statsample-glm 0.1.1 → 0.2.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 4eabf983d9c1dc6131d2addbcd3368f6b7bb270b
4
- data.tar.gz: f9bdf6d3766d102555e979213f3b8e274af17575
3
+ metadata.gz: 9459e6414261358f1037a1496c0c8f670824e10a
4
+ data.tar.gz: de97053dfcd80402fe8494b2ee6f6d7b9ead84a8
5
5
  SHA512:
6
- metadata.gz: 2587b52da84d7af7b797c7d12ba2e438e0c5a00eb2fb335585557b63385baab382d9b3e4217b8be6663e9ea0d4e2cc75965581bdc556b4d0918eb92fb55e968f
7
- data.tar.gz: 56f100586b3f2268a61cd481c57f1fe68d58ce2221a2ed814b12e81d19b739935654b38df7b1e4829821d2c3f16bf2a12684f7b50277ad7814c62b848064cfea
6
+ metadata.gz: 2c8e01e31480244fd64f50b4b347691a670c1dd4da4dd7a89f702d49e4dec02e4f9022bd569003d19acfa79735dc20db114abfcb7e0f289809519d52c9d2a36b
7
+ data.tar.gz: 320cbe0310e2ba5ae1d61c5433c56b4bd3a469b4dbecaee88b5f34f76d4f7954c4c5dfeddc51889fb4422c6654ee4fd1aae3ab3cc5740f5476162d8ceace21b0
data/.gitignore CHANGED
@@ -49,3 +49,4 @@ pkg
49
49
  #*.rbc
50
50
  # Ignore Gemfile.lock for gems. See http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/
51
51
  Gemfile.lock
52
+ *.gem
@@ -4,3 +4,9 @@ rvm:
4
4
  - 1.9.3
5
5
  - 2.0.0
6
6
  - 2.1.1
7
+ - 2.2.1
8
+
9
+ script: "bundle exec rspec"
10
+
11
+ install:
12
+ - bundle install
@@ -0,0 +1,3 @@
1
+ # 0.2.0
2
+
3
+ * Added dependency on daru (0.1) for data structures and increased statsample dependency to 1.5.
@@ -1,14 +1,15 @@
1
- = statsample-glm
1
+ # statsample-glm
2
2
 
3
- {<img
4
- src="https://secure.travis-ci.org/AnkurGel/statsample-glm.png"
5
- />}[http://travis-ci.org/#!/AnkurGel/statsample-glm]
3
+ [![Build Status](https://travis-ci.org/SciRuby/statsample-glm.svg?branch=master)](https://travis-ci.org/SciRuby/statsample-glm)
6
4
 
7
- Statsample-GLM is an extension of *Generalized Linear Models* to {Statsample}[https://github.com/SciRuby/statsample], a suite of advance statistics in Ruby.
5
+ [![Gem Version](https://badge.fury.io/rb/statsample-glm.svg)](http://badge.fury.io/rb/statsample-glm)
6
+
7
+ Statsample-GLM is an extension of *Generalized Linear Models* to [Statsample](https://github.com/SciRuby/statsample), a suite of advance statistics in Ruby.
8
8
 
9
9
  Requires ruby 1.9.3 or higher.
10
10
 
11
- == Description
11
+ ## Description
12
+
12
13
  Statsample-glm includes the following Generalized Linear Models:
13
14
 
14
15
  * Iteratively Reweighted Least Squares
@@ -21,36 +22,34 @@ Statsample-glm includes the following Generalized Linear Models:
21
22
 
22
23
  Statsample-GLM was created by Ankur Goel as part of Google's Summer of Code 2013. It is the part of {the SciRuby Project}[http://sciruby.com].
23
24
 
24
- Note: This is under active development!
25
+ ## Installation
25
26
 
26
- == Installation
27
+ `gem install statsample-glm`
27
28
 
28
- gem install statsample-glm
29
29
 
30
-
31
- == Usage
30
+ ## Usage
32
31
 
33
32
  To use the library
34
33
 
35
- require 'statsample-glm'
34
+ `require 'statsample-glm'`
36
35
 
37
- You can find an Introduction and tutorial {here}[http://v0dro.github.io/blog/2014/09/21/code-generalized-linear-models-introduction-and-implementation-in-ruby/].
36
+ ### Blogs
38
37
 
38
+ * [Generalized Linear Models: Introduction and implementation in Ruby](http://v0dro.github.io/blog/2014/09/21/code-generalized-linear-models-introduction-and-implementation-in-ruby/).
39
39
 
40
- == Documentation
40
+ ### Case Studies
41
41
 
42
- The API doc is {online}[http://rubygems.org/gems/statsample-glm]. For more code examples see also the spec files in the source tree.
43
-
42
+ * [Logistic Regression Analysis with daru and statsample-glm](http://nbviewer.ipython.org/github/SciRuby/sciruby-notebooks/blob/master/Data%20Analysis/Logistic%20Regression%20with%20daru%20and%20statsample-glm.ipynb)
44
43
 
45
- == Project home page
44
+ ## Documentation
46
45
 
47
- Information on the source tree, documentation, issues and how to contribute, see
46
+ The API doc is {online}[http://rubygems.org/gems/statsample-glm]. For more code examples see also the spec files in the source tree.
48
47
 
49
- http://github.com/sciruby/statsample-glm
48
+ ## Project home page
50
49
 
51
- This Biogem is published at http://biogems.info/index.html#statsample-glm
50
+ http://github.com/sciruby/statsample-glm
52
51
 
53
- == Copyright
52
+ ## Copyright
54
53
 
55
54
  Copyright (c) 2013 Ankur Goel and the Ruby Science Foundation. See LICENSE.txt for further details.
56
55
 
@@ -12,14 +12,14 @@ module Statsample
12
12
  #
13
13
  # * x = model matrix
14
14
  # * y = response vector
15
- # * method = symbol; choice of glm strategy, default = :poisson
16
15
  #
17
16
  # == Usage
18
17
  # require 'statsample-glm'
19
- # x1=Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
20
- # x2=Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
21
- # x=Statsample::Dataset.new({"x1"=>x1,"x2"=>x2})
22
- # obj = Statsample::GLM.compute(x, y, :logit, {algorithm: :irls})
18
+ # x1 = Daru::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252])
19
+ # x2 = Daru::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183])
20
+ # y_pois = Daru::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0])
21
+ # x=Daru::DataFrame.new({:x1 => x1,:x2 => x2, :y => y_pois})
22
+ # obj = Statsample::GLM.compute(x, :y, :poisson, {algorithm: :irls})
23
23
  # #=> Logistic Regression object
24
24
  #
25
25
  # == Returns
@@ -13,8 +13,8 @@ module Statsample
13
13
 
14
14
  set_default_opts_if_any
15
15
 
16
- @data_set = ds.dup(ds.fields - [y.to_s])
17
- @dependent = ds[y.to_s]
16
+ @data_set = ds.dup(ds.vectors.to_a - [y])
17
+ @dependent = ds[y]
18
18
 
19
19
  add_constant_vector if @opts[:constant]
20
20
  add_constant_vector(1) if self.is_a? Statsample::GLM::Normal
@@ -32,7 +32,7 @@ module Statsample
32
32
  def coefficients as_a=:array
33
33
  if as_a == :hash
34
34
  c = {}
35
- @data_set.fields.each_with_index do |f,i|
35
+ @data_set.vectors.to_a.each_with_index do |f,i|
36
36
  c[f.to_sym] = @regression.coefficients[i]
37
37
  end
38
38
  return c
@@ -43,7 +43,7 @@ module Statsample
43
43
  def standard_error as_a=:array
44
44
  if as_a == :hash
45
45
  se = {}
46
- @data_set.fields.each_with_index do |f,i|
46
+ @data_set.vectors.to_a.each_with_index do |f,i|
47
47
  se[f.to_sym] = @regression.standard_error[i]
48
48
  end
49
49
  return se
@@ -82,16 +82,14 @@ module Statsample
82
82
  end
83
83
 
84
84
  def create_vector arr
85
- Statsample::Vector.new(arr, :scale)
85
+ Daru::Vector.new(arr)
86
86
  end
87
87
 
88
88
  def add_constant_vector x=nil
89
- @data_set.add_vector "constant",
90
- (([@opts[:constant]]*@data_set.cases).to_vector(:scale))
89
+ @data_set.add_vector :constant, [@opts[:constant]]*@data_set.nrows
91
90
 
92
91
  unless x.nil?
93
- @data_set.add_vector "constant",
94
- (([1]*@data_set.cases).to_vector(:scale))
92
+ @data_set.add_vector :constant, [1]*@data_set.nrows
95
93
  end
96
94
  end
97
95
  end
@@ -17,14 +17,12 @@ module Statsample
17
17
  private
18
18
 
19
19
  def irls
20
-
21
20
  max_iter = @opts[:iterations]
22
21
  b = Matrix.column_vector Array.new(@data_set.column_size,0.0)
23
22
 
24
23
  1.upto(max_iter) do
25
24
  intermediate = (hessian(@data_set,b).inverse *
26
25
  jacobian(@data_set, b, @dependent))
27
-
28
26
  b_new = b - intermediate
29
27
 
30
28
  if((b_new - b).map(&:abs)).to_a.flatten.inject(:+) < @opts[:epsilon]
@@ -46,7 +44,7 @@ module Statsample
46
44
  end
47
45
 
48
46
  def create_vector arr
49
- Statsample::Vector.new(arr, :scale)
47
+ Daru::Vector.new(arr)
50
48
  end
51
49
  end
52
50
  end
@@ -38,7 +38,7 @@ module Statsample
38
38
  def standard_error
39
39
  out = []
40
40
 
41
- @data_set.fields.each_index do |i|
41
+ @data_set.vectors.to_a.each_index do |i|
42
42
  out << Math::sqrt(@var_cov_matrix[i,i])
43
43
  end
44
44
 
@@ -146,7 +146,7 @@ module Statsample
146
146
  end
147
147
 
148
148
  def create_vector arr
149
- Statsample::Vector.new(arr, :scale)
149
+ Daru::Vector.new(arr)
150
150
  end
151
151
  end
152
152
  end
@@ -1,5 +1,5 @@
1
1
  module Statsample
2
2
  module GLM
3
- VERSION = "0.1.1"
3
+ VERSION = "0.2.0"
4
4
  end
5
5
  end
@@ -3,8 +3,8 @@ require 'spec_helper.rb'
3
3
  describe Statsample::GLM::Logistic do
4
4
  context "IRLS algorithm" do
5
5
  before do
6
- @data_set = Statsample::CSV.read "spec/data/logistic.csv"
7
- @glm = Statsample::GLM.compute @data_set, 'y', :logistic, {constant: 1}
6
+ @data_set = Daru::DataFrame.from_csv "spec/data/logistic.csv"
7
+ @glm = Statsample::GLM.compute @data_set, :y, :logistic, {constant: 1}
8
8
  end
9
9
 
10
10
  it "reports correct coefficients as an array" do
@@ -21,8 +21,8 @@ describe Statsample::GLM::Logistic do
21
21
 
22
22
  context "MLE algorithm" do
23
23
  before do
24
- @data_set = Statsample::CSV.read("spec/data/logistic_mle.csv")
25
- @glm = Statsample::GLM.compute @data_set,'y', :logistic, {constant: 1, algorithm: :mle}
24
+ @data_set = Daru::DataFrame.from_csv("spec/data/logistic_mle.csv")
25
+ @glm = Statsample::GLM.compute @data_set,:y, :logistic, {constant: 1, algorithm: :mle}
26
26
  end
27
27
 
28
28
  it "reports correct regression values as an array" do
@@ -1,12 +1,13 @@
1
1
  describe Statsample::GLM::Normal do
2
- context "MLE algorithm", focus: true do
2
+ context "MLE algorithm" do
3
3
  before do
4
4
  # Below data set taken from http://dl.dropbox.com/u/10246536/Web/RTutorialSeries/dataset_multipleRegression.csv
5
- @ds = Statsample::CSV.read "spec/data/normal.csv"
5
+ @ds = Daru::DataFrame.from_csv "spec/data/normal.csv",
6
+ order: [:ROLL, :UNEM, :HGRAD, :INC]
6
7
  end
7
8
 
8
- it "reports correct values as an array" do
9
- @glm = Statsample::GLM.compute @ds, 'roll', :normal, {algorithm: :mle}
9
+ it "reports correct values as an array", focus: true do
10
+ @glm = Statsample::GLM.compute @ds, :ROLL, :normal, {algorithm: :mle}
10
11
 
11
12
  expect_similar_vector @glm.coefficients, [450.12450365911894,
12
13
  0.4064837278023981, 4.27485769721736,-9153.254462671905]
@@ -1,11 +1,11 @@
1
1
  describe Statsample::GLM::Poisson do
2
2
  context "IRLS algorithm" do
3
3
  before :each do
4
- x1 = Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
5
- x2 = Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
6
- @y_pois = Statsample::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0],:scale)
4
+ x1 = Daru::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252])
5
+ x2 = Daru::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183])
6
+ @y_pois = Daru::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0])
7
7
 
8
- @df = Statsample::Dataset.new({"x1"=>x1,"x2"=>x2, "y" => @y_pois})
8
+ @df = Daru::DataFrame.new({:x1 => x1,:x2 => x2, :y => @y_pois})
9
9
 
10
10
  end
11
11
 
@@ -5,7 +5,7 @@ describe Statsample::GLM::Probit do
5
5
 
6
6
  context "MLE algorithm" do
7
7
  before do
8
- @data_set = Statsample::CSV.read 'spec/data/logistic_mle.csv'
8
+ @data_set = Daru::DataFrame.from_csv 'spec/data/logistic_mle.csv'
9
9
  @glm = Statsample::GLM.compute @data_set, :y, :probit,
10
10
  {algorithm: :mle, constant: 1}
11
11
  end
@@ -17,7 +17,7 @@ require 'statsample-glm'
17
17
  def expect_similar_vector(exp, obs, delta=1e-10,msg=nil)
18
18
  expect(exp.size).to eq(obs.size)
19
19
 
20
- exp.data_with_nils.each_with_index do |v,i|
20
+ exp.to_a.each_with_index do |v,i|
21
21
  expect(v).to be_within(delta).of(obs[i])
22
22
  end
23
23
  end
@@ -3,9 +3,11 @@ $:.unshift File.expand_path("../lib", __FILE__)
3
3
 
4
4
  require 'statsample-glm/version'
5
5
 
6
- DESCRIPTION = <<MSG
6
+ Statsample::GLM::DESCRIPTION = <<MSG
7
7
  Statsample-GLM is an extension to Statsample, an advance statistics suite in
8
- Ruby. This gem includes modules for Regression techniques such as Poisson
8
+ Ruby.
9
+
10
+ This gem includes modules for Regression techniques such as Poisson
9
11
  and Logistic Regression using the IRLS algorithm and Logistic,
10
12
  Probit and Normal Regression using the Newton Raphson algorithm.
11
13
  MSG
@@ -16,7 +18,7 @@ Gem::Specification.new do |spec|
16
18
  spec.authors = ['Ankur Goel', 'Sameer Deshmukh']
17
19
  spec.email = ['sameer.deshmukh93@gmail.com']
18
20
  spec.summary = %q{Generalized Linear Models for Statsample}
19
- spec.description = DESCRIPTION
21
+ spec.description = Statsample::GLM::DESCRIPTION
20
22
  spec.homepage = "http://github.com/sciruby/statsample-glm"
21
23
  spec.license = 'BSD-2'
22
24
 
@@ -25,9 +27,10 @@ Gem::Specification.new do |spec|
25
27
  spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
26
28
  spec.require_paths = ["lib"]
27
29
 
28
- spec.add_runtime_dependency 'statsample', '~> 1.4'
30
+ spec.add_runtime_dependency 'daru', '~> 0.1'
31
+ spec.add_runtime_dependency 'statsample', '~> 2.0'
29
32
 
30
- spec.add_development_dependency 'bundler'
33
+ spec.add_development_dependency 'bundler', '~> 1.10'
31
34
  spec.add_development_dependency 'rake'
32
35
  spec.add_development_dependency 'rspec'
33
36
  spec.add_development_dependency 'awesome_print'
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: statsample-glm
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.1
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Ankur Goel
@@ -9,36 +9,50 @@ authors:
9
9
  autorequire:
10
10
  bindir: bin
11
11
  cert_chain: []
12
- date: 2014-12-09 00:00:00.000000000 Z
12
+ date: 2015-07-02 00:00:00.000000000 Z
13
13
  dependencies:
14
+ - !ruby/object:Gem::Dependency
15
+ name: daru
16
+ requirement: !ruby/object:Gem::Requirement
17
+ requirements:
18
+ - - "~>"
19
+ - !ruby/object:Gem::Version
20
+ version: '0.1'
21
+ type: :runtime
22
+ prerelease: false
23
+ version_requirements: !ruby/object:Gem::Requirement
24
+ requirements:
25
+ - - "~>"
26
+ - !ruby/object:Gem::Version
27
+ version: '0.1'
14
28
  - !ruby/object:Gem::Dependency
15
29
  name: statsample
16
30
  requirement: !ruby/object:Gem::Requirement
17
31
  requirements:
18
32
  - - "~>"
19
33
  - !ruby/object:Gem::Version
20
- version: '1.4'
34
+ version: '2.0'
21
35
  type: :runtime
22
36
  prerelease: false
23
37
  version_requirements: !ruby/object:Gem::Requirement
24
38
  requirements:
25
39
  - - "~>"
26
40
  - !ruby/object:Gem::Version
27
- version: '1.4'
41
+ version: '2.0'
28
42
  - !ruby/object:Gem::Dependency
29
43
  name: bundler
30
44
  requirement: !ruby/object:Gem::Requirement
31
45
  requirements:
32
- - - ">="
46
+ - - "~>"
33
47
  - !ruby/object:Gem::Version
34
- version: '0'
48
+ version: '1.10'
35
49
  type: :development
36
50
  prerelease: false
37
51
  version_requirements: !ruby/object:Gem::Requirement
38
52
  requirements:
39
- - - ">="
53
+ - - "~>"
40
54
  - !ruby/object:Gem::Version
41
- version: '0'
55
+ version: '1.10'
42
56
  - !ruby/object:Gem::Dependency
43
57
  name: rake
44
58
  requirement: !ruby/object:Gem::Requirement
@@ -96,9 +110,9 @@ dependencies:
96
110
  - !ruby/object:Gem::Version
97
111
  version: '3.12'
98
112
  description: "Statsample-GLM is an extension to Statsample, an advance statistics
99
- suite in\nRuby. This gem includes modules for Regression techniques such as Poisson
100
- \nand Logistic Regression using the IRLS algorithm and Logistic, \nProbit and Normal
101
- Regression using the Newton Raphson algorithm.\n"
113
+ suite in\nRuby. \n\nThis gem includes modules for Regression techniques such as
114
+ Poisson \nand Logistic Regression using the IRLS algorithm and Logistic, \nProbit
115
+ and Normal Regression using the Newton Raphson algorithm.\n"
102
116
  email:
103
117
  - sameer.deshmukh93@gmail.com
104
118
  executables: []
@@ -110,8 +124,9 @@ files:
110
124
  - ".rspec"
111
125
  - ".travis.yml"
112
126
  - Gemfile
127
+ - History.md
113
128
  - LICENSE.txt
114
- - README.rdoc
129
+ - README.md
115
130
  - Rakefile
116
131
  - lib/statsample-glm.rb
117
132
  - lib/statsample-glm/glm.rb
@@ -157,7 +172,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
157
172
  version: '0'
158
173
  requirements: []
159
174
  rubyforge_project:
160
- rubygems_version: 2.4.1
175
+ rubygems_version: 2.4.6
161
176
  signing_key:
162
177
  specification_version: 4
163
178
  summary: Generalized Linear Models for Statsample