statsample-glm 0.1.1 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 4eabf983d9c1dc6131d2addbcd3368f6b7bb270b
4
- data.tar.gz: f9bdf6d3766d102555e979213f3b8e274af17575
3
+ metadata.gz: 9459e6414261358f1037a1496c0c8f670824e10a
4
+ data.tar.gz: de97053dfcd80402fe8494b2ee6f6d7b9ead84a8
5
5
  SHA512:
6
- metadata.gz: 2587b52da84d7af7b797c7d12ba2e438e0c5a00eb2fb335585557b63385baab382d9b3e4217b8be6663e9ea0d4e2cc75965581bdc556b4d0918eb92fb55e968f
7
- data.tar.gz: 56f100586b3f2268a61cd481c57f1fe68d58ce2221a2ed814b12e81d19b739935654b38df7b1e4829821d2c3f16bf2a12684f7b50277ad7814c62b848064cfea
6
+ metadata.gz: 2c8e01e31480244fd64f50b4b347691a670c1dd4da4dd7a89f702d49e4dec02e4f9022bd569003d19acfa79735dc20db114abfcb7e0f289809519d52c9d2a36b
7
+ data.tar.gz: 320cbe0310e2ba5ae1d61c5433c56b4bd3a469b4dbecaee88b5f34f76d4f7954c4c5dfeddc51889fb4422c6654ee4fd1aae3ab3cc5740f5476162d8ceace21b0
data/.gitignore CHANGED
@@ -49,3 +49,4 @@ pkg
49
49
  #*.rbc
50
50
  # Ignore Gemfile.lock for gems. See http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/
51
51
  Gemfile.lock
52
+ *.gem
@@ -4,3 +4,9 @@ rvm:
4
4
  - 1.9.3
5
5
  - 2.0.0
6
6
  - 2.1.1
7
+ - 2.2.1
8
+
9
+ script: "bundle exec rspec"
10
+
11
+ install:
12
+ - bundle install
@@ -0,0 +1,3 @@
1
+ # 0.2.0
2
+
3
+ * Added dependency on daru (0.1) for data structures and increased statsample dependency to 1.5.
@@ -1,14 +1,15 @@
1
- = statsample-glm
1
+ # statsample-glm
2
2
 
3
- {<img
4
- src="https://secure.travis-ci.org/AnkurGel/statsample-glm.png"
5
- />}[http://travis-ci.org/#!/AnkurGel/statsample-glm]
3
+ [![Build Status](https://travis-ci.org/SciRuby/statsample-glm.svg?branch=master)](https://travis-ci.org/SciRuby/statsample-glm)
6
4
 
7
- Statsample-GLM is an extension of *Generalized Linear Models* to {Statsample}[https://github.com/SciRuby/statsample], a suite of advance statistics in Ruby.
5
+ [![Gem Version](https://badge.fury.io/rb/statsample-glm.svg)](http://badge.fury.io/rb/statsample-glm)
6
+
7
+ Statsample-GLM is an extension of *Generalized Linear Models* to [Statsample](https://github.com/SciRuby/statsample), a suite of advance statistics in Ruby.
8
8
 
9
9
  Requires ruby 1.9.3 or higher.
10
10
 
11
- == Description
11
+ ## Description
12
+
12
13
  Statsample-glm includes the following Generalized Linear Models:
13
14
 
14
15
  * Iteratively Reweighted Least Squares
@@ -21,36 +22,34 @@ Statsample-glm includes the following Generalized Linear Models:
21
22
 
22
23
  Statsample-GLM was created by Ankur Goel as part of Google's Summer of Code 2013. It is the part of {the SciRuby Project}[http://sciruby.com].
23
24
 
24
- Note: This is under active development!
25
+ ## Installation
25
26
 
26
- == Installation
27
+ `gem install statsample-glm`
27
28
 
28
- gem install statsample-glm
29
29
 
30
-
31
- == Usage
30
+ ## Usage
32
31
 
33
32
  To use the library
34
33
 
35
- require 'statsample-glm'
34
+ `require 'statsample-glm'`
36
35
 
37
- You can find an Introduction and tutorial {here}[http://v0dro.github.io/blog/2014/09/21/code-generalized-linear-models-introduction-and-implementation-in-ruby/].
36
+ ### Blogs
38
37
 
38
+ * [Generalized Linear Models: Introduction and implementation in Ruby](http://v0dro.github.io/blog/2014/09/21/code-generalized-linear-models-introduction-and-implementation-in-ruby/).
39
39
 
40
- == Documentation
40
+ ### Case Studies
41
41
 
42
- The API doc is {online}[http://rubygems.org/gems/statsample-glm]. For more code examples see also the spec files in the source tree.
43
-
42
+ * [Logistic Regression Analysis with daru and statsample-glm](http://nbviewer.ipython.org/github/SciRuby/sciruby-notebooks/blob/master/Data%20Analysis/Logistic%20Regression%20with%20daru%20and%20statsample-glm.ipynb)
44
43
 
45
- == Project home page
44
+ ## Documentation
46
45
 
47
- Information on the source tree, documentation, issues and how to contribute, see
46
+ The API doc is {online}[http://rubygems.org/gems/statsample-glm]. For more code examples see also the spec files in the source tree.
48
47
 
49
- http://github.com/sciruby/statsample-glm
48
+ ## Project home page
50
49
 
51
- This Biogem is published at http://biogems.info/index.html#statsample-glm
50
+ http://github.com/sciruby/statsample-glm
52
51
 
53
- == Copyright
52
+ ## Copyright
54
53
 
55
54
  Copyright (c) 2013 Ankur Goel and the Ruby Science Foundation. See LICENSE.txt for further details.
56
55
 
@@ -12,14 +12,14 @@ module Statsample
12
12
  #
13
13
  # * x = model matrix
14
14
  # * y = response vector
15
- # * method = symbol; choice of glm strategy, default = :poisson
16
15
  #
17
16
  # == Usage
18
17
  # require 'statsample-glm'
19
- # x1=Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
20
- # x2=Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
21
- # x=Statsample::Dataset.new({"x1"=>x1,"x2"=>x2})
22
- # obj = Statsample::GLM.compute(x, y, :logit, {algorithm: :irls})
18
+ # x1 = Daru::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252])
19
+ # x2 = Daru::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183])
20
+ # y_pois = Daru::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0])
21
+ # x=Daru::DataFrame.new({:x1 => x1,:x2 => x2, :y => y_pois})
22
+ # obj = Statsample::GLM.compute(x, :y, :poisson, {algorithm: :irls})
23
23
  # #=> Logistic Regression object
24
24
  #
25
25
  # == Returns
@@ -13,8 +13,8 @@ module Statsample
13
13
 
14
14
  set_default_opts_if_any
15
15
 
16
- @data_set = ds.dup(ds.fields - [y.to_s])
17
- @dependent = ds[y.to_s]
16
+ @data_set = ds.dup(ds.vectors.to_a - [y])
17
+ @dependent = ds[y]
18
18
 
19
19
  add_constant_vector if @opts[:constant]
20
20
  add_constant_vector(1) if self.is_a? Statsample::GLM::Normal
@@ -32,7 +32,7 @@ module Statsample
32
32
  def coefficients as_a=:array
33
33
  if as_a == :hash
34
34
  c = {}
35
- @data_set.fields.each_with_index do |f,i|
35
+ @data_set.vectors.to_a.each_with_index do |f,i|
36
36
  c[f.to_sym] = @regression.coefficients[i]
37
37
  end
38
38
  return c
@@ -43,7 +43,7 @@ module Statsample
43
43
  def standard_error as_a=:array
44
44
  if as_a == :hash
45
45
  se = {}
46
- @data_set.fields.each_with_index do |f,i|
46
+ @data_set.vectors.to_a.each_with_index do |f,i|
47
47
  se[f.to_sym] = @regression.standard_error[i]
48
48
  end
49
49
  return se
@@ -82,16 +82,14 @@ module Statsample
82
82
  end
83
83
 
84
84
  def create_vector arr
85
- Statsample::Vector.new(arr, :scale)
85
+ Daru::Vector.new(arr)
86
86
  end
87
87
 
88
88
  def add_constant_vector x=nil
89
- @data_set.add_vector "constant",
90
- (([@opts[:constant]]*@data_set.cases).to_vector(:scale))
89
+ @data_set.add_vector :constant, [@opts[:constant]]*@data_set.nrows
91
90
 
92
91
  unless x.nil?
93
- @data_set.add_vector "constant",
94
- (([1]*@data_set.cases).to_vector(:scale))
92
+ @data_set.add_vector :constant, [1]*@data_set.nrows
95
93
  end
96
94
  end
97
95
  end
@@ -17,14 +17,12 @@ module Statsample
17
17
  private
18
18
 
19
19
  def irls
20
-
21
20
  max_iter = @opts[:iterations]
22
21
  b = Matrix.column_vector Array.new(@data_set.column_size,0.0)
23
22
 
24
23
  1.upto(max_iter) do
25
24
  intermediate = (hessian(@data_set,b).inverse *
26
25
  jacobian(@data_set, b, @dependent))
27
-
28
26
  b_new = b - intermediate
29
27
 
30
28
  if((b_new - b).map(&:abs)).to_a.flatten.inject(:+) < @opts[:epsilon]
@@ -46,7 +44,7 @@ module Statsample
46
44
  end
47
45
 
48
46
  def create_vector arr
49
- Statsample::Vector.new(arr, :scale)
47
+ Daru::Vector.new(arr)
50
48
  end
51
49
  end
52
50
  end
@@ -38,7 +38,7 @@ module Statsample
38
38
  def standard_error
39
39
  out = []
40
40
 
41
- @data_set.fields.each_index do |i|
41
+ @data_set.vectors.to_a.each_index do |i|
42
42
  out << Math::sqrt(@var_cov_matrix[i,i])
43
43
  end
44
44
 
@@ -146,7 +146,7 @@ module Statsample
146
146
  end
147
147
 
148
148
  def create_vector arr
149
- Statsample::Vector.new(arr, :scale)
149
+ Daru::Vector.new(arr)
150
150
  end
151
151
  end
152
152
  end
@@ -1,5 +1,5 @@
1
1
  module Statsample
2
2
  module GLM
3
- VERSION = "0.1.1"
3
+ VERSION = "0.2.0"
4
4
  end
5
5
  end
@@ -3,8 +3,8 @@ require 'spec_helper.rb'
3
3
  describe Statsample::GLM::Logistic do
4
4
  context "IRLS algorithm" do
5
5
  before do
6
- @data_set = Statsample::CSV.read "spec/data/logistic.csv"
7
- @glm = Statsample::GLM.compute @data_set, 'y', :logistic, {constant: 1}
6
+ @data_set = Daru::DataFrame.from_csv "spec/data/logistic.csv"
7
+ @glm = Statsample::GLM.compute @data_set, :y, :logistic, {constant: 1}
8
8
  end
9
9
 
10
10
  it "reports correct coefficients as an array" do
@@ -21,8 +21,8 @@ describe Statsample::GLM::Logistic do
21
21
 
22
22
  context "MLE algorithm" do
23
23
  before do
24
- @data_set = Statsample::CSV.read("spec/data/logistic_mle.csv")
25
- @glm = Statsample::GLM.compute @data_set,'y', :logistic, {constant: 1, algorithm: :mle}
24
+ @data_set = Daru::DataFrame.from_csv("spec/data/logistic_mle.csv")
25
+ @glm = Statsample::GLM.compute @data_set,:y, :logistic, {constant: 1, algorithm: :mle}
26
26
  end
27
27
 
28
28
  it "reports correct regression values as an array" do
@@ -1,12 +1,13 @@
1
1
  describe Statsample::GLM::Normal do
2
- context "MLE algorithm", focus: true do
2
+ context "MLE algorithm" do
3
3
  before do
4
4
  # Below data set taken from http://dl.dropbox.com/u/10246536/Web/RTutorialSeries/dataset_multipleRegression.csv
5
- @ds = Statsample::CSV.read "spec/data/normal.csv"
5
+ @ds = Daru::DataFrame.from_csv "spec/data/normal.csv",
6
+ order: [:ROLL, :UNEM, :HGRAD, :INC]
6
7
  end
7
8
 
8
- it "reports correct values as an array" do
9
- @glm = Statsample::GLM.compute @ds, 'roll', :normal, {algorithm: :mle}
9
+ it "reports correct values as an array", focus: true do
10
+ @glm = Statsample::GLM.compute @ds, :ROLL, :normal, {algorithm: :mle}
10
11
 
11
12
  expect_similar_vector @glm.coefficients, [450.12450365911894,
12
13
  0.4064837278023981, 4.27485769721736,-9153.254462671905]
@@ -1,11 +1,11 @@
1
1
  describe Statsample::GLM::Poisson do
2
2
  context "IRLS algorithm" do
3
3
  before :each do
4
- x1 = Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
5
- x2 = Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
6
- @y_pois = Statsample::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0],:scale)
4
+ x1 = Daru::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252])
5
+ x2 = Daru::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183])
6
+ @y_pois = Daru::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0])
7
7
 
8
- @df = Statsample::Dataset.new({"x1"=>x1,"x2"=>x2, "y" => @y_pois})
8
+ @df = Daru::DataFrame.new({:x1 => x1,:x2 => x2, :y => @y_pois})
9
9
 
10
10
  end
11
11
 
@@ -5,7 +5,7 @@ describe Statsample::GLM::Probit do
5
5
 
6
6
  context "MLE algorithm" do
7
7
  before do
8
- @data_set = Statsample::CSV.read 'spec/data/logistic_mle.csv'
8
+ @data_set = Daru::DataFrame.from_csv 'spec/data/logistic_mle.csv'
9
9
  @glm = Statsample::GLM.compute @data_set, :y, :probit,
10
10
  {algorithm: :mle, constant: 1}
11
11
  end
@@ -17,7 +17,7 @@ require 'statsample-glm'
17
17
  def expect_similar_vector(exp, obs, delta=1e-10,msg=nil)
18
18
  expect(exp.size).to eq(obs.size)
19
19
 
20
- exp.data_with_nils.each_with_index do |v,i|
20
+ exp.to_a.each_with_index do |v,i|
21
21
  expect(v).to be_within(delta).of(obs[i])
22
22
  end
23
23
  end
@@ -3,9 +3,11 @@ $:.unshift File.expand_path("../lib", __FILE__)
3
3
 
4
4
  require 'statsample-glm/version'
5
5
 
6
- DESCRIPTION = <<MSG
6
+ Statsample::GLM::DESCRIPTION = <<MSG
7
7
  Statsample-GLM is an extension to Statsample, an advance statistics suite in
8
- Ruby. This gem includes modules for Regression techniques such as Poisson
8
+ Ruby.
9
+
10
+ This gem includes modules for Regression techniques such as Poisson
9
11
  and Logistic Regression using the IRLS algorithm and Logistic,
10
12
  Probit and Normal Regression using the Newton Raphson algorithm.
11
13
  MSG
@@ -16,7 +18,7 @@ Gem::Specification.new do |spec|
16
18
  spec.authors = ['Ankur Goel', 'Sameer Deshmukh']
17
19
  spec.email = ['sameer.deshmukh93@gmail.com']
18
20
  spec.summary = %q{Generalized Linear Models for Statsample}
19
- spec.description = DESCRIPTION
21
+ spec.description = Statsample::GLM::DESCRIPTION
20
22
  spec.homepage = "http://github.com/sciruby/statsample-glm"
21
23
  spec.license = 'BSD-2'
22
24
 
@@ -25,9 +27,10 @@ Gem::Specification.new do |spec|
25
27
  spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
26
28
  spec.require_paths = ["lib"]
27
29
 
28
- spec.add_runtime_dependency 'statsample', '~> 1.4'
30
+ spec.add_runtime_dependency 'daru', '~> 0.1'
31
+ spec.add_runtime_dependency 'statsample', '~> 2.0'
29
32
 
30
- spec.add_development_dependency 'bundler'
33
+ spec.add_development_dependency 'bundler', '~> 1.10'
31
34
  spec.add_development_dependency 'rake'
32
35
  spec.add_development_dependency 'rspec'
33
36
  spec.add_development_dependency 'awesome_print'
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: statsample-glm
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.1
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Ankur Goel
@@ -9,36 +9,50 @@ authors:
9
9
  autorequire:
10
10
  bindir: bin
11
11
  cert_chain: []
12
- date: 2014-12-09 00:00:00.000000000 Z
12
+ date: 2015-07-02 00:00:00.000000000 Z
13
13
  dependencies:
14
+ - !ruby/object:Gem::Dependency
15
+ name: daru
16
+ requirement: !ruby/object:Gem::Requirement
17
+ requirements:
18
+ - - "~>"
19
+ - !ruby/object:Gem::Version
20
+ version: '0.1'
21
+ type: :runtime
22
+ prerelease: false
23
+ version_requirements: !ruby/object:Gem::Requirement
24
+ requirements:
25
+ - - "~>"
26
+ - !ruby/object:Gem::Version
27
+ version: '0.1'
14
28
  - !ruby/object:Gem::Dependency
15
29
  name: statsample
16
30
  requirement: !ruby/object:Gem::Requirement
17
31
  requirements:
18
32
  - - "~>"
19
33
  - !ruby/object:Gem::Version
20
- version: '1.4'
34
+ version: '2.0'
21
35
  type: :runtime
22
36
  prerelease: false
23
37
  version_requirements: !ruby/object:Gem::Requirement
24
38
  requirements:
25
39
  - - "~>"
26
40
  - !ruby/object:Gem::Version
27
- version: '1.4'
41
+ version: '2.0'
28
42
  - !ruby/object:Gem::Dependency
29
43
  name: bundler
30
44
  requirement: !ruby/object:Gem::Requirement
31
45
  requirements:
32
- - - ">="
46
+ - - "~>"
33
47
  - !ruby/object:Gem::Version
34
- version: '0'
48
+ version: '1.10'
35
49
  type: :development
36
50
  prerelease: false
37
51
  version_requirements: !ruby/object:Gem::Requirement
38
52
  requirements:
39
- - - ">="
53
+ - - "~>"
40
54
  - !ruby/object:Gem::Version
41
- version: '0'
55
+ version: '1.10'
42
56
  - !ruby/object:Gem::Dependency
43
57
  name: rake
44
58
  requirement: !ruby/object:Gem::Requirement
@@ -96,9 +110,9 @@ dependencies:
96
110
  - !ruby/object:Gem::Version
97
111
  version: '3.12'
98
112
  description: "Statsample-GLM is an extension to Statsample, an advance statistics
99
- suite in\nRuby. This gem includes modules for Regression techniques such as Poisson
100
- \nand Logistic Regression using the IRLS algorithm and Logistic, \nProbit and Normal
101
- Regression using the Newton Raphson algorithm.\n"
113
+ suite in\nRuby. \n\nThis gem includes modules for Regression techniques such as
114
+ Poisson \nand Logistic Regression using the IRLS algorithm and Logistic, \nProbit
115
+ and Normal Regression using the Newton Raphson algorithm.\n"
102
116
  email:
103
117
  - sameer.deshmukh93@gmail.com
104
118
  executables: []
@@ -110,8 +124,9 @@ files:
110
124
  - ".rspec"
111
125
  - ".travis.yml"
112
126
  - Gemfile
127
+ - History.md
113
128
  - LICENSE.txt
114
- - README.rdoc
129
+ - README.md
115
130
  - Rakefile
116
131
  - lib/statsample-glm.rb
117
132
  - lib/statsample-glm/glm.rb
@@ -157,7 +172,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
157
172
  version: '0'
158
173
  requirements: []
159
174
  rubyforge_project:
160
- rubygems_version: 2.4.1
175
+ rubygems_version: 2.4.6
161
176
  signing_key:
162
177
  specification_version: 4
163
178
  summary: Generalized Linear Models for Statsample