spiro 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +15 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +31 -0
- data/Rakefile +9 -0
- data/ext/spiro/_spiro.c +995 -0
- data/ext/spiro/_spiro.h +37 -0
- data/ext/spiro/bezctx.c +68 -0
- data/ext/spiro/bezctx.h +23 -0
- data/ext/spiro/bezctx_intf.h +23 -0
- data/ext/spiro/bezctx_rb.c +91 -0
- data/ext/spiro/bezctx_rb.h +32 -0
- data/ext/spiro/extconf.rb +6 -0
- data/ext/spiro/spiro.c +121 -0
- data/ext/spiro/spiroentrypoints.c +83 -0
- data/ext/spiro/spiroentrypoints.h +53 -0
- data/ext/spiro/zmisc.h +17 -0
- data/lib/spiro.rb +6 -0
- data/lib/spiro/version.rb +3 -0
- data/spiro.gemspec +27 -0
- data/test/test_spiro.rb +69 -0
- metadata +126 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 84d28bbf80c2fe0eb5bcbe8fe82a60109bfa2425
|
4
|
+
data.tar.gz: 1d989e78b0aa54e1738e8ea321cd6d66e0734e95
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 33f6c9af30e379a5390f2ecd549189a5b9f3f2e19ed8e84f806e91a9495b32fc208fb3735d1cdd69137b2383dc6c817c872395682fe392e87a21a4fc14a28972
|
7
|
+
data.tar.gz: 3cb174eac9af018d16b5f520c5efb068b3ab765b5bf0f6c66845c16f0c5119b79bfb0682275f468eb85e025c67d6b0812fcb6f09e0fb053c0190536cecfcfa90
|
data/.gitignore
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2015 Simon George
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,31 @@
|
|
1
|
+
# Spiro
|
2
|
+
|
3
|
+
TODO: Write a gem description
|
4
|
+
|
5
|
+
## Installation
|
6
|
+
|
7
|
+
Add this line to your application's Gemfile:
|
8
|
+
|
9
|
+
```ruby
|
10
|
+
gem 'spiro'
|
11
|
+
```
|
12
|
+
|
13
|
+
And then execute:
|
14
|
+
|
15
|
+
$ bundle
|
16
|
+
|
17
|
+
Or install it yourself as:
|
18
|
+
|
19
|
+
$ gem install spiro
|
20
|
+
|
21
|
+
## Usage
|
22
|
+
|
23
|
+
TODO: Write usage instructions here
|
24
|
+
|
25
|
+
## Contributing
|
26
|
+
|
27
|
+
1. Fork it ( https://github.com/[my-github-username]/spiro/fork )
|
28
|
+
2. Create your feature branch (`git checkout -b my-new-feature`)
|
29
|
+
3. Commit your changes (`git commit -am 'Add some feature'`)
|
30
|
+
4. Push to the branch (`git push origin my-new-feature`)
|
31
|
+
5. Create a new Pull Request
|
data/Rakefile
ADDED
data/ext/spiro/_spiro.c
ADDED
@@ -0,0 +1,995 @@
|
|
1
|
+
//#ifdef HAVE_FINITE
|
2
|
+
/*#define IS_FINITE(x) finite(x)*/
|
3
|
+
//#else
|
4
|
+
#define IS_FINITE(x) isfinite(x)
|
5
|
+
//#endif
|
6
|
+
|
7
|
+
/*
|
8
|
+
ppedit - A pattern plate editor for Spiro splines.
|
9
|
+
Copyright (C) 2007 Raph Levien
|
10
|
+
|
11
|
+
This program is free software; you can redistribute it and/or
|
12
|
+
modify it under the terms of the GNU General Public License
|
13
|
+
as published by the Free Software Foundation; either version 3
|
14
|
+
of the License, or (at your option) any later version.
|
15
|
+
|
16
|
+
This program is distributed in the hope that it will be useful,
|
17
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19
|
+
GNU General Public License for more details.
|
20
|
+
|
21
|
+
You should have received a copy of the GNU General Public License
|
22
|
+
along with this program; if not, write to the Free Software
|
23
|
+
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
24
|
+
02110-1301, USA.
|
25
|
+
|
26
|
+
*/
|
27
|
+
/* C implementation of third-order polynomial spirals. */
|
28
|
+
|
29
|
+
#include <math.h>
|
30
|
+
#include <stdlib.h>
|
31
|
+
#include <string.h>
|
32
|
+
|
33
|
+
#include "bezctx_intf.h"
|
34
|
+
#include "_spiro.h"
|
35
|
+
|
36
|
+
//#include "spiro-config.h"
|
37
|
+
#ifdef VERBOSE
|
38
|
+
#include <stdio.h>
|
39
|
+
#endif
|
40
|
+
|
41
|
+
typedef struct {
|
42
|
+
double a[11]; /* band-diagonal matrix */
|
43
|
+
double al[5]; /* lower part of band-diagonal decomposition */
|
44
|
+
} bandmat;
|
45
|
+
|
46
|
+
#ifndef M_PI
|
47
|
+
#define M_PI 3.14159265358979323846 /* pi */
|
48
|
+
#endif
|
49
|
+
|
50
|
+
#ifndef N_IS
|
51
|
+
/* int n = 4; */
|
52
|
+
#define N_IS 4
|
53
|
+
#endif
|
54
|
+
|
55
|
+
#ifndef ORDER
|
56
|
+
#define ORDER 12
|
57
|
+
#endif
|
58
|
+
|
59
|
+
/* Integrate polynomial spiral curve over range -.5 .. .5. */
|
60
|
+
static void
|
61
|
+
integrate_spiro(const double ks[4], double xy[2], int n)
|
62
|
+
{
|
63
|
+
#if 0
|
64
|
+
int n = 1024;
|
65
|
+
#endif
|
66
|
+
double th1 = ks[0];
|
67
|
+
double th2 = .5 * ks[1];
|
68
|
+
double th3 = (1./6) * ks[2];
|
69
|
+
double th4 = (1./24) * ks[3];
|
70
|
+
double x, y;
|
71
|
+
double ds = 1. / n;
|
72
|
+
double ds2 = ds * ds;
|
73
|
+
double ds3 = ds2 * ds;
|
74
|
+
double k0 = ks[0] * ds;
|
75
|
+
double k1 = ks[1] * ds;
|
76
|
+
double k2 = ks[2] * ds;
|
77
|
+
double k3 = ks[3] * ds;
|
78
|
+
int i;
|
79
|
+
double s = .5 * ds - .5;
|
80
|
+
|
81
|
+
x = 0;
|
82
|
+
y = 0;
|
83
|
+
|
84
|
+
for (i = 0; i < n; i++) {
|
85
|
+
|
86
|
+
#if ORDER > 2
|
87
|
+
double u, v;
|
88
|
+
double km0, km1, km2, km3;
|
89
|
+
|
90
|
+
if (n == 1) {
|
91
|
+
km0 = k0;
|
92
|
+
km1 = k1 * ds;
|
93
|
+
km2 = k2 * ds2;
|
94
|
+
} else {
|
95
|
+
km0 = (((1./6) * k3 * s + .5 * k2) * s + k1) * s + k0;
|
96
|
+
km1 = ((.5 * k3 * s + k2) * s + k1) * ds;
|
97
|
+
km2 = (k3 * s + k2) * ds2;
|
98
|
+
}
|
99
|
+
km3 = k3 * ds3;
|
100
|
+
#endif
|
101
|
+
|
102
|
+
{
|
103
|
+
|
104
|
+
#if ORDER == 4
|
105
|
+
double km0_2 = km0 * km0;
|
106
|
+
u = 24 - km0_2;
|
107
|
+
v = km1;
|
108
|
+
#endif
|
109
|
+
|
110
|
+
#if ORDER == 6
|
111
|
+
double km0_2 = km0 * km0;
|
112
|
+
double km0_4 = km0_2 * km0_2;
|
113
|
+
u = 24 - km0_2 + (km0_4 - 4 * km0 * km2 - 3 * km1 * km1) * (1./80);
|
114
|
+
v = km1 + (km3 - 6 * km0_2 * km1) * (1./80);
|
115
|
+
#endif
|
116
|
+
|
117
|
+
#if ORDER == 8
|
118
|
+
double t1_1 = km0;
|
119
|
+
double t1_2 = .5 * km1;
|
120
|
+
double t1_3 = (1./6) * km2;
|
121
|
+
double t1_4 = (1./24) * km3;
|
122
|
+
double t2_2 = t1_1 * t1_1;
|
123
|
+
double t2_3 = 2 * (t1_1 * t1_2);
|
124
|
+
double t2_4 = 2 * (t1_1 * t1_3) + t1_2 * t1_2;
|
125
|
+
double t2_5 = 2 * (t1_1 * t1_4 + t1_2 * t1_3);
|
126
|
+
double t2_6 = 2 * (t1_2 * t1_4) + t1_3 * t1_3;
|
127
|
+
double t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
|
128
|
+
double t3_6 = t2_2 * t1_4 + t2_3 * t1_3 + t2_4 * t1_2 + t2_5 * t1_1;
|
129
|
+
double t4_4 = t2_2 * t2_2;
|
130
|
+
double t4_5 = 2 * (t2_2 * t2_3);
|
131
|
+
double t4_6 = 2 * (t2_2 * t2_4) + t2_3 * t2_3;
|
132
|
+
double t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
|
133
|
+
double t6_6 = t4_4 * t2_2;
|
134
|
+
u = 1;
|
135
|
+
v = 0;
|
136
|
+
v += (1./12) * t1_2 + (1./80) * t1_4;
|
137
|
+
u -= (1./24) * t2_2 + (1./160) * t2_4 + (1./896) * t2_6;
|
138
|
+
v -= (1./480) * t3_4 + (1./2688) * t3_6;
|
139
|
+
u += (1./1920) * t4_4 + (1./10752) * t4_6;
|
140
|
+
v += (1./53760) * t5_6;
|
141
|
+
u -= (1./322560) * t6_6;
|
142
|
+
#endif
|
143
|
+
|
144
|
+
#if ORDER == 10
|
145
|
+
double t1_1 = km0;
|
146
|
+
double t1_2 = .5 * km1;
|
147
|
+
double t1_3 = (1./6) * km2;
|
148
|
+
double t1_4 = (1./24) * km3;
|
149
|
+
double t2_2 = t1_1 * t1_1;
|
150
|
+
double t2_3 = 2 * (t1_1 * t1_2);
|
151
|
+
double t2_4 = 2 * (t1_1 * t1_3) + t1_2 * t1_2;
|
152
|
+
double t2_5 = 2 * (t1_1 * t1_4 + t1_2 * t1_3);
|
153
|
+
double t2_6 = 2 * (t1_2 * t1_4) + t1_3 * t1_3;
|
154
|
+
double t2_7 = 2 * (t1_3 * t1_4);
|
155
|
+
double t2_8 = t1_4 * t1_4;
|
156
|
+
double t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
|
157
|
+
double t3_6 = t2_2 * t1_4 + t2_3 * t1_3 + t2_4 * t1_2 + t2_5 * t1_1;
|
158
|
+
double t3_8 = t2_4 * t1_4 + t2_5 * t1_3 + t2_6 * t1_2 + t2_7 * t1_1;
|
159
|
+
double t4_4 = t2_2 * t2_2;
|
160
|
+
double t4_5 = 2 * (t2_2 * t2_3);
|
161
|
+
double t4_6 = 2 * (t2_2 * t2_4) + t2_3 * t2_3;
|
162
|
+
double t4_7 = 2 * (t2_2 * t2_5 + t2_3 * t2_4);
|
163
|
+
double t4_8 = 2 * (t2_2 * t2_6 + t2_3 * t2_5) + t2_4 * t2_4;
|
164
|
+
double t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
|
165
|
+
double t5_8 = t4_4 * t1_4 + t4_5 * t1_3 + t4_6 * t1_2 + t4_7 * t1_1;
|
166
|
+
double t6_6 = t4_4 * t2_2;
|
167
|
+
double t6_7 = t4_4 * t2_3 + t4_5 * t2_2;
|
168
|
+
double t6_8 = t4_4 * t2_4 + t4_5 * t2_3 + t4_6 * t2_2;
|
169
|
+
double t7_8 = t6_6 * t1_2 + t6_7 * t1_1;
|
170
|
+
double t8_8 = t6_6 * t2_2;
|
171
|
+
u = 1;
|
172
|
+
v = 0;
|
173
|
+
v += (1./12) * t1_2 + (1./80) * t1_4;
|
174
|
+
u -= (1./24) * t2_2 + (1./160) * t2_4 + (1./896) * t2_6 + (1./4608) * t2_8;
|
175
|
+
v -= (1./480) * t3_4 + (1./2688) * t3_6 + (1./13824) * t3_8;
|
176
|
+
u += (1./1920) * t4_4 + (1./10752) * t4_6 + (1./55296) * t4_8;
|
177
|
+
v += (1./53760) * t5_6 + (1./276480) * t5_8;
|
178
|
+
u -= (1./322560) * t6_6 + (1./1.65888e+06) * t6_8;
|
179
|
+
v -= (1./1.16122e+07) * t7_8;
|
180
|
+
u += (1./9.28973e+07) * t8_8;
|
181
|
+
#endif
|
182
|
+
|
183
|
+
#if ORDER == 12
|
184
|
+
double t1_1 = km0;
|
185
|
+
double t1_2 = .5 * km1;
|
186
|
+
double t1_3 = (1./6) * km2;
|
187
|
+
double t1_4 = (1./24) * km3;
|
188
|
+
double t2_2 = t1_1 * t1_1;
|
189
|
+
double t2_3 = 2 * (t1_1 * t1_2);
|
190
|
+
double t2_4 = 2 * (t1_1 * t1_3) + t1_2 * t1_2;
|
191
|
+
double t2_5 = 2 * (t1_1 * t1_4 + t1_2 * t1_3);
|
192
|
+
double t2_6 = 2 * (t1_2 * t1_4) + t1_3 * t1_3;
|
193
|
+
double t2_7 = 2 * (t1_3 * t1_4);
|
194
|
+
double t2_8 = t1_4 * t1_4;
|
195
|
+
double t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
|
196
|
+
double t3_6 = t2_2 * t1_4 + t2_3 * t1_3 + t2_4 * t1_2 + t2_5 * t1_1;
|
197
|
+
double t3_8 = t2_4 * t1_4 + t2_5 * t1_3 + t2_6 * t1_2 + t2_7 * t1_1;
|
198
|
+
double t3_10 = t2_6 * t1_4 + t2_7 * t1_3 + t2_8 * t1_2;
|
199
|
+
double t4_4 = t2_2 * t2_2;
|
200
|
+
double t4_5 = 2 * (t2_2 * t2_3);
|
201
|
+
double t4_6 = 2 * (t2_2 * t2_4) + t2_3 * t2_3;
|
202
|
+
double t4_7 = 2 * (t2_2 * t2_5 + t2_3 * t2_4);
|
203
|
+
double t4_8 = 2 * (t2_2 * t2_6 + t2_3 * t2_5) + t2_4 * t2_4;
|
204
|
+
double t4_9 = 2 * (t2_2 * t2_7 + t2_3 * t2_6 + t2_4 * t2_5);
|
205
|
+
double t4_10 = 2 * (t2_2 * t2_8 + t2_3 * t2_7 + t2_4 * t2_6) + t2_5 * t2_5;
|
206
|
+
double t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
|
207
|
+
double t5_8 = t4_4 * t1_4 + t4_5 * t1_3 + t4_6 * t1_2 + t4_7 * t1_1;
|
208
|
+
double t5_10 = t4_6 * t1_4 + t4_7 * t1_3 + t4_8 * t1_2 + t4_9 * t1_1;
|
209
|
+
double t6_6 = t4_4 * t2_2;
|
210
|
+
double t6_7 = t4_4 * t2_3 + t4_5 * t2_2;
|
211
|
+
double t6_8 = t4_4 * t2_4 + t4_5 * t2_3 + t4_6 * t2_2;
|
212
|
+
double t6_9 = t4_4 * t2_5 + t4_5 * t2_4 + t4_6 * t2_3 + t4_7 * t2_2;
|
213
|
+
double t6_10 = t4_4 * t2_6 + t4_5 * t2_5 + t4_6 * t2_4 + t4_7 * t2_3 + t4_8 * t2_2;
|
214
|
+
double t7_8 = t6_6 * t1_2 + t6_7 * t1_1;
|
215
|
+
double t7_10 = t6_6 * t1_4 + t6_7 * t1_3 + t6_8 * t1_2 + t6_9 * t1_1;
|
216
|
+
double t8_8 = t6_6 * t2_2;
|
217
|
+
double t8_9 = t6_6 * t2_3 + t6_7 * t2_2;
|
218
|
+
double t8_10 = t6_6 * t2_4 + t6_7 * t2_3 + t6_8 * t2_2;
|
219
|
+
double t9_10 = t8_8 * t1_2 + t8_9 * t1_1;
|
220
|
+
double t10_10 = t8_8 * t2_2;
|
221
|
+
u = 1;
|
222
|
+
v = 0;
|
223
|
+
v += (1./12) * t1_2 + (1./80) * t1_4;
|
224
|
+
u -= (1./24) * t2_2 + (1./160) * t2_4 + (1./896) * t2_6 + (1./4608) * t2_8;
|
225
|
+
v -= (1./480) * t3_4 + (1./2688) * t3_6 + (1./13824) * t3_8 + (1./67584) * t3_10;
|
226
|
+
u += (1./1920) * t4_4 + (1./10752) * t4_6 + (1./55296) * t4_8 + (1./270336) * t4_10;
|
227
|
+
v += (1./53760) * t5_6 + (1./276480) * t5_8 + (1./1.35168e+06) * t5_10;
|
228
|
+
u -= (1./322560) * t6_6 + (1./1.65888e+06) * t6_8 + (1./8.11008e+06) * t6_10;
|
229
|
+
v -= (1./1.16122e+07) * t7_8 + (1./5.67706e+07) * t7_10;
|
230
|
+
u += (1./9.28973e+07) * t8_8 + (1./4.54164e+08) * t8_10;
|
231
|
+
v += (1./4.08748e+09) * t9_10;
|
232
|
+
u -= (1./4.08748e+10) * t10_10;
|
233
|
+
#endif
|
234
|
+
|
235
|
+
#if ORDER == 14
|
236
|
+
double t1_1 = km0;
|
237
|
+
double t1_2 = .5 * km1;
|
238
|
+
double t1_3 = (1./6) * km2;
|
239
|
+
double t1_4 = (1./24) * km3;
|
240
|
+
double t2_2 = t1_1 * t1_1;
|
241
|
+
double t2_3 = 2 * (t1_1 * t1_2);
|
242
|
+
double t2_4 = 2 * (t1_1 * t1_3) + t1_2 * t1_2;
|
243
|
+
double t2_5 = 2 * (t1_1 * t1_4 + t1_2 * t1_3);
|
244
|
+
double t2_6 = 2 * (t1_2 * t1_4) + t1_3 * t1_3;
|
245
|
+
double t2_7 = 2 * (t1_3 * t1_4);
|
246
|
+
double t2_8 = t1_4 * t1_4;
|
247
|
+
double t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
|
248
|
+
double t3_6 = t2_2 * t1_4 + t2_3 * t1_3 + t2_4 * t1_2 + t2_5 * t1_1;
|
249
|
+
double t3_8 = t2_4 * t1_4 + t2_5 * t1_3 + t2_6 * t1_2 + t2_7 * t1_1;
|
250
|
+
double t3_10 = t2_6 * t1_4 + t2_7 * t1_3 + t2_8 * t1_2;
|
251
|
+
double t3_12 = t2_8 * t1_4;
|
252
|
+
double t4_4 = t2_2 * t2_2;
|
253
|
+
double t4_5 = 2 * (t2_2 * t2_3);
|
254
|
+
double t4_6 = 2 * (t2_2 * t2_4) + t2_3 * t2_3;
|
255
|
+
double t4_7 = 2 * (t2_2 * t2_5 + t2_3 * t2_4);
|
256
|
+
double t4_8 = 2 * (t2_2 * t2_6 + t2_3 * t2_5) + t2_4 * t2_4;
|
257
|
+
double t4_9 = 2 * (t2_2 * t2_7 + t2_3 * t2_6 + t2_4 * t2_5);
|
258
|
+
double t4_10 = 2 * (t2_2 * t2_8 + t2_3 * t2_7 + t2_4 * t2_6) + t2_5 * t2_5;
|
259
|
+
double t4_11 = 2 * (t2_3 * t2_8 + t2_4 * t2_7 + t2_5 * t2_6);
|
260
|
+
double t4_12 = 2 * (t2_4 * t2_8 + t2_5 * t2_7) + t2_6 * t2_6;
|
261
|
+
double t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
|
262
|
+
double t5_8 = t4_4 * t1_4 + t4_5 * t1_3 + t4_6 * t1_2 + t4_7 * t1_1;
|
263
|
+
double t5_10 = t4_6 * t1_4 + t4_7 * t1_3 + t4_8 * t1_2 + t4_9 * t1_1;
|
264
|
+
double t5_12 = t4_8 * t1_4 + t4_9 * t1_3 + t4_10 * t1_2 + t4_11 * t1_1;
|
265
|
+
double t6_6 = t4_4 * t2_2;
|
266
|
+
double t6_7 = t4_4 * t2_3 + t4_5 * t2_2;
|
267
|
+
double t6_8 = t4_4 * t2_4 + t4_5 * t2_3 + t4_6 * t2_2;
|
268
|
+
double t6_9 = t4_4 * t2_5 + t4_5 * t2_4 + t4_6 * t2_3 + t4_7 * t2_2;
|
269
|
+
double t6_10 = t4_4 * t2_6 + t4_5 * t2_5 + t4_6 * t2_4 + t4_7 * t2_3 + t4_8 * t2_2;
|
270
|
+
double t6_11 = t4_4 * t2_7 + t4_5 * t2_6 + t4_6 * t2_5 + t4_7 * t2_4 + t4_8 * t2_3 + t4_9 * t2_2;
|
271
|
+
double t6_12 = t4_4 * t2_8 + t4_5 * t2_7 + t4_6 * t2_6 + t4_7 * t2_5 + t4_8 * t2_4 + t4_9 * t2_3 + t4_10 * t2_2;
|
272
|
+
double t7_8 = t6_6 * t1_2 + t6_7 * t1_1;
|
273
|
+
double t7_10 = t6_6 * t1_4 + t6_7 * t1_3 + t6_8 * t1_2 + t6_9 * t1_1;
|
274
|
+
double t7_12 = t6_8 * t1_4 + t6_9 * t1_3 + t6_10 * t1_2 + t6_11 * t1_1;
|
275
|
+
double t8_8 = t6_6 * t2_2;
|
276
|
+
double t8_9 = t6_6 * t2_3 + t6_7 * t2_2;
|
277
|
+
double t8_10 = t6_6 * t2_4 + t6_7 * t2_3 + t6_8 * t2_2;
|
278
|
+
double t8_11 = t6_6 * t2_5 + t6_7 * t2_4 + t6_8 * t2_3 + t6_9 * t2_2;
|
279
|
+
double t8_12 = t6_6 * t2_6 + t6_7 * t2_5 + t6_8 * t2_4 + t6_9 * t2_3 + t6_10 * t2_2;
|
280
|
+
double t9_10 = t8_8 * t1_2 + t8_9 * t1_1;
|
281
|
+
double t9_12 = t8_8 * t1_4 + t8_9 * t1_3 + t8_10 * t1_2 + t8_11 * t1_1;
|
282
|
+
double t10_10 = t8_8 * t2_2;
|
283
|
+
double t10_11 = t8_8 * t2_3 + t8_9 * t2_2;
|
284
|
+
double t10_12 = t8_8 * t2_4 + t8_9 * t2_3 + t8_10 * t2_2;
|
285
|
+
double t11_12 = t10_10 * t1_2 + t10_11 * t1_1;
|
286
|
+
double t12_12 = t10_10 * t2_2;
|
287
|
+
u = 1;
|
288
|
+
v = 0;
|
289
|
+
v += (1./12) * t1_2 + (1./80) * t1_4;
|
290
|
+
u -= (1./24) * t2_2 + (1./160) * t2_4 + (1./896) * t2_6 + (1./4608) * t2_8;
|
291
|
+
v -= (1./480) * t3_4 + (1./2688) * t3_6 + (1./13824) * t3_8 + (1./67584) * t3_10 + (1./319488) * t3_12;
|
292
|
+
u += (1./1920) * t4_4 + (1./10752) * t4_6 + (1./55296) * t4_8 + (1./270336) * t4_10 + (1./1.27795e+06) * t4_12;
|
293
|
+
v += (1./53760) * t5_6 + (1./276480) * t5_8 + (1./1.35168e+06) * t5_10 + (1./6.38976e+06) * t5_12;
|
294
|
+
u -= (1./322560) * t6_6 + (1./1.65888e+06) * t6_8 + (1./8.11008e+06) * t6_10 + (1./3.83386e+07) * t6_12;
|
295
|
+
v -= (1./1.16122e+07) * t7_8 + (1./5.67706e+07) * t7_10 + (1./2.6837e+08) * t7_12;
|
296
|
+
u += (1./9.28973e+07) * t8_8 + (1./4.54164e+08) * t8_10 + (1./2.14696e+09) * t8_12;
|
297
|
+
v += (1./4.08748e+09) * t9_10 + (1./1.93226e+10) * t9_12;
|
298
|
+
u -= (1./4.08748e+10) * t10_10 + (1./1.93226e+11) * t10_12;
|
299
|
+
v -= (1./2.12549e+12) * t11_12;
|
300
|
+
u += (1./2.55059e+13) * t12_12;
|
301
|
+
#endif
|
302
|
+
|
303
|
+
#if ORDER == 16
|
304
|
+
double t1_1 = km0;
|
305
|
+
double t1_2 = .5 * km1;
|
306
|
+
double t1_3 = (1./6) * km2;
|
307
|
+
double t1_4 = (1./24) * km3;
|
308
|
+
double t2_2 = t1_1 * t1_1;
|
309
|
+
double t2_3 = 2 * (t1_1 * t1_2);
|
310
|
+
double t2_4 = 2 * (t1_1 * t1_3) + t1_2 * t1_2;
|
311
|
+
double t2_5 = 2 * (t1_1 * t1_4 + t1_2 * t1_3);
|
312
|
+
double t2_6 = 2 * (t1_2 * t1_4) + t1_3 * t1_3;
|
313
|
+
double t2_7 = 2 * (t1_3 * t1_4);
|
314
|
+
double t2_8 = t1_4 * t1_4;
|
315
|
+
double t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
|
316
|
+
double t3_6 = t2_2 * t1_4 + t2_3 * t1_3 + t2_4 * t1_2 + t2_5 * t1_1;
|
317
|
+
double t3_8 = t2_4 * t1_4 + t2_5 * t1_3 + t2_6 * t1_2 + t2_7 * t1_1;
|
318
|
+
double t3_10 = t2_6 * t1_4 + t2_7 * t1_3 + t2_8 * t1_2;
|
319
|
+
double t3_12 = t2_8 * t1_4;
|
320
|
+
double t4_4 = t2_2 * t2_2;
|
321
|
+
double t4_5 = 2 * (t2_2 * t2_3);
|
322
|
+
double t4_6 = 2 * (t2_2 * t2_4) + t2_3 * t2_3;
|
323
|
+
double t4_7 = 2 * (t2_2 * t2_5 + t2_3 * t2_4);
|
324
|
+
double t4_8 = 2 * (t2_2 * t2_6 + t2_3 * t2_5) + t2_4 * t2_4;
|
325
|
+
double t4_9 = 2 * (t2_2 * t2_7 + t2_3 * t2_6 + t2_4 * t2_5);
|
326
|
+
double t4_10 = 2 * (t2_2 * t2_8 + t2_3 * t2_7 + t2_4 * t2_6) + t2_5 * t2_5;
|
327
|
+
double t4_11 = 2 * (t2_3 * t2_8 + t2_4 * t2_7 + t2_5 * t2_6);
|
328
|
+
double t4_12 = 2 * (t2_4 * t2_8 + t2_5 * t2_7) + t2_6 * t2_6;
|
329
|
+
double t4_13 = 2 * (t2_5 * t2_8 + t2_6 * t2_7);
|
330
|
+
double t4_14 = 2 * (t2_6 * t2_8) + t2_7 * t2_7;
|
331
|
+
double t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
|
332
|
+
double t5_8 = t4_4 * t1_4 + t4_5 * t1_3 + t4_6 * t1_2 + t4_7 * t1_1;
|
333
|
+
double t5_10 = t4_6 * t1_4 + t4_7 * t1_3 + t4_8 * t1_2 + t4_9 * t1_1;
|
334
|
+
double t5_12 = t4_8 * t1_4 + t4_9 * t1_3 + t4_10 * t1_2 + t4_11 * t1_1;
|
335
|
+
double t5_14 = t4_10 * t1_4 + t4_11 * t1_3 + t4_12 * t1_2 + t4_13 * t1_1;
|
336
|
+
double t6_6 = t4_4 * t2_2;
|
337
|
+
double t6_7 = t4_4 * t2_3 + t4_5 * t2_2;
|
338
|
+
double t6_8 = t4_4 * t2_4 + t4_5 * t2_3 + t4_6 * t2_2;
|
339
|
+
double t6_9 = t4_4 * t2_5 + t4_5 * t2_4 + t4_6 * t2_3 + t4_7 * t2_2;
|
340
|
+
double t6_10 = t4_4 * t2_6 + t4_5 * t2_5 + t4_6 * t2_4 + t4_7 * t2_3 + t4_8 * t2_2;
|
341
|
+
double t6_11 = t4_4 * t2_7 + t4_5 * t2_6 + t4_6 * t2_5 + t4_7 * t2_4 + t4_8 * t2_3 + t4_9 * t2_2;
|
342
|
+
double t6_12 = t4_4 * t2_8 + t4_5 * t2_7 + t4_6 * t2_6 + t4_7 * t2_5 + t4_8 * t2_4 + t4_9 * t2_3 + t4_10 * t2_2;
|
343
|
+
double t6_13 = t4_5 * t2_8 + t4_6 * t2_7 + t4_7 * t2_6 + t4_8 * t2_5 + t4_9 * t2_4 + t4_10 * t2_3 + t4_11 * t2_2;
|
344
|
+
double t6_14 = t4_6 * t2_8 + t4_7 * t2_7 + t4_8 * t2_6 + t4_9 * t2_5 + t4_10 * t2_4 + t4_11 * t2_3 + t4_12 * t2_2;
|
345
|
+
double t7_8 = t6_6 * t1_2 + t6_7 * t1_1;
|
346
|
+
double t7_10 = t6_6 * t1_4 + t6_7 * t1_3 + t6_8 * t1_2 + t6_9 * t1_1;
|
347
|
+
double t7_12 = t6_8 * t1_4 + t6_9 * t1_3 + t6_10 * t1_2 + t6_11 * t1_1;
|
348
|
+
double t7_14 = t6_10 * t1_4 + t6_11 * t1_3 + t6_12 * t1_2 + t6_13 * t1_1;
|
349
|
+
double t8_8 = t6_6 * t2_2;
|
350
|
+
double t8_9 = t6_6 * t2_3 + t6_7 * t2_2;
|
351
|
+
double t8_10 = t6_6 * t2_4 + t6_7 * t2_3 + t6_8 * t2_2;
|
352
|
+
double t8_11 = t6_6 * t2_5 + t6_7 * t2_4 + t6_8 * t2_3 + t6_9 * t2_2;
|
353
|
+
double t8_12 = t6_6 * t2_6 + t6_7 * t2_5 + t6_8 * t2_4 + t6_9 * t2_3 + t6_10 * t2_2;
|
354
|
+
double t8_13 = t6_6 * t2_7 + t6_7 * t2_6 + t6_8 * t2_5 + t6_9 * t2_4 + t6_10 * t2_3 + t6_11 * t2_2;
|
355
|
+
double t8_14 = t6_6 * t2_8 + t6_7 * t2_7 + t6_8 * t2_6 + t6_9 * t2_5 + t6_10 * t2_4 + t6_11 * t2_3 + t6_12 * t2_2;
|
356
|
+
double t9_10 = t8_8 * t1_2 + t8_9 * t1_1;
|
357
|
+
double t9_12 = t8_8 * t1_4 + t8_9 * t1_3 + t8_10 * t1_2 + t8_11 * t1_1;
|
358
|
+
double t9_14 = t8_10 * t1_4 + t8_11 * t1_3 + t8_12 * t1_2 + t8_13 * t1_1;
|
359
|
+
double t10_10 = t8_8 * t2_2;
|
360
|
+
double t10_11 = t8_8 * t2_3 + t8_9 * t2_2;
|
361
|
+
double t10_12 = t8_8 * t2_4 + t8_9 * t2_3 + t8_10 * t2_2;
|
362
|
+
double t10_13 = t8_8 * t2_5 + t8_9 * t2_4 + t8_10 * t2_3 + t8_11 * t2_2;
|
363
|
+
double t10_14 = t8_8 * t2_6 + t8_9 * t2_5 + t8_10 * t2_4 + t8_11 * t2_3 + t8_12 * t2_2;
|
364
|
+
double t11_12 = t10_10 * t1_2 + t10_11 * t1_1;
|
365
|
+
double t11_14 = t10_10 * t1_4 + t10_11 * t1_3 + t10_12 * t1_2 + t10_13 * t1_1;
|
366
|
+
double t12_12 = t10_10 * t2_2;
|
367
|
+
double t12_13 = t10_10 * t2_3 + t10_11 * t2_2;
|
368
|
+
double t12_14 = t10_10 * t2_4 + t10_11 * t2_3 + t10_12 * t2_2;
|
369
|
+
double t13_14 = t12_12 * t1_2 + t12_13 * t1_1;
|
370
|
+
double t14_14 = t12_12 * t2_2;
|
371
|
+
u = 1;
|
372
|
+
u -= 1./24 * t2_2 + 1./160 * t2_4 + 1./896 * t2_6 + 1./4608 * t2_8;
|
373
|
+
u += 1./1920 * t4_4 + 1./10752 * t4_6 + 1./55296 * t4_8 + 1./270336 * t4_10 + 1./1277952 * t4_12 + 1./5898240 * t4_14;
|
374
|
+
u -= 1./322560 * t6_6 + 1./1658880 * t6_8 + 1./8110080 * t6_10 + 1./38338560 * t6_12 + 1./176947200 * t6_14;
|
375
|
+
u += 1./92897280 * t8_8 + 1./454164480 * t8_10 + 4.6577500191e-10 * t8_12 + 1.0091791708e-10 * t8_14;
|
376
|
+
u -= 2.4464949595e-11 * t10_10 + 5.1752777990e-12 * t10_12 + 1.1213101898e-12 * t10_14;
|
377
|
+
u += 3.9206649992e-14 * t12_12 + 8.4947741650e-15 * t12_14;
|
378
|
+
u -= 4.6674583324e-17 * t14_14;
|
379
|
+
v = 0;
|
380
|
+
v += 1./12 * t1_2 + 1./80 * t1_4;
|
381
|
+
v -= 1./480 * t3_4 + 1./2688 * t3_6 + 1./13824 * t3_8 + 1./67584 * t3_10 + 1./319488 * t3_12;
|
382
|
+
v += 1./53760 * t5_6 + 1./276480 * t5_8 + 1./1351680 * t5_10 + 1./6389760 * t5_12 + 1./29491200 * t5_14;
|
383
|
+
v -= 1./11612160 * t7_8 + 1./56770560 * t7_10 + 1./268369920 * t7_12 + 8.0734333664e-10 * t7_14;
|
384
|
+
v += 2.4464949595e-10 * t9_10 + 5.1752777990e-11 * t9_12 + 1.1213101898e-11 * t9_14;
|
385
|
+
v -= 4.7047979991e-13 * t11_12 + 1.0193728998e-13 * t11_14;
|
386
|
+
v += 6.5344416654e-16 * t13_14;
|
387
|
+
#endif
|
388
|
+
|
389
|
+
}
|
390
|
+
|
391
|
+
if (n == 1) {
|
392
|
+
#if ORDER == 2
|
393
|
+
x = 1;
|
394
|
+
y = 0;
|
395
|
+
#else
|
396
|
+
x = u;
|
397
|
+
y = v;
|
398
|
+
#endif
|
399
|
+
} else {
|
400
|
+
double th = (((th4 * s + th3) * s + th2) * s + th1) * s;
|
401
|
+
double cth = cos(th);
|
402
|
+
double sth = sin(th);
|
403
|
+
|
404
|
+
#if ORDER == 2
|
405
|
+
x += cth;
|
406
|
+
y += sth;
|
407
|
+
#else
|
408
|
+
x += cth * u - sth * v;
|
409
|
+
y += cth * v + sth * u;
|
410
|
+
#endif
|
411
|
+
s += ds;
|
412
|
+
}
|
413
|
+
}
|
414
|
+
|
415
|
+
#if ORDER == 4 || ORDER == 6
|
416
|
+
xy[0] = x * (1./24 * ds);
|
417
|
+
xy[1] = y * (1./24 * ds);
|
418
|
+
#else
|
419
|
+
xy[0] = x * ds;
|
420
|
+
xy[1] = y * ds;
|
421
|
+
#endif
|
422
|
+
}
|
423
|
+
|
424
|
+
static double
|
425
|
+
compute_ends(const double ks[4], double ends[2][4], double seg_ch)
|
426
|
+
{
|
427
|
+
double xy[2];
|
428
|
+
double ch, th;
|
429
|
+
double l, l2, l3;
|
430
|
+
double th_even, th_odd;
|
431
|
+
double k0_even, k0_odd;
|
432
|
+
double k1_even, k1_odd;
|
433
|
+
double k2_even, k2_odd;
|
434
|
+
|
435
|
+
integrate_spiro(ks, xy, N_IS);
|
436
|
+
ch = hypot(xy[0], xy[1]);
|
437
|
+
th = atan2(xy[1], xy[0]);
|
438
|
+
l = ch / seg_ch;
|
439
|
+
|
440
|
+
th_even = .5 * ks[0] + (1./48) * ks[2];
|
441
|
+
th_odd = .125 * ks[1] + (1./384) * ks[3] - th;
|
442
|
+
ends[0][0] = th_even - th_odd;
|
443
|
+
ends[1][0] = th_even + th_odd;
|
444
|
+
k0_even = l * (ks[0] + .125 * ks[2]);
|
445
|
+
k0_odd = l * (.5 * ks[1] + (1./48) * ks[3]);
|
446
|
+
ends[0][1] = k0_even - k0_odd;
|
447
|
+
ends[1][1] = k0_even + k0_odd;
|
448
|
+
l2 = l * l;
|
449
|
+
k1_even = l2 * (ks[1] + .125 * ks[3]);
|
450
|
+
k1_odd = l2 * .5 * ks[2];
|
451
|
+
ends[0][2] = k1_even - k1_odd;
|
452
|
+
ends[1][2] = k1_even + k1_odd;
|
453
|
+
l3 = l2 * l;
|
454
|
+
k2_even = l3 * ks[2];
|
455
|
+
k2_odd = l3 * .5 * ks[3];
|
456
|
+
ends[0][3] = k2_even - k2_odd;
|
457
|
+
ends[1][3] = k2_even + k2_odd;
|
458
|
+
|
459
|
+
return l;
|
460
|
+
}
|
461
|
+
|
462
|
+
static void
|
463
|
+
compute_pderivs(const spiro_seg *s, double ends[2][4], double derivs[4][2][4],
|
464
|
+
int jinc)
|
465
|
+
{
|
466
|
+
double recip_d = 2e6;
|
467
|
+
double delta = 1./ recip_d;
|
468
|
+
double try_ks[4];
|
469
|
+
double try_ends[2][4];
|
470
|
+
int i, j, k;
|
471
|
+
|
472
|
+
compute_ends(s->ks, ends, s->seg_ch);
|
473
|
+
for (i = 0; i < jinc; i++) {
|
474
|
+
for (j = 0; j < 4; j++)
|
475
|
+
try_ks[j] = s->ks[j];
|
476
|
+
try_ks[i] += delta;
|
477
|
+
compute_ends(try_ks, try_ends, s->seg_ch);
|
478
|
+
for (k = 0; k < 2; k++)
|
479
|
+
for (j = 0; j < 4; j++)
|
480
|
+
derivs[j][k][i] = recip_d * (try_ends[k][j] - ends[k][j]);
|
481
|
+
}
|
482
|
+
}
|
483
|
+
|
484
|
+
static double
|
485
|
+
mod_2pi(double th)
|
486
|
+
{
|
487
|
+
double u = th / (2 * M_PI);
|
488
|
+
return 2 * M_PI * (u - floor(u + 0.5));
|
489
|
+
}
|
490
|
+
|
491
|
+
static spiro_seg *
|
492
|
+
setup_path(const spiro_cp *src, int n)
|
493
|
+
{
|
494
|
+
int i, ilast, n_seg;
|
495
|
+
spiro_seg *r;
|
496
|
+
|
497
|
+
n_seg = src[0].ty == '{' ? n - 1 : n;
|
498
|
+
r = (spiro_seg *)malloc((n_seg + 1) * sizeof(spiro_seg));
|
499
|
+
if ( r==NULL ) return 0;
|
500
|
+
|
501
|
+
for (i = 0; i < n_seg; i++) {
|
502
|
+
r[i].x = src[i].x;
|
503
|
+
r[i].y = src[i].y;
|
504
|
+
r[i].ty = src[i].ty;
|
505
|
+
r[i].ks[0] = 0.;
|
506
|
+
r[i].ks[1] = 0.;
|
507
|
+
r[i].ks[2] = 0.;
|
508
|
+
r[i].ks[3] = 0.;
|
509
|
+
}
|
510
|
+
r[n_seg].x = src[n_seg % n].x;
|
511
|
+
r[n_seg].y = src[n_seg % n].y;
|
512
|
+
r[n_seg].ty = src[n_seg % n].ty;
|
513
|
+
|
514
|
+
#ifdef CHECK_INPUT_FINITENESS
|
515
|
+
/* Verify that input values are within realistic limits */
|
516
|
+
for (i = 0; i < n; i++) {
|
517
|
+
if (IS_FINITE(r[i].x)==0 || IS_FINITE(r[i].y)==0) {
|
518
|
+
#ifdef VERBOSE
|
519
|
+
fprintf(stderr, "ERROR: LibSpiro: #%d={'%c',%g,%g} is not finite.\n", \
|
520
|
+
i, src[i].ty, r[i].x, r[i].y);
|
521
|
+
#endif
|
522
|
+
free(r);
|
523
|
+
return 0;
|
524
|
+
}
|
525
|
+
}
|
526
|
+
#endif
|
527
|
+
|
528
|
+
for (i = 0; i < n_seg; i++) {
|
529
|
+
double dx = r[i + 1].x - r[i].x;
|
530
|
+
double dy = r[i + 1].y - r[i].y;
|
531
|
+
#ifndef CHECK_INPUT_FINITENESS
|
532
|
+
r[i].seg_ch = hypot(dx, dy);
|
533
|
+
#else
|
534
|
+
if (IS_FINITE(dx)==0 || IS_FINITE(dy)==0 || \
|
535
|
+
IS_FINITE((r[i].seg_ch = hypot(dx, dy)))==0) {
|
536
|
+
#ifdef VERBOSE
|
537
|
+
fprintf(stderr, "ERROR: LibSpiro: #%d={'%c',%g,%g} hypot error.\n", \
|
538
|
+
i, src[i].ty, r[i].x, r[i].y);
|
539
|
+
#endif
|
540
|
+
free(r);
|
541
|
+
return 0;
|
542
|
+
}
|
543
|
+
#endif
|
544
|
+
r[i].seg_th = atan2(dy, dx);
|
545
|
+
}
|
546
|
+
|
547
|
+
ilast = n_seg - 1;
|
548
|
+
for (i = 0; i < n_seg; i++) {
|
549
|
+
if (r[i].ty == '{' || r[i].ty == '}' || r[i].ty == 'v')
|
550
|
+
r[i].bend_th = 0.;
|
551
|
+
else
|
552
|
+
r[i].bend_th = mod_2pi(r[i].seg_th - r[ilast].seg_th);
|
553
|
+
ilast = i;
|
554
|
+
#ifdef VERBOSE
|
555
|
+
printf("input #%d={'%c',%g,%g}, hypot=%g, atan2=%g, bend_th=%g\n", \
|
556
|
+
i, src[i].ty, r[i].x, r[i].y, r[i]. seg_th, r[i].seg_th, r[i].bend_th);
|
557
|
+
#endif
|
558
|
+
}
|
559
|
+
#ifdef VERBOSE
|
560
|
+
if (n_seg < n)
|
561
|
+
printf("input #%d={'%c',%g,%g}\n", i, src[i].ty, r[i].x, r[i].y);
|
562
|
+
#endif
|
563
|
+
return r;
|
564
|
+
}
|
565
|
+
|
566
|
+
static void
|
567
|
+
bandec11(bandmat *m, int *perm, int n)
|
568
|
+
{
|
569
|
+
int i, j, k;
|
570
|
+
int l;
|
571
|
+
|
572
|
+
/* pack top triangle to the left. */
|
573
|
+
for (i = 0; i < 5; i++) {
|
574
|
+
for (j = 0; j < i + 6; j++)
|
575
|
+
m[i].a[j] = m[i].a[j + 5 - i];
|
576
|
+
for (; j < 11; j++)
|
577
|
+
m[i].a[j] = 0.;
|
578
|
+
}
|
579
|
+
l = 5;
|
580
|
+
for (k = 0; k < n; k++) {
|
581
|
+
int pivot = k;
|
582
|
+
double pivot_val = m[k].a[0];
|
583
|
+
double pivot_scale;
|
584
|
+
|
585
|
+
l = l < n ? l + 1 : n;
|
586
|
+
|
587
|
+
for (j = k + 1; j < l; j++)
|
588
|
+
if (fabs(m[j].a[0]) > fabs(pivot_val)) {
|
589
|
+
pivot_val = m[j].a[0];
|
590
|
+
pivot = j;
|
591
|
+
}
|
592
|
+
|
593
|
+
perm[k] = pivot;
|
594
|
+
if (pivot != k) {
|
595
|
+
for (j = 0; j < 11; j++) {
|
596
|
+
double tmp = m[k].a[j];
|
597
|
+
m[k].a[j] = m[pivot].a[j];
|
598
|
+
m[pivot].a[j] = tmp;
|
599
|
+
}
|
600
|
+
}
|
601
|
+
|
602
|
+
if (fabs(pivot_val) < 1e-12) pivot_val = 1e-12;
|
603
|
+
pivot_scale = 1. / pivot_val;
|
604
|
+
for (i = k + 1; i < l; i++) {
|
605
|
+
double x = m[i].a[0] * pivot_scale;
|
606
|
+
m[k].al[i - k - 1] = x;
|
607
|
+
for (j = 1; j < 11; j++)
|
608
|
+
m[i].a[j - 1] = m[i].a[j] - x * m[k].a[j];
|
609
|
+
m[i].a[10] = 0.;
|
610
|
+
}
|
611
|
+
}
|
612
|
+
}
|
613
|
+
|
614
|
+
static void
|
615
|
+
banbks11(const bandmat *m, const int *perm, double *v, int n)
|
616
|
+
{
|
617
|
+
int i, k, l;
|
618
|
+
|
619
|
+
/* forward substitution */
|
620
|
+
l = 5;
|
621
|
+
for (k = 0; k < n; k++) {
|
622
|
+
i = perm[k];
|
623
|
+
if (i != k) {
|
624
|
+
double tmp = v[k];
|
625
|
+
v[k] = v[i];
|
626
|
+
v[i] = tmp;
|
627
|
+
}
|
628
|
+
if (l < n) l++;
|
629
|
+
for (i = k + 1; i < l; i++)
|
630
|
+
v[i] -= m[k].al[i - k - 1] * v[k];
|
631
|
+
}
|
632
|
+
|
633
|
+
/* back substitution */
|
634
|
+
l = 1;
|
635
|
+
for (i = n - 1; i >= 0; i--) {
|
636
|
+
double x = v[i];
|
637
|
+
for (k = 1; k < l; k++)
|
638
|
+
x -= m[i].a[k] * v[k + i];
|
639
|
+
v[i] = x / m[i].a[0];
|
640
|
+
if (l < 11) l++;
|
641
|
+
}
|
642
|
+
}
|
643
|
+
|
644
|
+
static int compute_jinc(char ty0, char ty1)
|
645
|
+
{
|
646
|
+
if (ty0 == 'o' || ty1 == 'o' ||
|
647
|
+
ty0 == ']' || ty1 == '[')
|
648
|
+
return 4;
|
649
|
+
else if (ty0 == 'c' && ty1 == 'c')
|
650
|
+
return 2;
|
651
|
+
else if (((ty0 == '{' || ty0 == 'v' || ty0 == '[') && ty1 == 'c') ||
|
652
|
+
(ty0 == 'c' && (ty1 == '}' || ty1 == 'v' || ty1 == ']')))
|
653
|
+
return 1;
|
654
|
+
else
|
655
|
+
return 0;
|
656
|
+
}
|
657
|
+
|
658
|
+
static int count_vec(const spiro_seg *s, int nseg)
|
659
|
+
{
|
660
|
+
int i;
|
661
|
+
int n = 0;
|
662
|
+
|
663
|
+
for (i = 0; i < nseg; i++)
|
664
|
+
n += compute_jinc(s[i].ty, s[i + 1].ty);
|
665
|
+
return n;
|
666
|
+
}
|
667
|
+
|
668
|
+
static void
|
669
|
+
add_mat_line(bandmat *m, double *v,
|
670
|
+
double derivs[4], double x, double y, int j, int jj, int jinc,
|
671
|
+
int nmat)
|
672
|
+
{
|
673
|
+
int k;
|
674
|
+
|
675
|
+
if (jj >= 0) {
|
676
|
+
int joff = (j + 5 - jj + nmat) % nmat;
|
677
|
+
if (nmat < 6) {
|
678
|
+
joff = j + 5 - jj;
|
679
|
+
} else if (nmat == 6) {
|
680
|
+
joff = 2 + (j + 3 - jj + nmat) % nmat;
|
681
|
+
}
|
682
|
+
#ifdef VERBOSE
|
683
|
+
printf("add_mat_line j=%d jj=%d jinc=%d nmat=%d joff=%d\n", j, jj, jinc, nmat, joff);
|
684
|
+
#endif
|
685
|
+
v[jj] += x;
|
686
|
+
for (k = 0; k < jinc; k++)
|
687
|
+
m[jj].a[joff + k] += y * derivs[k];
|
688
|
+
}
|
689
|
+
}
|
690
|
+
|
691
|
+
static double
|
692
|
+
spiro_iter(spiro_seg *s, bandmat *m, int *perm, double *v, int n, int nmat)
|
693
|
+
{
|
694
|
+
int cyclic = s[0].ty != '{' && s[0].ty != 'v';
|
695
|
+
int i, j, jj;
|
696
|
+
double norm;
|
697
|
+
int n_invert;
|
698
|
+
|
699
|
+
for (i = 0; i < nmat; i++) {
|
700
|
+
v[i] = 0.;
|
701
|
+
for (j = 0; j < 11; j++)
|
702
|
+
m[i].a[j] = 0.;
|
703
|
+
for (j = 0; j < 5; j++)
|
704
|
+
m[i].al[j] = 0.;
|
705
|
+
}
|
706
|
+
|
707
|
+
j = 0;
|
708
|
+
if (s[0].ty == 'o')
|
709
|
+
jj = nmat - 2;
|
710
|
+
else if (s[0].ty == 'c')
|
711
|
+
jj = nmat - 1;
|
712
|
+
else
|
713
|
+
jj = 0;
|
714
|
+
for (i = 0; i < n; i++) {
|
715
|
+
char ty0 = s[i].ty;
|
716
|
+
char ty1 = s[i + 1].ty;
|
717
|
+
int jinc = compute_jinc(ty0, ty1);
|
718
|
+
double th = s[i].bend_th;
|
719
|
+
double ends[2][4];
|
720
|
+
double derivs[4][2][4];
|
721
|
+
int jthl = -1, jk0l = -1, jk1l = -1, jk2l = -1;
|
722
|
+
int jthr = -1, jk0r = -1, jk1r = -1, jk2r = -1;
|
723
|
+
|
724
|
+
compute_pderivs(&s[i], ends, derivs, jinc);
|
725
|
+
|
726
|
+
/* constraints crossing left */
|
727
|
+
if (ty0 == 'o' || ty0 == 'c' || ty0 == '[' || ty0 == ']') {
|
728
|
+
jthl = jj++;
|
729
|
+
jj %= nmat;
|
730
|
+
jk0l = jj++;
|
731
|
+
}
|
732
|
+
if (ty0 == 'o') {
|
733
|
+
jj %= nmat;
|
734
|
+
jk1l = jj++;
|
735
|
+
jk2l = jj++;
|
736
|
+
}
|
737
|
+
|
738
|
+
/* constraints on left */
|
739
|
+
if ((ty0 == '[' || ty0 == 'v' || ty0 == '{' || ty0 == 'c') &&
|
740
|
+
jinc == 4) {
|
741
|
+
if (ty0 != 'c')
|
742
|
+
jk1l = jj++;
|
743
|
+
jk2l = jj++;
|
744
|
+
}
|
745
|
+
|
746
|
+
/* constraints on right */
|
747
|
+
if ((ty1 == ']' || ty1 == 'v' || ty1 == '}' || ty1 == 'c') &&
|
748
|
+
jinc == 4) {
|
749
|
+
if (ty1 != 'c')
|
750
|
+
jk1r = jj++;
|
751
|
+
jk2r = jj++;
|
752
|
+
}
|
753
|
+
|
754
|
+
/* constraints crossing right */
|
755
|
+
if (ty1 == 'o' || ty1 == 'c' || ty1 == '[' || ty1 == ']') {
|
756
|
+
jthr = jj;
|
757
|
+
jk0r = (jj + 1) % nmat;
|
758
|
+
}
|
759
|
+
if (ty1 == 'o') {
|
760
|
+
jk1r = (jj + 2) % nmat;
|
761
|
+
jk2r = (jj + 3) % nmat;
|
762
|
+
}
|
763
|
+
|
764
|
+
add_mat_line(m, v, derivs[0][0], th - ends[0][0], 1, j, jthl, jinc, nmat);
|
765
|
+
add_mat_line(m, v, derivs[1][0], ends[0][1], -1, j, jk0l, jinc, nmat);
|
766
|
+
add_mat_line(m, v, derivs[2][0], ends[0][2], -1, j, jk1l, jinc, nmat);
|
767
|
+
add_mat_line(m, v, derivs[3][0], ends[0][3], -1, j, jk2l, jinc, nmat);
|
768
|
+
add_mat_line(m, v, derivs[0][1], -ends[1][0], 1, j, jthr, jinc, nmat);
|
769
|
+
add_mat_line(m, v, derivs[1][1], -ends[1][1], 1, j, jk0r, jinc, nmat);
|
770
|
+
add_mat_line(m, v, derivs[2][1], -ends[1][2], 1, j, jk1r, jinc, nmat);
|
771
|
+
add_mat_line(m, v, derivs[3][1], -ends[1][3], 1, j, jk2r, jinc, nmat);
|
772
|
+
if (jthl >= 0)
|
773
|
+
v[jthl] = mod_2pi(v[jthl]);
|
774
|
+
if (jthr >= 0)
|
775
|
+
v[jthr] = mod_2pi(v[jthr]);
|
776
|
+
j += jinc;
|
777
|
+
}
|
778
|
+
if (cyclic) {
|
779
|
+
memcpy(m + nmat, m, sizeof(bandmat) * nmat);
|
780
|
+
memcpy(m + 2 * nmat, m, sizeof(bandmat) * nmat);
|
781
|
+
memcpy(v + nmat, v, sizeof(double) * nmat);
|
782
|
+
memcpy(v + 2 * nmat, v, sizeof(double) * nmat);
|
783
|
+
n_invert = 3 * nmat;
|
784
|
+
j = nmat;
|
785
|
+
} else {
|
786
|
+
n_invert = nmat;
|
787
|
+
j = 0;
|
788
|
+
}
|
789
|
+
|
790
|
+
#ifdef VERBOSE
|
791
|
+
for (i = 0; i < n; i++) {
|
792
|
+
int k;
|
793
|
+
for (k = 0; k < 11; k++)
|
794
|
+
printf(" %2.4f", m[i].a[k]);
|
795
|
+
printf(": %2.4f\n", v[i]);
|
796
|
+
}
|
797
|
+
printf("---\n");
|
798
|
+
#endif
|
799
|
+
bandec11(m, perm, n_invert);
|
800
|
+
banbks11(m, perm, v, n_invert);
|
801
|
+
norm = 0.;
|
802
|
+
for (i = 0; i < n; i++) {
|
803
|
+
int jinc = compute_jinc(s[i].ty, s[i + 1].ty);
|
804
|
+
int k;
|
805
|
+
|
806
|
+
for (k = 0; k < jinc; k++) {
|
807
|
+
double dk = v[j++];
|
808
|
+
|
809
|
+
#ifdef VERBOSE
|
810
|
+
printf("s[%d].ks[%d] += %f\n", i, k, dk);
|
811
|
+
#endif
|
812
|
+
s[i].ks[k] += dk;
|
813
|
+
norm += dk * dk;
|
814
|
+
}
|
815
|
+
s[i].ks[0] = 2.0*mod_2pi(s[i].ks[0]/2.0);
|
816
|
+
}
|
817
|
+
return norm;
|
818
|
+
}
|
819
|
+
|
820
|
+
static int
|
821
|
+
check_finiteness(spiro_seg * segs, int num_segs)
|
822
|
+
{
|
823
|
+
/* Check if all values are "finite", return true=0, else return fail=-1 */
|
824
|
+
int i, j;
|
825
|
+
for (i = 0; i < num_segs; ++i)
|
826
|
+
for (j = 0; j < 4; ++j)
|
827
|
+
if ( IS_FINITE( segs[i].ks[j])==0 ) return -1;
|
828
|
+
return 0;
|
829
|
+
}
|
830
|
+
|
831
|
+
static int
|
832
|
+
solve_spiro(spiro_seg *s, int nseg)
|
833
|
+
{
|
834
|
+
int i, converged;
|
835
|
+
bandmat *m;
|
836
|
+
double *v;
|
837
|
+
int *perm;
|
838
|
+
int nmat = count_vec(s, nseg);
|
839
|
+
int n_alloc = nmat;
|
840
|
+
double norm;
|
841
|
+
|
842
|
+
if (nmat == 0)
|
843
|
+
return 1; /* just means no convergence problems */
|
844
|
+
if (s[0].ty != '{' && s[0].ty != 'v')
|
845
|
+
n_alloc *= 3;
|
846
|
+
if (n_alloc < 5)
|
847
|
+
n_alloc = 5;
|
848
|
+
m = (bandmat *)malloc(sizeof(bandmat) * n_alloc);
|
849
|
+
v = (double *)malloc(sizeof(double) * n_alloc);
|
850
|
+
perm = (int *)malloc(sizeof(int) * n_alloc);
|
851
|
+
|
852
|
+
i = converged = 0; /* not solved (yet) */
|
853
|
+
if ( m!=NULL && v!=NULL && perm!=NULL ) {
|
854
|
+
while (i++ < 60) {
|
855
|
+
norm = spiro_iter(s, m, perm, v, nseg, nmat);
|
856
|
+
#ifdef VERBOSE
|
857
|
+
printf("iteration #%d, %% norm = %g\n", i, norm);
|
858
|
+
#endif
|
859
|
+
if (check_finiteness(s, nseg)) break;
|
860
|
+
if (norm < 1e-12) { converged = 1; break; }
|
861
|
+
}
|
862
|
+
#ifdef VERBOSE
|
863
|
+
if (converged==0)
|
864
|
+
fprintf(stderr, "ERROR: LibSpiro: failed to converge after %d attempts to converge.\n", i);
|
865
|
+
} else {
|
866
|
+
fprintf(stderr, "ERROR: LibSpiro: failed to alloc memory.\n");
|
867
|
+
#endif
|
868
|
+
}
|
869
|
+
|
870
|
+
free(m);
|
871
|
+
free(v);
|
872
|
+
free(perm);
|
873
|
+
return converged;
|
874
|
+
}
|
875
|
+
|
876
|
+
static void
|
877
|
+
spiro_seg_to_bpath(const double ks[4],
|
878
|
+
double x0, double y0, double x1, double y1,
|
879
|
+
bezctx *bc, int depth)
|
880
|
+
{
|
881
|
+
double bend = fabs(ks[0]) + fabs(.5 * ks[1]) + fabs(.125 * ks[2]) +
|
882
|
+
fabs((1./48) * ks[3]);
|
883
|
+
|
884
|
+
if (bend <= 1e-8) {
|
885
|
+
bezctx_lineto(bc, x1, y1);
|
886
|
+
} else {
|
887
|
+
double seg_ch = hypot(x1 - x0, y1 - y0);
|
888
|
+
double seg_th = atan2(y1 - y0, x1 - x0);
|
889
|
+
double xy[2];
|
890
|
+
double ch, th;
|
891
|
+
double scale, rot;
|
892
|
+
double th_even, th_odd;
|
893
|
+
double ul, vl;
|
894
|
+
double ur, vr;
|
895
|
+
|
896
|
+
integrate_spiro(ks, xy, N_IS);
|
897
|
+
ch = hypot(xy[0], xy[1]);
|
898
|
+
th = atan2(xy[1], xy[0]);
|
899
|
+
scale = seg_ch / ch;
|
900
|
+
rot = seg_th - th;
|
901
|
+
if (depth > 5 || bend < 1.) {
|
902
|
+
th_even = (1./384) * ks[3] + (1./8) * ks[1] + rot;
|
903
|
+
th_odd = (1./48) * ks[2] + .5 * ks[0];
|
904
|
+
ul = (scale * (1./3)) * cos(th_even - th_odd);
|
905
|
+
vl = (scale * (1./3)) * sin(th_even - th_odd);
|
906
|
+
ur = (scale * (1./3)) * cos(th_even + th_odd);
|
907
|
+
vr = (scale * (1./3)) * sin(th_even + th_odd);
|
908
|
+
bezctx_curveto(bc, x0 + ul, y0 + vl, x1 - ur, y1 - vr, x1, y1);
|
909
|
+
} else {
|
910
|
+
/* subdivide */
|
911
|
+
double ksub[4];
|
912
|
+
double thsub;
|
913
|
+
double xysub[2];
|
914
|
+
double xmid, ymid;
|
915
|
+
double cth, sth;
|
916
|
+
|
917
|
+
ksub[0] = .5 * ks[0] - .125 * ks[1] + (1./64) * ks[2] - (1./768) * ks[3];
|
918
|
+
ksub[1] = .25 * ks[1] - (1./16) * ks[2] + (1./128) * ks[3];
|
919
|
+
ksub[2] = .125 * ks[2] - (1./32) * ks[3];
|
920
|
+
ksub[3] = (1./16) * ks[3];
|
921
|
+
thsub = rot - .25 * ks[0] + (1./32) * ks[1] - (1./384) * ks[2] + (1./6144) * ks[3];
|
922
|
+
cth = .5 * scale * cos(thsub);
|
923
|
+
sth = .5 * scale * sin(thsub);
|
924
|
+
integrate_spiro(ksub, xysub, N_IS);
|
925
|
+
xmid = x0 + cth * xysub[0] - sth * xysub[1];
|
926
|
+
ymid = y0 + cth * xysub[1] + sth * xysub[0];
|
927
|
+
spiro_seg_to_bpath(ksub, x0, y0, xmid, ymid, bc, depth + 1);
|
928
|
+
ksub[0] += .25 * ks[1] + (1./384) * ks[3];
|
929
|
+
ksub[1] += .125 * ks[2];
|
930
|
+
ksub[2] += (1./16) * ks[3];
|
931
|
+
spiro_seg_to_bpath(ksub, xmid, ymid, x1, y1, bc, depth + 1);
|
932
|
+
}
|
933
|
+
}
|
934
|
+
}
|
935
|
+
|
936
|
+
spiro_seg *
|
937
|
+
run_spiro(const spiro_cp *src, int n)
|
938
|
+
{
|
939
|
+
int converged, nseg;
|
940
|
+
spiro_seg *s;
|
941
|
+
|
942
|
+
if (src==NULL || n <= 0) return 0;
|
943
|
+
|
944
|
+
s = setup_path(src, n);
|
945
|
+
if (s) {
|
946
|
+
nseg = src[0].ty == '{' ? n - 1 : n;
|
947
|
+
converged = 1 ; /* this value is for when nseg == 1; else actual value determined below */
|
948
|
+
if (nseg > 1) converged = solve_spiro(s, nseg);
|
949
|
+
if (converged) return s;
|
950
|
+
free(s);
|
951
|
+
}
|
952
|
+
return 0;
|
953
|
+
}
|
954
|
+
|
955
|
+
void
|
956
|
+
free_spiro(spiro_seg *s)
|
957
|
+
{
|
958
|
+
if (s) free(s);
|
959
|
+
}
|
960
|
+
|
961
|
+
void
|
962
|
+
spiro_to_bpath(const spiro_seg *s, int n, bezctx *bc)
|
963
|
+
{
|
964
|
+
int i, nsegs;
|
965
|
+
|
966
|
+
if (s==NULL || n <= 0 || bc==NULL) return;
|
967
|
+
|
968
|
+
nsegs = s[n - 1].ty == '}' ? n - 1 : n;
|
969
|
+
|
970
|
+
for (i = 0; i < nsegs; i++) {
|
971
|
+
double x0 = s[i].x;
|
972
|
+
double y0 = s[i].y;
|
973
|
+
double x1 = s[i + 1].x;
|
974
|
+
double y1 = s[i + 1].y;
|
975
|
+
|
976
|
+
if (i == 0)
|
977
|
+
bezctx_moveto(bc, x0, y0, s[0].ty == '{');
|
978
|
+
bezctx_mark_knot(bc, i);
|
979
|
+
spiro_seg_to_bpath(s[i].ks, x0, y0, x1, y1, bc, 0);
|
980
|
+
}
|
981
|
+
}
|
982
|
+
|
983
|
+
double
|
984
|
+
get_knot_th(const spiro_seg *s, int i)
|
985
|
+
{
|
986
|
+
double ends[2][4];
|
987
|
+
|
988
|
+
if (i == 0) {
|
989
|
+
compute_ends(s[i].ks, ends, s[i].seg_ch);
|
990
|
+
return s[i].seg_th - ends[0][0];
|
991
|
+
} else {
|
992
|
+
compute_ends(s[i - 1].ks, ends, s[i - 1].seg_ch);
|
993
|
+
return s[i - 1].seg_th + ends[1][0];
|
994
|
+
}
|
995
|
+
}
|