statsample-bivariate-extension 0.13.0
Sign up to get free protection for your applications and to get access to all the features.
- data.tar.gz.sig +0 -0
- data/History.txt +4 -0
- data/Manifest.txt +7 -0
- data/README.txt +50 -0
- data/Rakefile +18 -0
- data/lib/statsample/bivariate/polychoric.rb +886 -0
- data/lib/statsample/bivariate/tetrachoric.rb +450 -0
- data/spec/spec_helper.rb +9 -0
- metadata +137 -0
- metadata.gz.sig +1 -0
data.tar.gz.sig
ADDED
Binary file
|
data/History.txt
ADDED
data/Manifest.txt
ADDED
data/README.txt
ADDED
@@ -0,0 +1,50 @@
|
|
1
|
+
= statsample-bivariate-extension
|
2
|
+
|
3
|
+
* http://ruby-statsample.rubyforge.org/
|
4
|
+
|
5
|
+
== DESCRIPTION:
|
6
|
+
|
7
|
+
Provides advanced bivariate statistics:
|
8
|
+
* Tetrachoric correlation
|
9
|
+
* Polychoric correlation
|
10
|
+
|
11
|
+
== FEATURES/PROBLEMS:
|
12
|
+
|
13
|
+
* Statsample::Bivariate::Polychoric class provides polychoric correlation
|
14
|
+
* Statsample::Bivariate::Tetracoric class provides tetrachoric correlation
|
15
|
+
|
16
|
+
|
17
|
+
== SYNOPSIS:
|
18
|
+
|
19
|
+
=== Tetrachoric correlation
|
20
|
+
|
21
|
+
require 'statsample'
|
22
|
+
a=40
|
23
|
+
b=10
|
24
|
+
c=20
|
25
|
+
d=30
|
26
|
+
tetra=Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
27
|
+
puts tetra.summary
|
28
|
+
|
29
|
+
=== Polychoric correlation
|
30
|
+
|
31
|
+
require 'statsample'
|
32
|
+
ct=Matrix[[58,52,1],[26,58,3],[8,12,9]]
|
33
|
+
|
34
|
+
poly=Statsample::Bivariate::Polychoric.new(ct)
|
35
|
+
puts poly.summary
|
36
|
+
|
37
|
+
|
38
|
+
== REQUIREMENTS:
|
39
|
+
|
40
|
+
* Statsample
|
41
|
+
|
42
|
+
== INSTALL:
|
43
|
+
|
44
|
+
This gem is a statsample dependency. If you want to install it separatly
|
45
|
+
|
46
|
+
* sudo gem install statsample-bivariate-extension
|
47
|
+
|
48
|
+
== LICENSE:
|
49
|
+
|
50
|
+
GPL-2
|
data/Rakefile
ADDED
@@ -0,0 +1,18 @@
|
|
1
|
+
#!/usr/bin/ruby
|
2
|
+
# -*- ruby -*-
|
3
|
+
|
4
|
+
require 'rubygems'
|
5
|
+
require 'hoe'
|
6
|
+
|
7
|
+
$:.unshift(File.dirname(__FILE__)+"/lib")
|
8
|
+
|
9
|
+
require 'statsample/bivariate/extension_version.rb'
|
10
|
+
Hoe.spec 'statsample-bivariate-extension' do
|
11
|
+
self.rubyforge_name = 'ruby-statsample'
|
12
|
+
self.version=Statsample::Bivariate::EXTENSION_VERSION
|
13
|
+
self.developer('Claudio Bustos', 'clbustos_at_gmail.com')
|
14
|
+
self.extra_deps << ["statsample","~>0.13.0"]
|
15
|
+
|
16
|
+
end
|
17
|
+
|
18
|
+
# vim: syntax=ruby
|
@@ -0,0 +1,886 @@
|
|
1
|
+
require 'minimization'
|
2
|
+
module Statsample
|
3
|
+
module Bivariate
|
4
|
+
# Calculate Polychoric correlation for two vectors.
|
5
|
+
def self.polychoric(v1,v2)
|
6
|
+
pc=Polychoric.new_with_vectors(v1,v2)
|
7
|
+
pc.r
|
8
|
+
end
|
9
|
+
|
10
|
+
# Polychoric correlation matrix.
|
11
|
+
# Order of rows and columns depends on Dataset#fields order
|
12
|
+
def self.polychoric_correlation_matrix(ds)
|
13
|
+
cache={}
|
14
|
+
matrix=ds.collect_matrix do |row,col|
|
15
|
+
if row==col
|
16
|
+
1.0
|
17
|
+
else
|
18
|
+
begin
|
19
|
+
if cache[[col,row]].nil?
|
20
|
+
poly=polychoric(ds[row],ds[col])
|
21
|
+
cache[[row,col]]=poly
|
22
|
+
poly
|
23
|
+
else
|
24
|
+
cache[[col,row]]
|
25
|
+
end
|
26
|
+
rescue RuntimeError
|
27
|
+
nil
|
28
|
+
end
|
29
|
+
end
|
30
|
+
end
|
31
|
+
matrix.extend CovariateMatrix
|
32
|
+
matrix.fields=ds.fields
|
33
|
+
matrix
|
34
|
+
end
|
35
|
+
|
36
|
+
# = Polychoric correlation.
|
37
|
+
#
|
38
|
+
# The <em>polychoric</em> correlation is a measure of
|
39
|
+
# bivariate association arising when both observed variates
|
40
|
+
# are ordered, categorical variables that result from polychotomizing
|
41
|
+
# the two undelying continuous variables (Drasgow, 2006)
|
42
|
+
#
|
43
|
+
# According to Drasgow(2006), there are tree methods to estimate
|
44
|
+
# the polychoric correlation:
|
45
|
+
#
|
46
|
+
# 1. Maximum Likehood Estimator
|
47
|
+
# 2. Two-step estimator and
|
48
|
+
# 3. Polychoric series estimate.
|
49
|
+
#
|
50
|
+
# By default, two-step estimation are used. You can select
|
51
|
+
# the estimation method with method attribute. Joint estimate and polychoric series requires gsl library and rb-gsl.
|
52
|
+
#
|
53
|
+
# == Use
|
54
|
+
#
|
55
|
+
# You should enter a Matrix with ordered data. For example:
|
56
|
+
# -------------------
|
57
|
+
# | y=0 | y=1 | y=2 |
|
58
|
+
# -------------------
|
59
|
+
# x = 0 | 1 | 10 | 20 |
|
60
|
+
# -------------------
|
61
|
+
# x = 1 | 20 | 20 | 50 |
|
62
|
+
# -------------------
|
63
|
+
#
|
64
|
+
# The code will be
|
65
|
+
#
|
66
|
+
# matrix=Matrix[[1,10,20],[20,20,50]]
|
67
|
+
# poly=Statsample::Bivariate::Polychoric.new(matrix, :method=>:joint)
|
68
|
+
# puts poly.r
|
69
|
+
#
|
70
|
+
# See extensive documentation on Uebersax(2002) and Drasgow(2006)
|
71
|
+
#
|
72
|
+
# == References
|
73
|
+
#
|
74
|
+
# * Uebersax, J.S. (2006). The tetrachoric and polychoric correlation coefficients. Statistical Methods for Rater Agreement web site. 2006. Available at: http://john-uebersax.com/stat/tetra.htm . Accessed February, 11, 2010
|
75
|
+
# * Drasgow F. (2006). Polychoric and polyserial correlations. In Kotz L, Johnson NL (Eds.), Encyclopedia of statistical sciences. Vol. 7 (pp. 69-74). New York: Wiley.
|
76
|
+
|
77
|
+
class Polychoric
|
78
|
+
include Summarizable
|
79
|
+
class Processor
|
80
|
+
attr_reader :alpha, :beta, :rho
|
81
|
+
def initialize(alpha,beta,rho)
|
82
|
+
@alpha=alpha
|
83
|
+
@beta=beta
|
84
|
+
@nr=@alpha.size+1
|
85
|
+
@nc=@beta.size+1
|
86
|
+
@rho=rho
|
87
|
+
@pd=nil
|
88
|
+
end
|
89
|
+
def bipdf(i,j)
|
90
|
+
Distribution::NormalBivariate.pdf(a(i), b(j), rho)
|
91
|
+
end
|
92
|
+
def a(i)
|
93
|
+
i < 0 ? -100 : (i==@nr-1 ? 100 : alpha[i])
|
94
|
+
end
|
95
|
+
def b(j)
|
96
|
+
j < 0 ? -100 : (j==@nc-1 ? 100 : beta[j])
|
97
|
+
end
|
98
|
+
# Equation(10) from Olsson(1979)
|
99
|
+
def fd_loglike_cell_a(i,j,k)
|
100
|
+
if k==i
|
101
|
+
Distribution::NormalBivariate.pd_cdf_x(a(k),b(j), rho) - Distribution::NormalBivariate.pd_cdf_x(a(k),b(j-1),rho)
|
102
|
+
elsif k==(i-1)
|
103
|
+
-Distribution::NormalBivariate.pd_cdf_x(a(k),b(j),rho) + Distribution::NormalBivariate.pd_cdf_x(a(k),b(j-1),rho)
|
104
|
+
else
|
105
|
+
0
|
106
|
+
end
|
107
|
+
|
108
|
+
end
|
109
|
+
# phi_ij for each i and j
|
110
|
+
# Uses equation(4) from Olsson(1979)
|
111
|
+
def pd
|
112
|
+
if @pd.nil?
|
113
|
+
@pd=@nr.times.collect{ [0] * @nc}
|
114
|
+
pc=@nr.times.collect{ [0] * @nc}
|
115
|
+
@nr.times do |i|
|
116
|
+
@nc.times do |j|
|
117
|
+
|
118
|
+
if i==@nr-1 and j==@nc-1
|
119
|
+
@pd[i][j]=1.0
|
120
|
+
else
|
121
|
+
a=(i==@nr-1) ? 100: alpha[i]
|
122
|
+
b=(j==@nc-1) ? 100: beta[j]
|
123
|
+
#puts "a:#{a} b:#{b}"
|
124
|
+
@pd[i][j]=Distribution::NormalBivariate.cdf(a, b, rho)
|
125
|
+
end
|
126
|
+
pc[i][j] = @pd[i][j]
|
127
|
+
@pd[i][j] = @pd[i][j] - pc[i-1][j] if i>0
|
128
|
+
@pd[i][j] = @pd[i][j] - pc[i][j-1] if j>0
|
129
|
+
@pd[i][j] = @pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
130
|
+
end
|
131
|
+
end
|
132
|
+
end
|
133
|
+
@pd
|
134
|
+
end
|
135
|
+
end
|
136
|
+
|
137
|
+
include DirtyMemoize
|
138
|
+
# Name of the analysis
|
139
|
+
attr_accessor :name
|
140
|
+
# Max number of iterations used on iterative methods. Default to MAX_ITERATIONS
|
141
|
+
attr_accessor :max_iterations
|
142
|
+
# Debug algorithm (See iterations, for example)
|
143
|
+
attr_accessor :debug
|
144
|
+
# Minimizer type for two step. Default "brent"
|
145
|
+
# See http://rb-gsl.rubyforge.org/min.html for reference.
|
146
|
+
attr_accessor :minimizer_type_two_step
|
147
|
+
|
148
|
+
# Minimizer type for joint estimate. Default "nmsimplex"
|
149
|
+
# See http://rb-gsl.rubyforge.org/min.html for reference.
|
150
|
+
attr_accessor :minimizer_type_joint
|
151
|
+
|
152
|
+
|
153
|
+
# Method of calculation of polychoric series.
|
154
|
+
# <tt>:two_step</tt> used by default.
|
155
|
+
#
|
156
|
+
# :two_step:: two-step ML, based on code by Gegenfurtner(1992).
|
157
|
+
# :polychoric_series:: polychoric series estimate, using
|
158
|
+
# algorithm AS87 by Martinson and Hamdan (1975).
|
159
|
+
# :joint:: one-step ML, based on R package 'polycor'
|
160
|
+
# by J.Fox.
|
161
|
+
attr_accessor :method
|
162
|
+
# Absolute error for iteration.
|
163
|
+
attr_accessor :epsilon
|
164
|
+
|
165
|
+
# Number of iterations
|
166
|
+
attr_reader :iteration
|
167
|
+
|
168
|
+
# Log of algorithm
|
169
|
+
attr_reader :log
|
170
|
+
|
171
|
+
|
172
|
+
attr_reader :loglike_model
|
173
|
+
|
174
|
+
METHOD=:two_step
|
175
|
+
MAX_ITERATIONS=300
|
176
|
+
EPSILON=1e-6
|
177
|
+
MINIMIZER_TYPE_TWO_STEP="brent"
|
178
|
+
MINIMIZER_TYPE_JOINT="nmsimplex"
|
179
|
+
def self.new_with_vectors(v1,v2)
|
180
|
+
Polychoric.new(Crosstab.new(v1,v2).to_matrix)
|
181
|
+
end
|
182
|
+
# Params:
|
183
|
+
# * matrix: Contingence table
|
184
|
+
# * opts: Any attribute
|
185
|
+
|
186
|
+
def initialize(matrix, opts=Hash.new)
|
187
|
+
@matrix=matrix
|
188
|
+
@n=matrix.column_size
|
189
|
+
@m=matrix.row_size
|
190
|
+
raise "row size <1" if @m<=1
|
191
|
+
raise "column size <1" if @n<=1
|
192
|
+
|
193
|
+
@method=METHOD
|
194
|
+
@name=_("Polychoric correlation")
|
195
|
+
@max_iterations=MAX_ITERATIONS
|
196
|
+
@epsilon=EPSILON
|
197
|
+
@minimizer_type_two_step=MINIMIZER_TYPE_TWO_STEP
|
198
|
+
@minimizer_type_joint=MINIMIZER_TYPE_JOINT
|
199
|
+
@debug=false
|
200
|
+
@iteration=nil
|
201
|
+
opts.each{|k,v|
|
202
|
+
self.send("#{k}=",v) if self.respond_to? k
|
203
|
+
}
|
204
|
+
@r=nil
|
205
|
+
@pd=nil
|
206
|
+
compute_basic_parameters
|
207
|
+
end
|
208
|
+
# Returns the polychoric correlation
|
209
|
+
attr_reader :r
|
210
|
+
# Returns the rows thresholds
|
211
|
+
attr_reader :alpha
|
212
|
+
# Returns the columns thresholds
|
213
|
+
attr_reader :beta
|
214
|
+
|
215
|
+
dirty_writer :max_iterations, :epsilon, :minimizer_type_two_step, :minimizer_type_joint, :method
|
216
|
+
dirty_memoize :r, :alpha, :beta
|
217
|
+
|
218
|
+
alias :threshold_x :alpha
|
219
|
+
alias :threshold_y :beta
|
220
|
+
|
221
|
+
|
222
|
+
# Start the computation of polychoric correlation
|
223
|
+
# based on attribute method
|
224
|
+
def compute
|
225
|
+
if @method==:two_step
|
226
|
+
compute_two_step_mle_drasgow
|
227
|
+
elsif @method==:joint
|
228
|
+
compute_one_step_mle
|
229
|
+
elsif @method==:polychoric_series
|
230
|
+
compute_polychoric_series
|
231
|
+
else
|
232
|
+
raise "Not implemented"
|
233
|
+
end
|
234
|
+
end
|
235
|
+
# Retrieve log likehood for actual data.
|
236
|
+
def loglike_data
|
237
|
+
loglike=0
|
238
|
+
@nr.times do |i|
|
239
|
+
@nc.times do |j|
|
240
|
+
res=@matrix[i,j].quo(@total)
|
241
|
+
if (res==0)
|
242
|
+
res=1e-16
|
243
|
+
end
|
244
|
+
loglike+= @matrix[i,j] * Math::log(res )
|
245
|
+
end
|
246
|
+
end
|
247
|
+
loglike
|
248
|
+
end
|
249
|
+
|
250
|
+
# Chi Square of model
|
251
|
+
def chi_square
|
252
|
+
if @loglike_model.nil?
|
253
|
+
compute
|
254
|
+
end
|
255
|
+
-2*(@loglike_model-loglike_data)
|
256
|
+
end
|
257
|
+
|
258
|
+
def chi_square_df
|
259
|
+
(@nr*@nc)-@nc-@nr
|
260
|
+
end
|
261
|
+
|
262
|
+
|
263
|
+
|
264
|
+
|
265
|
+
# Retrieve all cell probabilities for givens alpha, beta and rho
|
266
|
+
def cell_probabilities(alpha,beta,rho)
|
267
|
+
pd=@nr.times.collect{ [0] * @nc}
|
268
|
+
pc=@nr.times.collect{ [0] * @nc}
|
269
|
+
@nr.times do |i|
|
270
|
+
@nc.times do |j|
|
271
|
+
|
272
|
+
if i==@nr-1 and j==@nc-1
|
273
|
+
pd[i][j]=1.0
|
274
|
+
else
|
275
|
+
a=(i==@nr-1) ? 100: alpha[i]
|
276
|
+
b=(j==@nc-1) ? 100: beta[j]
|
277
|
+
#puts "a:#{a} b:#{b}"
|
278
|
+
pd[i][j]=Distribution::NormalBivariate.cdf(a, b, rho)
|
279
|
+
end
|
280
|
+
pc[i][j] = pd[i][j]
|
281
|
+
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
282
|
+
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
283
|
+
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
284
|
+
end
|
285
|
+
end
|
286
|
+
@pd=pd
|
287
|
+
pd
|
288
|
+
end
|
289
|
+
def loglike(alpha,beta,rho)
|
290
|
+
if rho.abs>0.9999
|
291
|
+
rho= (rho>0) ? 0.9999 : -0.9999
|
292
|
+
end
|
293
|
+
pr=Processor.new(alpha,beta,rho)
|
294
|
+
loglike=0
|
295
|
+
|
296
|
+
|
297
|
+
@nr.times do |i|
|
298
|
+
@nc.times do |j|
|
299
|
+
res=pr.pd[i][j]+EPSILON
|
300
|
+
loglike+= @matrix[i,j] * Math::log( res )
|
301
|
+
end
|
302
|
+
end
|
303
|
+
-loglike
|
304
|
+
end
|
305
|
+
# First derivate for rho
|
306
|
+
# Uses equation (9) from Olsson(1979)
|
307
|
+
def fd_loglike_rho(alpha,beta,rho)
|
308
|
+
if rho.abs>0.9999
|
309
|
+
rho= (rho>0) ? 0.9999 : -0.9999
|
310
|
+
end
|
311
|
+
total=0
|
312
|
+
pr=Processor.new(alpha,beta,rho)
|
313
|
+
@nr.times do |i|
|
314
|
+
@nc.times do |j|
|
315
|
+
pi=pr.pd[i][j] + EPSILON
|
316
|
+
total+= (@matrix[i,j] / pi) * (pr.bipdf(i,j)-pr.bipdf(i-1,j)-pr.bipdf(i,j-1)+pr.bipdf(i-1,j-1))
|
317
|
+
end
|
318
|
+
end
|
319
|
+
total
|
320
|
+
end
|
321
|
+
|
322
|
+
# First derivative for alpha_k
|
323
|
+
def fd_loglike_a(alpha,beta,rho,k)
|
324
|
+
fd_loglike_a_eq6(alpha,beta,rho,k)
|
325
|
+
end
|
326
|
+
# Uses equation (6) from Olsson(1979)
|
327
|
+
def fd_loglike_a_eq6(alpha,beta,rho,k)
|
328
|
+
if rho.abs>0.9999
|
329
|
+
rho= (rho>0) ? 0.9999 : -0.9999
|
330
|
+
end
|
331
|
+
pr=Processor.new(alpha,beta,rho)
|
332
|
+
total=0
|
333
|
+
pd=pr.pd
|
334
|
+
@nr.times do |i|
|
335
|
+
@nc.times do |j|
|
336
|
+
total+=@matrix[i,j].quo(pd[i][j]+EPSILON) * pr.fd_loglike_cell_a(i,j,k)
|
337
|
+
end
|
338
|
+
end
|
339
|
+
total
|
340
|
+
end
|
341
|
+
# Uses equation(13) from Olsson(1979)
|
342
|
+
def fd_loglike_a_eq13(alpha,beta,rho,k)
|
343
|
+
if rho.abs>0.9999
|
344
|
+
rho= (rho>0) ? 0.9999 : -0.9999
|
345
|
+
end
|
346
|
+
pr=Processor.new(alpha,beta,rho)
|
347
|
+
total=0
|
348
|
+
a_k=pr.a(k)
|
349
|
+
pd=pr.pd
|
350
|
+
@nc.times do |j|
|
351
|
+
#puts "j: #{j}"
|
352
|
+
#puts "b #{j} : #{b.call(j)}"
|
353
|
+
#puts "b #{j-1} : #{b.call(j-1)}"
|
354
|
+
|
355
|
+
e_1=@matrix[k,j].quo(pd[k][j]+EPSILON) - @matrix[k+1,j].quo(pd[k+1][j]+EPSILON)
|
356
|
+
e_2=Distribution::Normal.pdf(a_k)
|
357
|
+
e_3=Distribution::Normal.cdf((pr.b(j)-rho*a_k).quo(Math::sqrt(1-rho**2))) - Distribution::Normal.cdf((pr.b(j-1)-rho*a_k).quo(Math::sqrt(1-rho**2)))
|
358
|
+
#puts "val #{j}: #{e_1} | #{e_2} | #{e_3}"
|
359
|
+
|
360
|
+
total+= e_1*e_2*e_3
|
361
|
+
end
|
362
|
+
total
|
363
|
+
end
|
364
|
+
# First derivative for beta_m
|
365
|
+
# Uses equation(14) from Olsson(1979)
|
366
|
+
def fd_loglike_b(alpha,beta,rho,m)
|
367
|
+
if rho.abs>0.9999
|
368
|
+
rho= (rho>0) ? 0.9999 : -0.9999
|
369
|
+
end
|
370
|
+
pr=Processor.new(alpha,beta,rho)
|
371
|
+
total=0
|
372
|
+
b_m=pr.b m
|
373
|
+
pd=pr.pd
|
374
|
+
@nr.times do |i|
|
375
|
+
#puts "j: #{j}"
|
376
|
+
#puts "b #{j} : #{b.call(j)}"
|
377
|
+
#puts "b #{j-1} : #{b.call(j-1)}"
|
378
|
+
|
379
|
+
e_1=@matrix[i,m].quo(pd[i][m]+EPSILON) - @matrix[i,m+1].quo(pd[i][m+1]+EPSILON)
|
380
|
+
e_2=Distribution::Normal.pdf(b_m)
|
381
|
+
e_3=Distribution::Normal.cdf((pr.a(i)-rho*b_m).quo(Math::sqrt(1-rho**2))) - Distribution::Normal.cdf((pr.a(i-1)-rho*b_m).quo(Math::sqrt(1-rho**2)))
|
382
|
+
#puts "val #{j}: #{e_1} | #{e_2} | #{e_3}"
|
383
|
+
|
384
|
+
total+= e_1*e_2*e_3
|
385
|
+
end
|
386
|
+
total
|
387
|
+
end
|
388
|
+
|
389
|
+
|
390
|
+
def compute_basic_parameters
|
391
|
+
@nr=@matrix.row_size
|
392
|
+
@nc=@matrix.column_size
|
393
|
+
@sumr=[0]*@matrix.row_size
|
394
|
+
@sumrac=[0]*@matrix.row_size
|
395
|
+
@sumc=[0]*@matrix.column_size
|
396
|
+
@sumcac=[0]*@matrix.column_size
|
397
|
+
@alpha=[0]*(@nr-1)
|
398
|
+
@beta=[0]*(@nc-1)
|
399
|
+
@total=0
|
400
|
+
@nr.times do |i|
|
401
|
+
@nc.times do |j|
|
402
|
+
@sumr[i]+=@matrix[i,j]
|
403
|
+
@sumc[j]+=@matrix[i,j]
|
404
|
+
@total+=@matrix[i,j]
|
405
|
+
end
|
406
|
+
end
|
407
|
+
ac=0
|
408
|
+
(@nr-1).times do |i|
|
409
|
+
@sumrac[i]=@sumr[i]+ac
|
410
|
+
@alpha[i]=Distribution::Normal.p_value(@sumrac[i] / @total.to_f)
|
411
|
+
ac=@sumrac[i]
|
412
|
+
end
|
413
|
+
ac=0
|
414
|
+
(@nc-1).times do |i|
|
415
|
+
@sumcac[i]=@sumc[i]+ac
|
416
|
+
@beta[i]=Distribution::Normal.p_value(@sumcac[i] / @total.to_f)
|
417
|
+
ac=@sumcac[i]
|
418
|
+
end
|
419
|
+
end
|
420
|
+
|
421
|
+
|
422
|
+
# Computation of polychoric correlation usign two-step ML estimation.
|
423
|
+
#
|
424
|
+
# Two-step ML estimation "first estimates the thresholds from the one-way marginal frequencies, then estimates rho, conditional on these thresholds, via maximum likelihood" (Uebersax, 2006).
|
425
|
+
#
|
426
|
+
# The algorithm is based on code by Gegenfurtner(1992).
|
427
|
+
#
|
428
|
+
# <b>References</b>:
|
429
|
+
# * Gegenfurtner, K. (1992). PRAXIS: Brent's algorithm for function minimization. Behavior Research Methods, Instruments & Computers, 24(4), 560-564. Available on http://www.allpsych.uni-giessen.de/karl/pdf/03.praxis.pdf
|
430
|
+
# * Uebersax, J.S. (2006). The tetrachoric and polychoric correlation coefficients. Statistical Methods for Rater Agreement web site. 2006. Available at: http://john-uebersax.com/stat/tetra.htm . Accessed February, 11, 2010
|
431
|
+
#
|
432
|
+
def compute_two_step_mle_drasgow
|
433
|
+
if Statsample.has_gsl?
|
434
|
+
compute_two_step_mle_drasgow_gsl
|
435
|
+
else
|
436
|
+
compute_two_step_mle_drasgow_ruby
|
437
|
+
end
|
438
|
+
end
|
439
|
+
|
440
|
+
# Depends on minimization algorithm.
|
441
|
+
|
442
|
+
def compute_two_step_mle_drasgow_ruby #:nodoc:
|
443
|
+
|
444
|
+
f=proc {|rho|
|
445
|
+
loglike(@alpha,@beta, rho)
|
446
|
+
}
|
447
|
+
@log=_("Minimizing using GSL Brent method\n")
|
448
|
+
min=Minimization::Brent.new(-0.9999,0.9999,f)
|
449
|
+
min.epsilon=@epsilon
|
450
|
+
min.expected=0
|
451
|
+
min.iterate
|
452
|
+
@log+=min.log.to_table.to_s
|
453
|
+
@r=min.x_minimum
|
454
|
+
@loglike_model=-min.f_minimum
|
455
|
+
puts @log if @debug
|
456
|
+
|
457
|
+
end
|
458
|
+
|
459
|
+
|
460
|
+
def compute_two_step_mle_drasgow_gsl #:nodoc:
|
461
|
+
|
462
|
+
fn1=GSL::Function.alloc {|rho|
|
463
|
+
loglike(@alpha,@beta, rho)
|
464
|
+
}
|
465
|
+
@iteration = 0
|
466
|
+
max_iter = @max_iterations
|
467
|
+
m = 0 # initial guess
|
468
|
+
m_expected = 0
|
469
|
+
a=-0.9999
|
470
|
+
b=+0.9999
|
471
|
+
gmf = GSL::Min::FMinimizer.alloc(@minimizer_type_two_step)
|
472
|
+
gmf.set(fn1, m, a, b)
|
473
|
+
header=_("Two step minimization using %s method\n") % gmf.name
|
474
|
+
header+=sprintf("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min",
|
475
|
+
"err", "err(est)")
|
476
|
+
|
477
|
+
header+=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", @iteration, a, b, m, m - m_expected, b - a)
|
478
|
+
@log=header
|
479
|
+
puts header if @debug
|
480
|
+
begin
|
481
|
+
@iteration += 1
|
482
|
+
status = gmf.iterate
|
483
|
+
status = gmf.test_interval(@epsilon, 0.0)
|
484
|
+
|
485
|
+
if status == GSL::SUCCESS
|
486
|
+
@log+="converged:"
|
487
|
+
puts "converged:" if @debug
|
488
|
+
end
|
489
|
+
a = gmf.x_lower
|
490
|
+
b = gmf.x_upper
|
491
|
+
m = gmf.x_minimum
|
492
|
+
message=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
|
493
|
+
@iteration, a, b, m, m - m_expected, b - a);
|
494
|
+
@log+=message
|
495
|
+
puts message if @debug
|
496
|
+
end while status == GSL::CONTINUE and @iteration < @max_iterations
|
497
|
+
@r=gmf.x_minimum
|
498
|
+
@loglike_model=-gmf.f_minimum
|
499
|
+
end
|
500
|
+
|
501
|
+
# Compute Polychoric correlation with joint estimate.
|
502
|
+
# Rho and thresholds are estimated at same time.
|
503
|
+
# Code based on R package "polycor", by J.Fox.
|
504
|
+
#
|
505
|
+
|
506
|
+
def compute_one_step_mle
|
507
|
+
# Get initial values with two-step aproach
|
508
|
+
compute_two_step_mle_drasgow
|
509
|
+
# Start iteration with past values
|
510
|
+
rho=@r
|
511
|
+
cut_alpha=@alpha
|
512
|
+
cut_beta=@beta
|
513
|
+
parameters=[rho]+cut_alpha+cut_beta
|
514
|
+
minimization = Proc.new { |v, params|
|
515
|
+
rho=v[0]
|
516
|
+
alpha=v[1, @nr-1]
|
517
|
+
beta=v[@nr, @nc-1]
|
518
|
+
|
519
|
+
#puts "f'rho=#{fd_loglike_rho(alpha,beta,rho)}"
|
520
|
+
#(@nr-1).times {|k|
|
521
|
+
# puts "f'a(#{k}) = #{fd_loglike_a(alpha,beta,rho,k)}"
|
522
|
+
# puts "f'a(#{k}) v2 = #{fd_loglike_a2(alpha,beta,rho,k)}"
|
523
|
+
#
|
524
|
+
#}
|
525
|
+
#(@nc-1).times {|k|
|
526
|
+
# puts "f'b(#{k}) = #{fd_loglike_b(alpha,beta,rho,k)}"
|
527
|
+
#}
|
528
|
+
|
529
|
+
loglike(alpha,beta,rho)
|
530
|
+
}
|
531
|
+
np=@nc-1+@nr
|
532
|
+
my_func = GSL::MultiMin::Function.alloc(minimization, np)
|
533
|
+
my_func.set_params(parameters) # parameters
|
534
|
+
|
535
|
+
x = GSL::Vector.alloc(parameters.dup)
|
536
|
+
|
537
|
+
ss = GSL::Vector.alloc(np)
|
538
|
+
ss.set_all(1.0)
|
539
|
+
|
540
|
+
minimizer = GSL::MultiMin::FMinimizer.alloc(minimizer_type_joint,np)
|
541
|
+
minimizer.set(my_func, x, ss)
|
542
|
+
|
543
|
+
iter = 0
|
544
|
+
message=""
|
545
|
+
begin
|
546
|
+
iter += 1
|
547
|
+
status = minimizer.iterate()
|
548
|
+
status = minimizer.test_size(@epsilon)
|
549
|
+
if status == GSL::SUCCESS
|
550
|
+
message="Joint MLE converged to minimum at\n"
|
551
|
+
end
|
552
|
+
x = minimizer.x
|
553
|
+
message+= sprintf("%5d iterations", iter)+"\n";
|
554
|
+
for i in 0...np do
|
555
|
+
message+=sprintf("%10.3e ", x[i])
|
556
|
+
end
|
557
|
+
message+=sprintf("f() = %7.3f size = %.3f\n", minimizer.fval, minimizer.size)+"\n";
|
558
|
+
end while status == GSL::CONTINUE and iter < @max_iterations
|
559
|
+
@iteration=iter
|
560
|
+
@log+=message
|
561
|
+
@r=minimizer.x[0]
|
562
|
+
@alpha=minimizer.x[1,@nr-1].to_a
|
563
|
+
@beta=minimizer.x[@nr,@nc-1].to_a
|
564
|
+
@loglike_model= -minimizer.minimum
|
565
|
+
end
|
566
|
+
|
567
|
+
def matrix_for_rho(rho) # :nodoc:
|
568
|
+
pd=@nr.times.collect{ [0]*@nc}
|
569
|
+
pc=@nr.times.collect{ [0]*@nc}
|
570
|
+
@nr.times { |i|
|
571
|
+
@nc.times { |j|
|
572
|
+
pd[i][j]=Distribution::NormalBivariate.cdf(@alpha[i], @beta[j], rho)
|
573
|
+
pc[i][j] = pd[i][j]
|
574
|
+
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
575
|
+
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
576
|
+
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
577
|
+
res= pd[i][j]
|
578
|
+
}
|
579
|
+
}
|
580
|
+
Matrix.rows(pc)
|
581
|
+
end
|
582
|
+
|
583
|
+
def expected # :nodoc:
|
584
|
+
rt=[]
|
585
|
+
ct=[]
|
586
|
+
t=0
|
587
|
+
@matrix.row_size.times {|i|
|
588
|
+
@matrix.column_size.times {|j|
|
589
|
+
rt[i]=0 if rt[i].nil?
|
590
|
+
ct[j]=0 if ct[j].nil?
|
591
|
+
rt[i]+=@matrix[i,j]
|
592
|
+
ct[j]+=@matrix[i,j]
|
593
|
+
t+=@matrix[i,j]
|
594
|
+
}
|
595
|
+
}
|
596
|
+
m=[]
|
597
|
+
@matrix.row_size.times {|i|
|
598
|
+
row=[]
|
599
|
+
@matrix.column_size.times {|j|
|
600
|
+
row[j]=(rt[i]*ct[j]).quo(t)
|
601
|
+
}
|
602
|
+
m.push(row)
|
603
|
+
}
|
604
|
+
|
605
|
+
Matrix.rows(m)
|
606
|
+
end
|
607
|
+
|
608
|
+
# Compute polychoric correlation using polychoric series.
|
609
|
+
# Algorithm: AS87, by Martinson and Hamdam(1975).
|
610
|
+
#
|
611
|
+
# <b>Warning</b>: According to Drasgow(2006), this
|
612
|
+
# computation diverges greatly of joint and two-step methods.
|
613
|
+
#
|
614
|
+
def compute_polychoric_series
|
615
|
+
@nn=@n-1
|
616
|
+
@mm=@m-1
|
617
|
+
@nn7=7*@nn
|
618
|
+
@mm7=7*@mm
|
619
|
+
@mn=@n*@m
|
620
|
+
@cont=[nil]
|
621
|
+
@n.times {|j|
|
622
|
+
@m.times {|i|
|
623
|
+
@cont.push(@matrix[i,j])
|
624
|
+
}
|
625
|
+
}
|
626
|
+
|
627
|
+
pcorl=0
|
628
|
+
cont=@cont
|
629
|
+
xmean=0.0
|
630
|
+
sum=0.0
|
631
|
+
row=[]
|
632
|
+
colmn=[]
|
633
|
+
(1..@m).each do |i|
|
634
|
+
row[i]=0.0
|
635
|
+
l=i
|
636
|
+
(1..@n).each do |j|
|
637
|
+
row[i]=row[i]+cont[l]
|
638
|
+
l+=@m
|
639
|
+
end
|
640
|
+
raise "Should not be empty rows" if(row[i]==0.0)
|
641
|
+
xmean=xmean+row[i]*i.to_f
|
642
|
+
sum+=row[i]
|
643
|
+
end
|
644
|
+
xmean=xmean/sum.to_f
|
645
|
+
ymean=0.0
|
646
|
+
(1..@n).each do |j|
|
647
|
+
colmn[j]=0.0
|
648
|
+
l=(j-1)*@m
|
649
|
+
(1..@m).each do |i|
|
650
|
+
l=l+1
|
651
|
+
colmn[j]=colmn[j]+cont[l] #12
|
652
|
+
end
|
653
|
+
raise "Should not be empty cols" if colmn[j]==0
|
654
|
+
ymean=ymean+colmn[j]*j.to_f
|
655
|
+
end
|
656
|
+
ymean=ymean/sum.to_f
|
657
|
+
covxy=0.0
|
658
|
+
(1..@m).each do |i|
|
659
|
+
l=i
|
660
|
+
(1..@n).each do |j|
|
661
|
+
conxy=covxy+cont[l]*(i.to_f-xmean)*(j.to_f-ymean)
|
662
|
+
l=l+@m
|
663
|
+
end
|
664
|
+
end
|
665
|
+
|
666
|
+
chisq=0.0
|
667
|
+
(1..@m).each do |i|
|
668
|
+
l=i
|
669
|
+
(1..@n).each do |j|
|
670
|
+
chisq=chisq+((cont[l]**2).quo(row[i]*colmn[j]))
|
671
|
+
l=l+@m
|
672
|
+
end
|
673
|
+
end
|
674
|
+
|
675
|
+
phisq=chisq-1.0-(@mm*@nn).to_f / sum.to_f
|
676
|
+
phisq=0 if(phisq<0.0)
|
677
|
+
# Compute cumulative sum of columns and rows
|
678
|
+
sumc=[]
|
679
|
+
sumr=[]
|
680
|
+
sumc[1]=colmn[1]
|
681
|
+
sumr[1]=row[1]
|
682
|
+
cum=0
|
683
|
+
(1..@nn).each do |i| # goto 17 r20
|
684
|
+
cum=cum+colmn[i]
|
685
|
+
sumc[i]=cum
|
686
|
+
end
|
687
|
+
cum=0
|
688
|
+
(1..@mm).each do |i|
|
689
|
+
cum=cum+row[i]
|
690
|
+
sumr[i]=cum
|
691
|
+
end
|
692
|
+
alpha=[]
|
693
|
+
beta=[]
|
694
|
+
# Compute points of polytomy
|
695
|
+
(1..@mm).each do |i| #do 21
|
696
|
+
alpha[i]=Distribution::Normal.p_value(sumr[i] / sum.to_f)
|
697
|
+
end # 21
|
698
|
+
(1..@nn).each do |i| #do 22
|
699
|
+
beta[i]=Distribution::Normal.p_value(sumc[i] / sum.to_f)
|
700
|
+
end # 21
|
701
|
+
@alpha=alpha[1,alpha.size]
|
702
|
+
@beta=beta[1,beta.size]
|
703
|
+
@sumr=row[1,row.size]
|
704
|
+
@sumc=colmn[1,colmn.size]
|
705
|
+
@total=sum
|
706
|
+
|
707
|
+
# Compute Fourier coefficients a and b. Verified
|
708
|
+
h=hermit(alpha,@mm)
|
709
|
+
hh=hermit(beta,@nn)
|
710
|
+
a=[]
|
711
|
+
b=[]
|
712
|
+
if @m!=2 # goto 24
|
713
|
+
mmm=@m-2
|
714
|
+
(1..mmm).each do |i| #do 23
|
715
|
+
a1=sum.quo(row[i+1] * sumr[i] * sumr[i+1])
|
716
|
+
a2=sumr[i] * xnorm(alpha[i+1])
|
717
|
+
a3=sumr[i+1] * xnorm(alpha[i])
|
718
|
+
l=i
|
719
|
+
(1..7).each do |j| #do 23
|
720
|
+
a[l]=Math::sqrt(a1.quo(j))*(h[l+1] * a2 - h[l] * a3)
|
721
|
+
l=l+@mm
|
722
|
+
end
|
723
|
+
end #23
|
724
|
+
end
|
725
|
+
# 24
|
726
|
+
|
727
|
+
|
728
|
+
if @n!=2 # goto 26
|
729
|
+
nnn=@n-2
|
730
|
+
(1..nnn).each do |i| #do 25
|
731
|
+
a1=sum.quo(colmn[i+1] * sumc[i] * sumc[i+1])
|
732
|
+
a2=sumc[i] * xnorm(beta[i+1])
|
733
|
+
a3=sumc[i+1] * xnorm(beta[i])
|
734
|
+
l=i
|
735
|
+
(1..7).each do |j| #do 25
|
736
|
+
b[l]=Math::sqrt(a1.quo(j))*(a2 * hh[l+1] - a3*hh[l])
|
737
|
+
l=l+@nn
|
738
|
+
end # 25
|
739
|
+
end # 25
|
740
|
+
end
|
741
|
+
#26 r20
|
742
|
+
l = @mm
|
743
|
+
a1 = -sum * xnorm(alpha[@mm])
|
744
|
+
a2 = row[@m] * sumr[@mm]
|
745
|
+
(1..7).each do |j| # do 27
|
746
|
+
a[l]=a1 * h[l].quo(Math::sqrt(j*a2))
|
747
|
+
l=l+@mm
|
748
|
+
end # 27
|
749
|
+
|
750
|
+
l = @nn
|
751
|
+
a1 = -sum * xnorm(beta[@nn])
|
752
|
+
a2 = colmn[@n] * sumc[@nn]
|
753
|
+
|
754
|
+
(1..7).each do |j| # do 28
|
755
|
+
b[l]=a1 * hh[l].quo(Math::sqrt(j*a2))
|
756
|
+
l = l + @nn
|
757
|
+
end # 28
|
758
|
+
rcof=[]
|
759
|
+
# compute coefficients rcof of polynomial of order 8
|
760
|
+
rcof[1]=-phisq
|
761
|
+
(2..9).each do |i| # do 30
|
762
|
+
rcof[i]=0.0
|
763
|
+
end #30
|
764
|
+
m1=@mm
|
765
|
+
(1..@mm).each do |i| # do 31
|
766
|
+
m1=m1+1
|
767
|
+
m2=m1+@mm
|
768
|
+
m3=m2+@mm
|
769
|
+
m4=m3+@mm
|
770
|
+
m5=m4+@mm
|
771
|
+
m6=m5+@mm
|
772
|
+
n1=@nn
|
773
|
+
(1..@nn).each do |j| # do 31
|
774
|
+
n1=n1+1
|
775
|
+
n2=n1+@nn
|
776
|
+
n3=n2+@nn
|
777
|
+
n4=n3+@nn
|
778
|
+
n5=n4+@nn
|
779
|
+
n6=n5+@nn
|
780
|
+
|
781
|
+
rcof[3] = rcof[3] + a[i]**2 * b[j]**2
|
782
|
+
|
783
|
+
rcof[4] = rcof[4] + 2.0 * a[i] * a[m1] * b[j] * b[n1]
|
784
|
+
|
785
|
+
rcof[5] = rcof[5] + a[m1]**2 * b[n1]**2 +
|
786
|
+
2.0 * a[i] * a[m2] * b[j] * b[n2]
|
787
|
+
|
788
|
+
rcof[6] = rcof[6] + 2.0 * (a[i] * a[m3] * b[j] *
|
789
|
+
b[n3] + a[m1] * a[m2] * b[n1] * b[n2])
|
790
|
+
|
791
|
+
rcof[7] = rcof[7] + a[m2]**2 * b[n2]**2 +
|
792
|
+
2.0 * (a[i] * a[m4] * b[j] * b[n4] + a[m1] * a[m3] *
|
793
|
+
b[n1] * b[n3])
|
794
|
+
|
795
|
+
rcof[8] = rcof[8] + 2.0 * (a[i] * a[m5] * b[j] * b[n5] +
|
796
|
+
a[m1] * a[m4] * b[n1] * b[n4] + a[m2] * a[m3] * b[n2] * b[n3])
|
797
|
+
|
798
|
+
rcof[9] = rcof[9] + a[m3]**2 * b[n3]**2 +
|
799
|
+
2.0 * (a[i] * a[m6] * b[j] * b[n6] + a[m1] * a[m5] * b[n1] *
|
800
|
+
b[n5] + (a[m2] * a[m4] * b[n2] * b[n4]))
|
801
|
+
end # 31
|
802
|
+
end # 31
|
803
|
+
|
804
|
+
rcof=rcof[1,rcof.size]
|
805
|
+
poly = GSL::Poly.alloc(rcof)
|
806
|
+
roots=poly.solve
|
807
|
+
rootr=[nil]
|
808
|
+
rooti=[nil]
|
809
|
+
roots.each {|c|
|
810
|
+
rootr.push(c.real)
|
811
|
+
rooti.push(c.im)
|
812
|
+
}
|
813
|
+
@rootr=rootr
|
814
|
+
@rooti=rooti
|
815
|
+
|
816
|
+
norts=0
|
817
|
+
(1..7).each do |i| # do 43
|
818
|
+
|
819
|
+
next if rooti[i]!=0.0
|
820
|
+
if (covxy>=0.0)
|
821
|
+
next if(rootr[i]<0.0 or rootr[i]>1.0)
|
822
|
+
pcorl=rootr[i]
|
823
|
+
norts=norts+1
|
824
|
+
else
|
825
|
+
if (rootr[i]>=-1.0 and rootr[i]<0.0)
|
826
|
+
pcorl=rootr[i]
|
827
|
+
norts=norts+1
|
828
|
+
end
|
829
|
+
end
|
830
|
+
end # 43
|
831
|
+
raise "Error" if norts==0
|
832
|
+
@r=pcorl
|
833
|
+
|
834
|
+
@loglike_model=-loglike(@alpha, @beta, @r)
|
835
|
+
|
836
|
+
end
|
837
|
+
#Computes vector h(mm7) of orthogonal hermite...
|
838
|
+
def hermit(s,k) # :nodoc:
|
839
|
+
h=[]
|
840
|
+
(1..k).each do |i| # do 14
|
841
|
+
l=i
|
842
|
+
ll=i+k
|
843
|
+
lll=ll+k
|
844
|
+
h[i]=1.0
|
845
|
+
h[ll]=s[i]
|
846
|
+
v=1.0
|
847
|
+
(2..6).each do |j| #do 14
|
848
|
+
w=Math::sqrt(j)
|
849
|
+
h[lll]=(s[i]*h[ll] - v*h[l]).quo(w)
|
850
|
+
v=w
|
851
|
+
l=l+k
|
852
|
+
ll=ll+k
|
853
|
+
lll=lll+k
|
854
|
+
end
|
855
|
+
end
|
856
|
+
h
|
857
|
+
end
|
858
|
+
def xnorm(t) # :nodoc:
|
859
|
+
Math::exp(-0.5 * t **2) * (1.0/Math::sqrt(2*Math::PI))
|
860
|
+
end
|
861
|
+
|
862
|
+
def report_building(generator) # :nodoc:
|
863
|
+
compute if dirty?
|
864
|
+
section=ReportBuilder::Section.new(:name=>@name)
|
865
|
+
t=ReportBuilder::Table.new(:name=>_("Contingence Table"), :header=>[""]+(@n.times.collect {|i| "Y=#{i}"})+["Total"])
|
866
|
+
@m.times do |i|
|
867
|
+
t.row(["X = #{i}"]+(@n.times.collect {|j| @matrix[i,j]}) + [@sumr[i]])
|
868
|
+
end
|
869
|
+
t.hr
|
870
|
+
t.row(["T"]+(@n.times.collect {|j| @sumc[j]})+[@total])
|
871
|
+
section.add(t)
|
872
|
+
section.add(sprintf("r: %0.4f",r))
|
873
|
+
t=ReportBuilder::Table.new(:name=>_("Thresholds"), :header=>["","Value"])
|
874
|
+
threshold_x.each_with_index {|val,i|
|
875
|
+
t.row([_("Threshold X %d") % i, sprintf("%0.4f", val)])
|
876
|
+
}
|
877
|
+
threshold_y.each_with_index {|val,i|
|
878
|
+
t.row([_("Threshold Y %d") % i, sprintf("%0.4f", val)])
|
879
|
+
}
|
880
|
+
section.add(t)
|
881
|
+
section.add(_("Test of bivariate normality: X2 = %0.3f, df = %d, p= %0.5f" % [ chi_square, chi_square_df, 1-Distribution::ChiSquare.cdf(chi_square, chi_square_df)]))
|
882
|
+
generator.parse_element(section)
|
883
|
+
end
|
884
|
+
end
|
885
|
+
end
|
886
|
+
end
|