."
|
26
31
|
task "gettext:updatepo" do
|
27
32
|
require 'gettext/tools'
|
@@ -40,7 +45,7 @@ h=Hoe.spec('statsample') do
|
|
40
45
|
#self.testlib=:minitest
|
41
46
|
self.rubyforge_name = "ruby-statsample"
|
42
47
|
self.developer('Claudio Bustos', 'clbustos@gmail.com')
|
43
|
-
self.extra_deps << ["spreadsheet","~>0.6.5"] << ["reportbuilder", "~>1.4"] << ["minimization", "~>0.2.0"] << ["fastercsv", ">0"] << ["dirty-memoize", "~>0.0"] << ["extendmatrix","~>0.3.1"] << ["statsample-bivariate-extension", ">0"] << ["rserve-client", "~>0.2.5"] << ["rubyvis", "~>0.
|
48
|
+
self.extra_deps << ["spreadsheet","~>0.6.5"] << ["reportbuilder", "~>1.4"] << ["minimization", "~>0.2.0"] << ["fastercsv", ">0"] << ["dirty-memoize", "~>0.0"] << ["extendmatrix","~>0.3.1"] << ["statsample-bivariate-extension", ">0"] << ["rserve-client", "~>0.2.5"] << ["rubyvis", "~>0.5"] << ["distribution", "~>0.6"]
|
44
49
|
|
45
50
|
self.extra_dev_deps << ["hoe","~>0"] << ["shoulda","~>0"] << ["minitest", "~>2.0"] << ["rserve-client", "~>0"] << ["gettext", "~>0"] << ["mocha", "~>0"] << ["hoe-git", "~>0"]
|
46
51
|
|
@@ -67,6 +72,7 @@ source code first.
|
|
67
72
|
self.need_rdoc=false
|
68
73
|
end
|
69
74
|
|
75
|
+
if Rake.const_defined?(:RDocTask)
|
70
76
|
Rake::RDocTask.new(:docs) do |rd|
|
71
77
|
rd.main = h.readme_file
|
72
78
|
rd.options << '-d' if (`which dot` =~ /\/dot/) unless
|
@@ -91,7 +97,7 @@ Rake::RDocTask.new(:docs) do |rd|
|
|
91
97
|
end
|
92
98
|
end
|
93
99
|
|
94
|
-
|
100
|
+
end
|
95
101
|
desc 'Publish rdocs with analytics support'
|
96
102
|
task :publicar_docs => [:clean, :docs] do
|
97
103
|
ruby %{agregar_adsense_a_doc.rb}
|
data/grab_references.rb
CHANGED
data/lib/statsample.rb
CHANGED
@@ -134,7 +134,7 @@ module Statsample
|
|
134
134
|
|
135
135
|
create_has_library :gsl
|
136
136
|
|
137
|
-
VERSION = '1.
|
137
|
+
VERSION = '1.2.0'
|
138
138
|
SPLIT_TOKEN = ","
|
139
139
|
autoload(:Analysis, 'statsample/analysis')
|
140
140
|
autoload(:Database, 'statsample/converters')
|
@@ -161,6 +161,7 @@ module Statsample
|
|
161
161
|
autoload(:Test, 'statsample/test')
|
162
162
|
autoload(:Factor, 'statsample/factor')
|
163
163
|
autoload(:Graph, 'statsample/graph')
|
164
|
+
autoload(:TimeSeries, 'statsample/timeseries')
|
164
165
|
|
165
166
|
|
166
167
|
class << self
|
data/lib/statsample/matrix.rb
CHANGED
@@ -266,16 +266,16 @@ module Statsample
|
|
266
266
|
# a=Matrix[[1.0, 0.3, 0.2],
|
267
267
|
# [0.3, 1.0, 0.5],
|
268
268
|
# [0.2, 0.5, 1.0]]
|
269
|
-
# a.
|
270
|
-
# a.
|
271
|
-
# a.submatrix(%{c a}, %w{b})
|
269
|
+
# a.extend CovariateMatrix
|
270
|
+
# a.fields=%w{a b c}
|
271
|
+
# a.submatrix(%w{c a}, %w{b})
|
272
272
|
# => Matrix[[0.5],[0.3]]
|
273
|
-
# a.submatrix(%{c a})
|
273
|
+
# a.submatrix(%w{c a})
|
274
274
|
# => Matrix[[1.0, 0.2] , [0.2, 1.0]]
|
275
275
|
def submatrix(rows,columns=nil)
|
276
276
|
raise ArgumentError, "rows shouldn't be empty" if rows.respond_to? :size and rows.size==0
|
277
277
|
columns||=rows
|
278
|
-
# Convert all
|
278
|
+
# Convert all fields on index
|
279
279
|
row_index=rows.collect {|v|
|
280
280
|
r=v.is_a?(Numeric) ? v : fields_x.index(v)
|
281
281
|
raise "Index #{v} doesn't exists on matrix" if r.nil?
|
@@ -0,0 +1,169 @@
|
|
1
|
+
module Statsample::TimeSeriesShorthands
|
2
|
+
# Creates a new Statsample::TimeSeries object
|
3
|
+
# Argument should be equal to TimeSeries.new
|
4
|
+
def to_time_series(*args)
|
5
|
+
Statsample::TimeSeries::TimeSeries.new(self, :scale, *args)
|
6
|
+
end
|
7
|
+
|
8
|
+
alias :to_ts :to_time_series
|
9
|
+
end
|
10
|
+
|
11
|
+
class Array
|
12
|
+
include Statsample::TimeSeriesShorthands
|
13
|
+
end
|
14
|
+
|
15
|
+
module Statsample
|
16
|
+
module TimeSeries
|
17
|
+
# Collection of data indexed by time.
|
18
|
+
# The order goes from earliest to latest.
|
19
|
+
class TimeSeries < Statsample::Vector
|
20
|
+
# Calculates the autocorrelation coefficients of the series.
|
21
|
+
#
|
22
|
+
# The first element is always 1, since that is the correlation
|
23
|
+
# of the series with itself.
|
24
|
+
#
|
25
|
+
# Usage:
|
26
|
+
#
|
27
|
+
# ts = (1..100).map { rand }.to_time_series
|
28
|
+
#
|
29
|
+
# ts.acf # => array with first 21 autocorrelations
|
30
|
+
# ts.acf 3 # => array with first 3 autocorrelations
|
31
|
+
#
|
32
|
+
def acf maxlags = nil
|
33
|
+
maxlags ||= (10 * Math.log10(size)).to_i
|
34
|
+
|
35
|
+
(0..maxlags).map do |i|
|
36
|
+
if i == 0
|
37
|
+
1.0
|
38
|
+
else
|
39
|
+
m = self.mean
|
40
|
+
|
41
|
+
# can't use Pearson coefficient since the mean for the lagged series should
|
42
|
+
# be the same as the regular series
|
43
|
+
((self - m) * (self.lag(i) - m)).sum / self.variance_sample / (self.size - 1)
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
# Lags the series by k periods.
|
49
|
+
#
|
50
|
+
# The convention is to set the oldest observations (the first ones
|
51
|
+
# in the series) to nil so that the size of the lagged series is the
|
52
|
+
# same as the original.
|
53
|
+
#
|
54
|
+
# Usage:
|
55
|
+
#
|
56
|
+
# ts = (1..10).map { rand }.to_time_series
|
57
|
+
# # => [0.69, 0.23, 0.44, 0.71, ...]
|
58
|
+
#
|
59
|
+
# ts.lag # => [nil, 0.69, 0.23, 0.44, ...]
|
60
|
+
# ts.lag 2 # => [nil, nil, 0.69, 0.23, ...]
|
61
|
+
#
|
62
|
+
def lag k = 1
|
63
|
+
return self if k == 0
|
64
|
+
|
65
|
+
dup.tap do |lagged|
|
66
|
+
(lagged.size - 1).downto k do |i|
|
67
|
+
lagged[i] = lagged[i - k]
|
68
|
+
end
|
69
|
+
|
70
|
+
(0...k).each do |i|
|
71
|
+
lagged[i] = nil
|
72
|
+
end
|
73
|
+
lagged.set_valid_data
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
# Performs a first difference of the series.
|
78
|
+
#
|
79
|
+
# The convention is to set the oldest observations (the first ones
|
80
|
+
# in the series) to nil so that the size of the diffed series is the
|
81
|
+
# same as the original.
|
82
|
+
#
|
83
|
+
# Usage:
|
84
|
+
#
|
85
|
+
# ts = (1..10).map { rand }.to_ts
|
86
|
+
# # => [0.69, 0.23, 0.44, 0.71, ...]
|
87
|
+
#
|
88
|
+
# ts.diff # => [nil, -0.46, 0.21, 0.27, ...]
|
89
|
+
#
|
90
|
+
def diff
|
91
|
+
self - self.lag
|
92
|
+
end
|
93
|
+
|
94
|
+
# Calculates a moving average of the series using the provided
|
95
|
+
# lookback argument. The lookback defaults to 10 periods.
|
96
|
+
#
|
97
|
+
# Usage:
|
98
|
+
#
|
99
|
+
# ts = (1..100).map { rand }.to_ts
|
100
|
+
# # => [0.69, 0.23, 0.44, 0.71, ...]
|
101
|
+
#
|
102
|
+
# # first 9 observations are nil
|
103
|
+
# ts.ma # => [ ... nil, 0.484... , 0.445... , 0.513 ... , ... ]
|
104
|
+
def ma n = 10
|
105
|
+
return mean if n >= size
|
106
|
+
|
107
|
+
([nil] * (n - 1) + (0..(size - n)).map do |i|
|
108
|
+
self[i...(i + n)].inject(&:+) / n
|
109
|
+
end).to_time_series
|
110
|
+
end
|
111
|
+
|
112
|
+
# Calculates an exponential moving average of the series using a
|
113
|
+
# specified parameter. If wilder is false (the default) then the EMA
|
114
|
+
# uses a smoothing value of 2 / (n + 1), if it is true then it uses the
|
115
|
+
# Welles Wilder smoother of 1 / n.
|
116
|
+
#
|
117
|
+
# Warning for EMA usage: EMAs are unstable for small series, as they
|
118
|
+
# use a lot more than n observations to calculate. The series is stable
|
119
|
+
# if the size of the series is >= 3.45 * (n + 1)
|
120
|
+
#
|
121
|
+
# Usage:
|
122
|
+
#
|
123
|
+
# ts = (1..100).map { rand }.to_ts
|
124
|
+
# # => [0.69, 0.23, 0.44, 0.71, ...]
|
125
|
+
#
|
126
|
+
# # first 9 observations are nil
|
127
|
+
# ts.ema # => [ ... nil, 0.509... , 0.433..., ... ]
|
128
|
+
def ema n = 10, wilder = false
|
129
|
+
smoother = wilder ? 1.0 / n : 2.0 / (n + 1)
|
130
|
+
|
131
|
+
# need to start everything from the first non-nil observation
|
132
|
+
start = self.data.index { |i| i != nil }
|
133
|
+
|
134
|
+
# first n - 1 observations are nil
|
135
|
+
base = [nil] * (start + n - 1)
|
136
|
+
|
137
|
+
# nth observation is just a moving average
|
138
|
+
base << self[start...(start + n)].inject(0.0) { |s, a| a.nil? ? s : s + a } / n
|
139
|
+
|
140
|
+
(start + n).upto size - 1 do |i|
|
141
|
+
base << self[i] * smoother + (1 - smoother) * base.last
|
142
|
+
end
|
143
|
+
|
144
|
+
base.to_time_series
|
145
|
+
end
|
146
|
+
|
147
|
+
# Calculates the MACD (moving average convergence-divergence) of the time
|
148
|
+
# series - this is a comparison of a fast EMA with a slow EMA.
|
149
|
+
def macd fast = 12, slow = 26, signal = 9
|
150
|
+
series = ema(fast) - ema(slow)
|
151
|
+
[series, series.ema(signal)]
|
152
|
+
end
|
153
|
+
|
154
|
+
# Borrow the operations from Vector, but convert to time series
|
155
|
+
def + series
|
156
|
+
super.to_a.to_ts
|
157
|
+
end
|
158
|
+
|
159
|
+
def - series
|
160
|
+
super.to_a.to_ts
|
161
|
+
end
|
162
|
+
|
163
|
+
def to_s
|
164
|
+
sprintf("Time Series(type:%s, n:%d)[%s]", @type.to_s, @data.size,
|
165
|
+
@data.collect{|d| d.nil? ? "nil":d}.join(","))
|
166
|
+
end
|
167
|
+
end
|
168
|
+
end
|
169
|
+
end
|
@@ -0,0 +1,500 @@
|
|
1
|
+
17.66
|
2
|
+
17.65
|
3
|
+
17.68
|
4
|
+
17.66
|
5
|
+
17.68
|
6
|
+
17.67
|
7
|
+
17.68
|
8
|
+
17.68
|
9
|
+
17.67
|
10
|
+
17.67
|
11
|
+
17.68
|
12
|
+
17.71
|
13
|
+
17.74
|
14
|
+
17.72
|
15
|
+
17.73
|
16
|
+
17.76
|
17
|
+
17.74
|
18
|
+
17.69
|
19
|
+
17.69
|
20
|
+
17.67
|
21
|
+
17.66
|
22
|
+
17.67
|
23
|
+
17.69
|
24
|
+
17.69
|
25
|
+
17.68
|
26
|
+
17.65
|
27
|
+
17.65
|
28
|
+
17.64
|
29
|
+
17.63
|
30
|
+
17.64
|
31
|
+
17.67
|
32
|
+
17.68
|
33
|
+
17.7
|
34
|
+
17.68
|
35
|
+
17.69
|
36
|
+
17.69
|
37
|
+
17.72
|
38
|
+
17.71
|
39
|
+
17.71
|
40
|
+
17.71
|
41
|
+
17.69
|
42
|
+
17.69
|
43
|
+
17.71
|
44
|
+
17.72
|
45
|
+
17.71
|
46
|
+
17.68
|
47
|
+
17.68
|
48
|
+
17.68
|
49
|
+
17.69
|
50
|
+
17.68
|
51
|
+
17.68
|
52
|
+
17.69
|
53
|
+
17.67
|
54
|
+
17.69
|
55
|
+
17.71
|
56
|
+
17.7
|
57
|
+
17.7
|
58
|
+
17.71
|
59
|
+
17.73
|
60
|
+
17.74
|
61
|
+
17.74
|
62
|
+
17.74
|
63
|
+
17.76
|
64
|
+
17.77
|
65
|
+
17.55
|
66
|
+
17.55
|
67
|
+
17.5
|
68
|
+
17.46
|
69
|
+
17.49
|
70
|
+
17.54
|
71
|
+
17.51
|
72
|
+
17.54
|
73
|
+
17.57
|
74
|
+
17.54
|
75
|
+
17.52
|
76
|
+
17.53
|
77
|
+
17.56
|
78
|
+
17.55
|
79
|
+
17.55
|
80
|
+
17.54
|
81
|
+
17.55
|
82
|
+
17.55
|
83
|
+
17.55
|
84
|
+
17.54
|
85
|
+
17.52
|
86
|
+
17.53
|
87
|
+
17.51
|
88
|
+
17.52
|
89
|
+
17.5
|
90
|
+
17.5
|
91
|
+
17.5
|
92
|
+
17.49
|
93
|
+
17.46
|
94
|
+
17.47
|
95
|
+
17.48
|
96
|
+
17.45
|
97
|
+
17.41
|
98
|
+
17.39
|
99
|
+
17.38
|
100
|
+
17.43
|
101
|
+
17.44
|
102
|
+
17.43
|
103
|
+
17.43
|
104
|
+
17.46
|
105
|
+
17.46
|
106
|
+
17.47
|
107
|
+
17.47
|
108
|
+
17.45
|
109
|
+
17.48
|
110
|
+
17.49
|
111
|
+
17.5
|
112
|
+
17.49
|
113
|
+
17.48
|
114
|
+
17.49
|
115
|
+
17.47
|
116
|
+
17.47
|
117
|
+
17.44
|
118
|
+
17.44
|
119
|
+
17.43
|
120
|
+
17.45
|
121
|
+
17.42
|
122
|
+
17.43
|
123
|
+
17.43
|
124
|
+
17.44
|
125
|
+
17.44
|
126
|
+
17.43
|
127
|
+
17.41
|
128
|
+
17.41
|
129
|
+
17.38
|
130
|
+
17.38
|
131
|
+
17.37
|
132
|
+
17.37
|
133
|
+
17.37
|
134
|
+
17.3
|
135
|
+
17.28
|
136
|
+
17.27
|
137
|
+
17.19
|
138
|
+
16.41
|
139
|
+
16.44
|
140
|
+
16.48
|
141
|
+
16.53
|
142
|
+
16.51
|
143
|
+
16.57
|
144
|
+
16.54
|
145
|
+
16.59
|
146
|
+
16.64
|
147
|
+
16.6
|
148
|
+
16.65
|
149
|
+
16.69
|
150
|
+
16.69
|
151
|
+
16.68
|
152
|
+
16.64
|
153
|
+
16.65
|
154
|
+
16.66
|
155
|
+
16.64
|
156
|
+
16.61
|
157
|
+
16.65
|
158
|
+
16.67
|
159
|
+
16.66
|
160
|
+
16.65
|
161
|
+
16.61
|
162
|
+
16.59
|
163
|
+
16.57
|
164
|
+
16.55
|
165
|
+
16.55
|
166
|
+
16.57
|
167
|
+
16.54
|
168
|
+
16.6
|
169
|
+
16.62
|
170
|
+
16.6
|
171
|
+
16.59
|
172
|
+
16.61
|
173
|
+
16.66
|
174
|
+
16.69
|
175
|
+
16.67
|
176
|
+
16.65
|
177
|
+
16.66
|
178
|
+
16.65
|
179
|
+
16.65
|
180
|
+
16.68
|
181
|
+
16.68
|
182
|
+
16.67
|
183
|
+
16.64
|
184
|
+
16.73
|
185
|
+
16.76
|
186
|
+
16.75
|
187
|
+
16.79
|
188
|
+
16.8
|
189
|
+
16.77
|
190
|
+
16.74
|
191
|
+
16.76
|
192
|
+
16.83
|
193
|
+
16.84
|
194
|
+
16.82
|
195
|
+
16.89
|
196
|
+
16.93
|
197
|
+
16.94
|
198
|
+
16.9
|
199
|
+
16.92
|
200
|
+
16.88
|
201
|
+
16.85
|
202
|
+
16.87
|
203
|
+
16.8
|
204
|
+
16.79
|
205
|
+
16.85
|
206
|
+
16.85
|
207
|
+
16.8
|
208
|
+
16.82
|
209
|
+
16.85
|
210
|
+
16.9
|
211
|
+
16.86
|
212
|
+
16.79
|
213
|
+
16.75
|
214
|
+
16.78
|
215
|
+
17.06
|
216
|
+
17.05
|
217
|
+
17.04
|
218
|
+
17.02
|
219
|
+
17.01
|
220
|
+
17.02
|
221
|
+
17.05
|
222
|
+
17.07
|
223
|
+
17.08
|
224
|
+
17.09
|
225
|
+
17.1
|
226
|
+
17.11
|
227
|
+
17.09
|
228
|
+
17.1
|
229
|
+
17.1
|
230
|
+
17.12
|
231
|
+
17.17
|
232
|
+
17.16
|
233
|
+
17.17
|
234
|
+
17.18
|
235
|
+
17.18
|
236
|
+
17.18
|
237
|
+
17.17
|
238
|
+
17.15
|
239
|
+
17.14
|
240
|
+
17.13
|
241
|
+
17.14
|
242
|
+
17.13
|
243
|
+
17.12
|
244
|
+
17.12
|
245
|
+
17.09
|
246
|
+
17.09
|
247
|
+
17.11
|
248
|
+
17.06
|
249
|
+
17.07
|
250
|
+
17.06
|
251
|
+
17.07
|
252
|
+
17.06
|
253
|
+
17.09
|
254
|
+
17.05
|
255
|
+
17.04
|
256
|
+
17.04
|
257
|
+
16.99
|
258
|
+
17
|
259
|
+
17.03
|
260
|
+
17
|
261
|
+
16.97
|
262
|
+
16.96
|
263
|
+
16.98
|
264
|
+
16.98
|
265
|
+
16.98
|
266
|
+
17.03
|
267
|
+
17
|
268
|
+
17
|
269
|
+
17
|
270
|
+
17.02
|
271
|
+
17
|
272
|
+
17.02
|
273
|
+
17.01
|
274
|
+
17.02
|
275
|
+
17.03
|
276
|
+
17.03
|
277
|
+
17.01
|
278
|
+
17.03
|
279
|
+
17.03
|
280
|
+
17.03
|
281
|
+
17.01
|
282
|
+
17.03
|
283
|
+
17.05
|
284
|
+
17.05
|
285
|
+
17.08
|
286
|
+
17.04
|
287
|
+
17.01
|
288
|
+
17.03
|
289
|
+
17.02
|
290
|
+
17.03
|
291
|
+
17.04
|
292
|
+
17.05
|
293
|
+
17.37
|
294
|
+
17.35
|
295
|
+
17.34
|
296
|
+
17.32
|
297
|
+
17.29
|
298
|
+
17.29
|
299
|
+
17.22
|
300
|
+
17.26
|
301
|
+
17.3
|
302
|
+
17.34
|
303
|
+
17.33
|
304
|
+
17.39
|
305
|
+
17.4
|
306
|
+
17.39
|
307
|
+
17.48
|
308
|
+
17.5
|
309
|
+
17.47
|
310
|
+
17.43
|
311
|
+
17.4
|
312
|
+
17.42
|
313
|
+
17.46
|
314
|
+
17.48
|
315
|
+
17.48
|
316
|
+
17.46
|
317
|
+
17.46
|
318
|
+
17.45
|
319
|
+
17.43
|
320
|
+
17.44
|
321
|
+
17.48
|
322
|
+
17.43
|
323
|
+
17.45
|
324
|
+
17.47
|
325
|
+
17.46
|
326
|
+
17.46
|
327
|
+
17.48
|
328
|
+
17.48
|
329
|
+
17.48
|
330
|
+
17.46
|
331
|
+
17.5
|
332
|
+
17.55
|
333
|
+
17.58
|
334
|
+
17.57
|
335
|
+
17.56
|
336
|
+
17.59
|
337
|
+
17.61
|
338
|
+
17.62
|
339
|
+
17.63
|
340
|
+
17.62
|
341
|
+
17.61
|
342
|
+
17.61
|
343
|
+
17.62
|
344
|
+
17.64
|
345
|
+
17.65
|
346
|
+
17.61
|
347
|
+
17.62
|
348
|
+
17.66
|
349
|
+
17.65
|
350
|
+
17.64
|
351
|
+
17.63
|
352
|
+
17.64
|
353
|
+
17.64
|
354
|
+
17.64
|
355
|
+
17.63
|
356
|
+
17.61
|
357
|
+
17.61
|
358
|
+
17.62
|
359
|
+
17.63
|
360
|
+
17.64
|
361
|
+
17.65
|
362
|
+
17.66
|
363
|
+
17.68
|
364
|
+
17.69
|
365
|
+
17.69
|
366
|
+
17.69
|
367
|
+
17.66
|
368
|
+
17.69
|
369
|
+
17.69
|
370
|
+
17.62
|
371
|
+
17.68
|
372
|
+
17.64
|
373
|
+
17.65
|
374
|
+
17.61
|
375
|
+
17.52
|
376
|
+
17.56
|
377
|
+
17.55
|
378
|
+
17.55
|
379
|
+
17.48
|
380
|
+
17.45
|
381
|
+
17.46
|
382
|
+
17.46
|
383
|
+
17.44
|
384
|
+
17.47
|
385
|
+
17.5
|
386
|
+
17.49
|
387
|
+
17.5
|
388
|
+
17.53
|
389
|
+
17.53
|
390
|
+
17.54
|
391
|
+
17.51
|
392
|
+
17.51
|
393
|
+
17.53
|
394
|
+
17.53
|
395
|
+
17.53
|
396
|
+
17.55
|
397
|
+
17.55
|
398
|
+
17.54
|
399
|
+
17.56
|
400
|
+
17.59
|
401
|
+
17.57
|
402
|
+
17.58
|
403
|
+
17.58
|
404
|
+
17.57
|
405
|
+
17.59
|
406
|
+
17.57
|
407
|
+
17.55
|
408
|
+
17.51
|
409
|
+
17.51
|
410
|
+
17.52
|
411
|
+
17.52
|
412
|
+
17.53
|
413
|
+
17.55
|
414
|
+
17.59
|
415
|
+
17.61
|
416
|
+
17.61
|
417
|
+
17.6
|
418
|
+
17.6
|
419
|
+
17.62
|
420
|
+
17.65
|
421
|
+
17.62
|
422
|
+
17.6
|
423
|
+
17.6
|
424
|
+
17.62
|
425
|
+
17.61
|
426
|
+
17.62
|
427
|
+
17.63
|
428
|
+
17.64
|
429
|
+
17.65
|
430
|
+
17.61
|
431
|
+
17.62
|
432
|
+
17.64
|
433
|
+
17.63
|
434
|
+
17.62
|
435
|
+
17.6
|
436
|
+
17.57
|
437
|
+
17.57
|
438
|
+
17.6
|
439
|
+
17.59
|
440
|
+
17.6
|
441
|
+
17.61
|
442
|
+
17.61
|
443
|
+
17.63
|
444
|
+
17.63
|
445
|
+
17.59
|
446
|
+
17.58
|
447
|
+
17.76
|
448
|
+
17.79
|
449
|
+
17.76
|
450
|
+
17.73
|
451
|
+
17.74
|
452
|
+
17.73
|
453
|
+
17.67
|
454
|
+
17.66
|
455
|
+
17.66
|
456
|
+
17.64
|
457
|
+
17.63
|
458
|
+
17.62
|
459
|
+
17.61
|
460
|
+
17.6
|
461
|
+
17.61
|
462
|
+
17.61
|
463
|
+
17.6
|
464
|
+
17.6
|
465
|
+
17.64
|
466
|
+
17.65
|
467
|
+
17.65
|
468
|
+
17.63
|
469
|
+
17.61
|
470
|
+
17.6
|
471
|
+
17.63
|
472
|
+
17.63
|
473
|
+
17.62
|
474
|
+
17.63
|
475
|
+
17.64
|
476
|
+
17.62
|
477
|
+
17.63
|
478
|
+
17.65
|
479
|
+
17.64
|
480
|
+
17.6
|
481
|
+
17.59
|
482
|
+
17.59
|
483
|
+
17.58
|
484
|
+
17.58
|
485
|
+
17.6
|
486
|
+
17.6
|
487
|
+
17.6
|
488
|
+
17.6
|
489
|
+
17.6
|
490
|
+
17.58
|
491
|
+
17.59
|
492
|
+
17.6
|
493
|
+
17.6
|
494
|
+
17.6
|
495
|
+
17.59
|
496
|
+
17.59
|
497
|
+
17.58
|
498
|
+
17.58
|
499
|
+
17.65
|
500
|
+
17.65
|