smartcrop-rails 1.1.1 → 2.0.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/lib/smartcrop/rails/version.rb +1 -1
- data/vendor/assets/javascripts/smartcrop.js +516 -471
- metadata +3 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
|
-
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 96a12d057d28f18a7d36e002ad00d78c7aff0c578979db0634d7dd9c4e6e82ef
|
4
|
+
data.tar.gz: 5614f5178fb58dcbfd9fc4c276e84fcf06fa5e817b70744a8fa9b3c9b6d13ee9
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: bbf0b4e638ba75c31f42e8c4402390956417d12ac8b205a6b329a26254d3bb0fd949a9c17568669907f10c99c151d1f4efc6cefa1e71d37d20637fb5e0e050e2
|
7
|
+
data.tar.gz: 8bd56e65876bdaacf18fc4c211bf97971a344f50231aa112b1f04005864f6fe6ffb012da3a8eecc373c2e68b21214fd424aa6e776df9dcd08a286fed09593291
|
@@ -2,7 +2,7 @@
|
|
2
2
|
* smartcrop.js
|
3
3
|
* A javascript library implementing content aware image cropping
|
4
4
|
*
|
5
|
-
* Copyright (C)
|
5
|
+
* Copyright (C) 2018 Jonas Wagner
|
6
6
|
*
|
7
7
|
* Permission is hereby granted, free of charge, to any person obtaining
|
8
8
|
* a copy of this software and associated documentation files (the
|
@@ -25,526 +25,571 @@
|
|
25
25
|
*/
|
26
26
|
|
27
27
|
(function() {
|
28
|
-
'use strict';
|
29
|
-
|
30
|
-
var smartcrop = {};
|
31
|
-
// Promise implementation to use
|
32
|
-
smartcrop.Promise =
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
smartcrop.
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
smartcrop.crop = function(inputImage, options_, callback) {
|
75
|
-
var options = extend({}, smartcrop.DEFAULTS, options_);
|
76
|
-
|
77
|
-
if (options.aspect) {
|
78
|
-
options.width = options.aspect;
|
79
|
-
options.height = 1;
|
80
|
-
}
|
28
|
+
'use strict';
|
29
|
+
|
30
|
+
var smartcrop = {};
|
31
|
+
// Promise implementation to use
|
32
|
+
smartcrop.Promise =
|
33
|
+
typeof Promise !== 'undefined'
|
34
|
+
? Promise
|
35
|
+
: function() {
|
36
|
+
throw new Error('No native promises and smartcrop.Promise not set.');
|
37
|
+
};
|
38
|
+
|
39
|
+
smartcrop.DEFAULTS = {
|
40
|
+
width: 0,
|
41
|
+
height: 0,
|
42
|
+
aspect: 0,
|
43
|
+
cropWidth: 0,
|
44
|
+
cropHeight: 0,
|
45
|
+
detailWeight: 0.2,
|
46
|
+
skinColor: [0.78, 0.57, 0.44],
|
47
|
+
skinBias: 0.01,
|
48
|
+
skinBrightnessMin: 0.2,
|
49
|
+
skinBrightnessMax: 1.0,
|
50
|
+
skinThreshold: 0.8,
|
51
|
+
skinWeight: 1.8,
|
52
|
+
saturationBrightnessMin: 0.05,
|
53
|
+
saturationBrightnessMax: 0.9,
|
54
|
+
saturationThreshold: 0.4,
|
55
|
+
saturationBias: 0.2,
|
56
|
+
saturationWeight: 0.1,
|
57
|
+
// Step * minscale rounded down to the next power of two should be good
|
58
|
+
scoreDownSample: 8,
|
59
|
+
step: 8,
|
60
|
+
scaleStep: 0.1,
|
61
|
+
minScale: 1.0,
|
62
|
+
maxScale: 1.0,
|
63
|
+
edgeRadius: 0.4,
|
64
|
+
edgeWeight: -20.0,
|
65
|
+
outsideImportance: -0.5,
|
66
|
+
boostWeight: 100.0,
|
67
|
+
ruleOfThirds: true,
|
68
|
+
prescale: true,
|
69
|
+
imageOperations: null,
|
70
|
+
canvasFactory: defaultCanvasFactory,
|
71
|
+
// Factory: defaultFactories,
|
72
|
+
debug: false
|
73
|
+
};
|
81
74
|
|
82
|
-
|
83
|
-
options
|
84
|
-
}
|
75
|
+
smartcrop.crop = function(inputImage, options_, callback) {
|
76
|
+
var options = extend({}, smartcrop.DEFAULTS, options_);
|
85
77
|
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
var prescale = 1;
|
90
|
-
|
91
|
-
return iop.open(inputImage, options.input).then(function(image) {
|
92
|
-
|
93
|
-
if (options.width && options.height) {
|
94
|
-
scale = min(image.width / options.width, image.height / options.height);
|
95
|
-
options.cropWidth = ~~(options.width * scale);
|
96
|
-
options.cropHeight = ~~(options.height * scale);
|
97
|
-
// Img = 100x100, width = 95x95, scale = 100/95, 1/scale > min
|
98
|
-
// don't set minscale smaller than 1/scale
|
99
|
-
// -> don't pick crops that need upscaling
|
100
|
-
options.minScale = min(options.maxScale, max(1 / scale, options.minScale));
|
101
|
-
|
102
|
-
if (options.prescale !== false) {
|
103
|
-
prescale = 1 / scale / options.minScale;
|
104
|
-
if (prescale < 1) {
|
105
|
-
image = iop.resample(image, image.width * prescale, image.height * prescale);
|
106
|
-
options.cropWidth = ~~(options.cropWidth * prescale);
|
107
|
-
options.cropHeight = ~~(options.cropHeight * prescale);
|
108
|
-
if (options.boost) {
|
109
|
-
options.boost = options.boost.map(function(boost) {
|
110
|
-
return {
|
111
|
-
x: ~~(boost.x * prescale),
|
112
|
-
y: ~~(boost.y * prescale),
|
113
|
-
width: ~~(boost.width * prescale),
|
114
|
-
height: ~~(boost.height * prescale),
|
115
|
-
weight: boost.weight
|
116
|
-
};
|
117
|
-
});
|
118
|
-
}
|
119
|
-
}
|
120
|
-
else {
|
121
|
-
prescale = 1;
|
122
|
-
}
|
123
|
-
}
|
78
|
+
if (options.aspect) {
|
79
|
+
options.width = options.aspect;
|
80
|
+
options.height = 1;
|
124
81
|
}
|
125
|
-
return image;
|
126
|
-
})
|
127
|
-
.then(function(image) {
|
128
|
-
return iop.getData(image).then(function(data) {
|
129
|
-
var result = analyse(options, data);
|
130
|
-
|
131
|
-
var crops = result.crops || [result.topCrop];
|
132
|
-
for (var i = 0, iLen = crops.length; i < iLen; i++) {
|
133
|
-
var crop = crops[i];
|
134
|
-
crop.x = ~~(crop.x / prescale);
|
135
|
-
crop.y = ~~(crop.y / prescale);
|
136
|
-
crop.width = ~~(crop.width / prescale);
|
137
|
-
crop.height = ~~(crop.height / prescale);
|
138
|
-
}
|
139
|
-
if (callback) callback(result);
|
140
|
-
return result;
|
141
|
-
});
|
142
|
-
});
|
143
|
-
};
|
144
|
-
|
145
|
-
|
146
|
-
// Check if all the dependencies are there
|
147
|
-
// todo:
|
148
|
-
smartcrop.isAvailable = function(options) {
|
149
|
-
if (!smartcrop.Promise) return false;
|
150
82
|
|
151
|
-
|
152
|
-
|
153
|
-
if (canvasFactory === defaultCanvasFactory) {
|
154
|
-
var c = document.createElement('canvas');
|
155
|
-
if (!c.getContext('2d')) {
|
156
|
-
return false;
|
83
|
+
if (options.imageOperations === null) {
|
84
|
+
options.imageOperations = canvasImageOperations(options.canvasFactory);
|
157
85
|
}
|
158
|
-
}
|
159
86
|
|
160
|
-
|
161
|
-
|
87
|
+
var iop = options.imageOperations;
|
88
|
+
|
89
|
+
var scale = 1;
|
90
|
+
var prescale = 1;
|
91
|
+
|
92
|
+
// open the image
|
93
|
+
return iop
|
94
|
+
.open(inputImage, options.input)
|
95
|
+
.then(function(image) {
|
96
|
+
// calculate desired crop dimensions based on the image size
|
97
|
+
if (options.width && options.height) {
|
98
|
+
scale = min(
|
99
|
+
image.width / options.width,
|
100
|
+
image.height / options.height
|
101
|
+
);
|
102
|
+
options.cropWidth = ~~(options.width * scale);
|
103
|
+
options.cropHeight = ~~(options.height * scale);
|
104
|
+
// Img = 100x100, width = 95x95, scale = 100/95, 1/scale > min
|
105
|
+
// don't set minscale smaller than 1/scale
|
106
|
+
// -> don't pick crops that need upscaling
|
107
|
+
options.minScale = min(
|
108
|
+
options.maxScale,
|
109
|
+
max(1 / scale, options.minScale)
|
110
|
+
);
|
111
|
+
|
112
|
+
// prescale if possible
|
113
|
+
if (options.prescale !== false) {
|
114
|
+
prescale = min(max(256 / image.width, 256 / image.height), 1);
|
115
|
+
if (prescale < 1) {
|
116
|
+
image = iop.resample(
|
117
|
+
image,
|
118
|
+
image.width * prescale,
|
119
|
+
image.height * prescale
|
120
|
+
);
|
121
|
+
options.cropWidth = ~~(options.cropWidth * prescale);
|
122
|
+
options.cropHeight = ~~(options.cropHeight * prescale);
|
123
|
+
if (options.boost) {
|
124
|
+
options.boost = options.boost.map(function(boost) {
|
125
|
+
return {
|
126
|
+
x: ~~(boost.x * prescale),
|
127
|
+
y: ~~(boost.y * prescale),
|
128
|
+
width: ~~(boost.width * prescale),
|
129
|
+
height: ~~(boost.height * prescale),
|
130
|
+
weight: boost.weight
|
131
|
+
};
|
132
|
+
});
|
133
|
+
}
|
134
|
+
} else {
|
135
|
+
prescale = 1;
|
136
|
+
}
|
137
|
+
}
|
138
|
+
}
|
139
|
+
return image;
|
140
|
+
})
|
141
|
+
.then(function(image) {
|
142
|
+
return iop.getData(image).then(function(data) {
|
143
|
+
var result = analyse(options, data);
|
144
|
+
|
145
|
+
var crops = result.crops || [result.topCrop];
|
146
|
+
for (var i = 0, iLen = crops.length; i < iLen; i++) {
|
147
|
+
var crop = crops[i];
|
148
|
+
crop.x = ~~(crop.x / prescale);
|
149
|
+
crop.y = ~~(crop.y / prescale);
|
150
|
+
crop.width = ~~(crop.width / prescale);
|
151
|
+
crop.height = ~~(crop.height / prescale);
|
152
|
+
}
|
153
|
+
if (callback) callback(result);
|
154
|
+
return result;
|
155
|
+
});
|
156
|
+
});
|
157
|
+
};
|
162
158
|
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
var h = i.height;
|
159
|
+
// Check if all the dependencies are there
|
160
|
+
// todo:
|
161
|
+
smartcrop.isAvailable = function(options) {
|
162
|
+
if (!smartcrop.Promise) return false;
|
168
163
|
|
169
|
-
|
170
|
-
for (var x = 0; x < w; x++) {
|
171
|
-
var p = (y * w + x) * 4;
|
172
|
-
var lightness;
|
164
|
+
var canvasFactory = options ? options.canvasFactory : defaultCanvasFactory;
|
173
165
|
|
174
|
-
|
175
|
-
|
166
|
+
if (canvasFactory === defaultCanvasFactory) {
|
167
|
+
var c = document.createElement('canvas');
|
168
|
+
if (!c.getContext('2d')) {
|
169
|
+
return false;
|
176
170
|
}
|
177
|
-
|
178
|
-
|
171
|
+
}
|
172
|
+
|
173
|
+
return true;
|
174
|
+
};
|
175
|
+
|
176
|
+
function edgeDetect(i, o) {
|
177
|
+
var id = i.data;
|
178
|
+
var od = o.data;
|
179
|
+
var w = i.width;
|
180
|
+
var h = i.height;
|
181
|
+
|
182
|
+
for (var y = 0; y < h; y++) {
|
183
|
+
for (var x = 0; x < w; x++) {
|
184
|
+
var p = (y * w + x) * 4;
|
185
|
+
var lightness;
|
186
|
+
|
187
|
+
if (x === 0 || x >= w - 1 || y === 0 || y >= h - 1) {
|
188
|
+
lightness = sample(id, p);
|
189
|
+
} else {
|
190
|
+
lightness =
|
191
|
+
sample(id, p) * 4 -
|
179
192
|
sample(id, p - w * 4) -
|
180
193
|
sample(id, p - 4) -
|
181
194
|
sample(id, p + 4) -
|
182
195
|
sample(id, p + w * 4);
|
183
|
-
|
196
|
+
}
|
184
197
|
|
185
|
-
|
198
|
+
od[p + 1] = lightness;
|
199
|
+
}
|
186
200
|
}
|
187
201
|
}
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
202
|
+
|
203
|
+
function skinDetect(options, i, o) {
|
204
|
+
var id = i.data;
|
205
|
+
var od = o.data;
|
206
|
+
var w = i.width;
|
207
|
+
var h = i.height;
|
208
|
+
|
209
|
+
for (var y = 0; y < h; y++) {
|
210
|
+
for (var x = 0; x < w; x++) {
|
211
|
+
var p = (y * w + x) * 4;
|
212
|
+
var lightness = cie(id[p], id[p + 1], id[p + 2]) / 255;
|
213
|
+
var skin = skinColor(options, id[p], id[p + 1], id[p + 2]);
|
214
|
+
var isSkinColor = skin > options.skinThreshold;
|
215
|
+
var isSkinBrightness =
|
216
|
+
lightness >= options.skinBrightnessMin &&
|
217
|
+
lightness <= options.skinBrightnessMax;
|
218
|
+
if (isSkinColor && isSkinBrightness) {
|
219
|
+
od[p] =
|
220
|
+
(skin - options.skinThreshold) *
|
221
|
+
(255 / (1 - options.skinThreshold));
|
222
|
+
} else {
|
223
|
+
od[p] = 0;
|
224
|
+
}
|
208
225
|
}
|
209
226
|
}
|
210
227
|
}
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
228
|
+
|
229
|
+
function saturationDetect(options, i, o) {
|
230
|
+
var id = i.data;
|
231
|
+
var od = o.data;
|
232
|
+
var w = i.width;
|
233
|
+
var h = i.height;
|
234
|
+
for (var y = 0; y < h; y++) {
|
235
|
+
for (var x = 0; x < w; x++) {
|
236
|
+
var p = (y * w + x) * 4;
|
237
|
+
|
238
|
+
var lightness = cie(id[p], id[p + 1], id[p + 2]) / 255;
|
239
|
+
var sat = saturation(id[p], id[p + 1], id[p + 2]);
|
240
|
+
|
241
|
+
var acceptableSaturation = sat > options.saturationThreshold;
|
242
|
+
var acceptableLightness =
|
243
|
+
lightness >= options.saturationBrightnessMin &&
|
227
244
|
lightness <= options.saturationBrightnessMax;
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
245
|
+
if (acceptableLightness && acceptableSaturation) {
|
246
|
+
od[p + 2] =
|
247
|
+
(sat - options.saturationThreshold) *
|
248
|
+
(255 / (1 - options.saturationThreshold));
|
249
|
+
} else {
|
250
|
+
od[p + 2] = 0;
|
251
|
+
}
|
233
252
|
}
|
234
253
|
}
|
235
254
|
}
|
236
|
-
}
|
237
255
|
|
238
|
-
function applyBoosts(options, output) {
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
}
|
247
|
-
}
|
248
|
-
|
249
|
-
function applyBoost(boost, options, output) {
|
250
|
-
var od = output.data;
|
251
|
-
var w = output.width;
|
252
|
-
var x0 = ~~boost.x;
|
253
|
-
var x1 = ~~(boost.x + boost.width);
|
254
|
-
var y0 = ~~boost.y;
|
255
|
-
var y1 = ~~(boost.y + boost.height);
|
256
|
-
var weight = boost.weight * 255;
|
257
|
-
for (var y = y0; y < y1; y++) {
|
258
|
-
for (var x = x0; x < x1; x++) {
|
259
|
-
var i = (y * w + x) * 4;
|
260
|
-
od[i + 3] += weight;
|
256
|
+
function applyBoosts(options, output) {
|
257
|
+
if (!options.boost) return;
|
258
|
+
var od = output.data;
|
259
|
+
for (var i = 0; i < output.width; i += 4) {
|
260
|
+
od[i + 3] = 0;
|
261
|
+
}
|
262
|
+
for (i = 0; i < options.boost.length; i++) {
|
263
|
+
applyBoost(options.boost[i], options, output);
|
261
264
|
}
|
262
265
|
}
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
width: cropWidth * scale,
|
277
|
-
height: cropHeight * scale,
|
278
|
-
});
|
266
|
+
|
267
|
+
function applyBoost(boost, options, output) {
|
268
|
+
var od = output.data;
|
269
|
+
var w = output.width;
|
270
|
+
var x0 = ~~boost.x;
|
271
|
+
var x1 = ~~(boost.x + boost.width);
|
272
|
+
var y0 = ~~boost.y;
|
273
|
+
var y1 = ~~(boost.y + boost.height);
|
274
|
+
var weight = boost.weight * 255;
|
275
|
+
for (var y = y0; y < y1; y++) {
|
276
|
+
for (var x = x0; x < x1; x++) {
|
277
|
+
var i = (y * w + x) * 4;
|
278
|
+
od[i + 3] += weight;
|
279
279
|
}
|
280
280
|
}
|
281
281
|
}
|
282
|
-
return results;
|
283
|
-
}
|
284
|
-
|
285
|
-
function score(options, output, crop) {
|
286
|
-
var result = {
|
287
|
-
detail: 0,
|
288
|
-
saturation: 0,
|
289
|
-
skin: 0,
|
290
|
-
boost: 0,
|
291
|
-
total: 0,
|
292
|
-
};
|
293
282
|
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
var
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
283
|
+
function generateCrops(options, width, height) {
|
284
|
+
var results = [];
|
285
|
+
var minDimension = min(width, height);
|
286
|
+
var cropWidth = options.cropWidth || minDimension;
|
287
|
+
var cropHeight = options.cropHeight || minDimension;
|
288
|
+
for (
|
289
|
+
var scale = options.maxScale;
|
290
|
+
scale >= options.minScale;
|
291
|
+
scale -= options.scaleStep
|
292
|
+
) {
|
293
|
+
for (var y = 0; y + cropHeight * scale <= height; y += options.step) {
|
294
|
+
for (var x = 0; x + cropWidth * scale <= width; x += options.step) {
|
295
|
+
results.push({
|
296
|
+
x: x,
|
297
|
+
y: y,
|
298
|
+
width: cropWidth * scale,
|
299
|
+
height: cropHeight * scale
|
300
|
+
});
|
301
|
+
}
|
302
|
+
}
|
311
303
|
}
|
304
|
+
return results;
|
312
305
|
}
|
313
306
|
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
307
|
+
function score(options, output, crop) {
|
308
|
+
var result = {
|
309
|
+
detail: 0,
|
310
|
+
saturation: 0,
|
311
|
+
skin: 0,
|
312
|
+
boost: 0,
|
313
|
+
total: 0
|
314
|
+
};
|
315
|
+
|
316
|
+
var od = output.data;
|
317
|
+
var downSample = options.scoreDownSample;
|
318
|
+
var invDownSample = 1 / downSample;
|
319
|
+
var outputHeightDownSample = output.height * downSample;
|
320
|
+
var outputWidthDownSample = output.width * downSample;
|
321
|
+
var outputWidth = output.width;
|
322
|
+
|
323
|
+
for (var y = 0; y < outputHeightDownSample; y += downSample) {
|
324
|
+
for (var x = 0; x < outputWidthDownSample; x += downSample) {
|
325
|
+
var p =
|
326
|
+
(~~(y * invDownSample) * outputWidth + ~~(x * invDownSample)) * 4;
|
327
|
+
var i = importance(options, crop, x, y);
|
328
|
+
var detail = od[p + 1] / 255;
|
329
|
+
|
330
|
+
result.skin += od[p] / 255 * (detail + options.skinBias) * i;
|
331
|
+
result.detail += detail * i;
|
332
|
+
result.saturation +=
|
333
|
+
od[p + 2] / 255 * (detail + options.saturationBias) * i;
|
334
|
+
result.boost += od[p + 3] / 255 * i;
|
335
|
+
}
|
336
|
+
}
|
320
337
|
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
var py = abs(0.5 - y) * 2;
|
329
|
-
// Distance from edge
|
330
|
-
var dx = Math.max(px - 1.0 + options.edgeRadius, 0);
|
331
|
-
var dy = Math.max(py - 1.0 + options.edgeRadius, 0);
|
332
|
-
var d = (dx * dx + dy * dy) * options.edgeWeight;
|
333
|
-
var s = 1.41 - sqrt(px * px + py * py);
|
334
|
-
if (options.ruleOfThirds) {
|
335
|
-
s += (Math.max(0, s + d + 0.5) * 1.2) * (thirds(px) + thirds(py));
|
338
|
+
result.total =
|
339
|
+
(result.detail * options.detailWeight +
|
340
|
+
result.skin * options.skinWeight +
|
341
|
+
result.saturation * options.saturationWeight +
|
342
|
+
result.boost * options.boostWeight) /
|
343
|
+
(crop.width * crop.height);
|
344
|
+
return result;
|
336
345
|
}
|
337
|
-
return s + d;
|
338
|
-
}
|
339
|
-
smartcrop.importance = importance;
|
340
|
-
|
341
|
-
function skinColor(options, r, g, b) {
|
342
|
-
var mag = sqrt(r * r + g * g + b * b);
|
343
|
-
var rd = (r / mag - options.skinColor[0]);
|
344
|
-
var gd = (g / mag - options.skinColor[1]);
|
345
|
-
var bd = (b / mag - options.skinColor[2]);
|
346
|
-
var d = sqrt(rd * rd + gd * gd + bd * bd);
|
347
|
-
return 1 - d;
|
348
|
-
}
|
349
|
-
|
350
|
-
function analyse(options, input) {
|
351
|
-
var result = {};
|
352
|
-
var output = new ImgData(input.width, input.height);
|
353
|
-
|
354
|
-
edgeDetect(input, output);
|
355
|
-
skinDetect(options, input, output);
|
356
|
-
saturationDetect(options, input, output);
|
357
|
-
applyBoosts(options, output);
|
358
|
-
|
359
|
-
var scoreOutput = downSample(output, options.scoreDownSample);
|
360
|
-
|
361
|
-
var topScore = -Infinity;
|
362
|
-
var topCrop = null;
|
363
|
-
var crops = generateCrops(options, input.width, input.height);
|
364
|
-
|
365
|
-
for (var i = 0, iLen = crops.length; i < iLen; i++) {
|
366
|
-
var crop = crops[i];
|
367
|
-
crop.score = score(options, scoreOutput, crop);
|
368
|
-
if (crop.score.total > topScore) {
|
369
|
-
topCrop = crop;
|
370
|
-
topScore = crop.score.total;
|
371
|
-
}
|
372
346
|
|
347
|
+
function importance(options, crop, x, y) {
|
348
|
+
if (
|
349
|
+
crop.x > x ||
|
350
|
+
x >= crop.x + crop.width ||
|
351
|
+
crop.y > y ||
|
352
|
+
y >= crop.y + crop.height
|
353
|
+
) {
|
354
|
+
return options.outsideImportance;
|
355
|
+
}
|
356
|
+
x = (x - crop.x) / crop.width;
|
357
|
+
y = (y - crop.y) / crop.height;
|
358
|
+
var px = abs(0.5 - x) * 2;
|
359
|
+
var py = abs(0.5 - y) * 2;
|
360
|
+
// Distance from edge
|
361
|
+
var dx = Math.max(px - 1.0 + options.edgeRadius, 0);
|
362
|
+
var dy = Math.max(py - 1.0 + options.edgeRadius, 0);
|
363
|
+
var d = (dx * dx + dy * dy) * options.edgeWeight;
|
364
|
+
var s = 1.41 - sqrt(px * px + py * py);
|
365
|
+
if (options.ruleOfThirds) {
|
366
|
+
s += Math.max(0, s + d + 0.5) * 1.2 * (thirds(px) + thirds(py));
|
367
|
+
}
|
368
|
+
return s + d;
|
369
|
+
}
|
370
|
+
smartcrop.importance = importance;
|
371
|
+
|
372
|
+
function skinColor(options, r, g, b) {
|
373
|
+
var mag = sqrt(r * r + g * g + b * b);
|
374
|
+
var rd = r / mag - options.skinColor[0];
|
375
|
+
var gd = g / mag - options.skinColor[1];
|
376
|
+
var bd = b / mag - options.skinColor[2];
|
377
|
+
var d = sqrt(rd * rd + gd * gd + bd * bd);
|
378
|
+
return 1 - d;
|
373
379
|
}
|
374
380
|
|
375
|
-
|
381
|
+
function analyse(options, input) {
|
382
|
+
var result = {};
|
383
|
+
var output = new ImgData(input.width, input.height);
|
376
384
|
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
385
|
+
edgeDetect(input, output);
|
386
|
+
skinDetect(options, input, output);
|
387
|
+
saturationDetect(options, input, output);
|
388
|
+
applyBoosts(options, output);
|
389
|
+
|
390
|
+
var scoreOutput = downSample(output, options.scoreDownSample);
|
391
|
+
|
392
|
+
var topScore = -Infinity;
|
393
|
+
var topCrop = null;
|
394
|
+
var crops = generateCrops(options, input.width, input.height);
|
395
|
+
|
396
|
+
for (var i = 0, iLen = crops.length; i < iLen; i++) {
|
397
|
+
var crop = crops[i];
|
398
|
+
crop.score = score(options, scoreOutput, crop);
|
399
|
+
if (crop.score.total > topScore) {
|
400
|
+
topCrop = crop;
|
401
|
+
topScore = crop.score.total;
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
result.topCrop = topCrop;
|
406
|
+
|
407
|
+
if (options.debug && topCrop) {
|
408
|
+
result.crops = crops;
|
409
|
+
result.debugOutput = output;
|
410
|
+
result.debugOptions = options;
|
411
|
+
// Create a copy which will not be adjusted by the post scaling of smartcrop.crop
|
412
|
+
result.debugTopCrop = extend({}, result.topCrop);
|
413
|
+
}
|
414
|
+
return result;
|
392
415
|
}
|
393
|
-
|
394
|
-
|
416
|
+
|
417
|
+
function ImgData(width, height, data) {
|
418
|
+
this.width = width;
|
419
|
+
this.height = height;
|
420
|
+
if (data) {
|
421
|
+
this.data = new Uint8ClampedArray(data);
|
422
|
+
} else {
|
423
|
+
this.data = new Uint8ClampedArray(width * height * 4);
|
424
|
+
}
|
395
425
|
}
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
426
|
+
smartcrop.ImgData = ImgData;
|
427
|
+
|
428
|
+
function downSample(input, factor) {
|
429
|
+
var idata = input.data;
|
430
|
+
var iwidth = input.width;
|
431
|
+
var width = Math.floor(input.width / factor);
|
432
|
+
var height = Math.floor(input.height / factor);
|
433
|
+
var output = new ImgData(width, height);
|
434
|
+
var data = output.data;
|
435
|
+
var ifactor2 = 1 / (factor * factor);
|
436
|
+
for (var y = 0; y < height; y++) {
|
437
|
+
for (var x = 0; x < width; x++) {
|
438
|
+
var i = (y * width + x) * 4;
|
439
|
+
|
440
|
+
var r = 0;
|
441
|
+
var g = 0;
|
442
|
+
var b = 0;
|
443
|
+
var a = 0;
|
444
|
+
|
445
|
+
var mr = 0;
|
446
|
+
var mg = 0;
|
447
|
+
|
448
|
+
for (var v = 0; v < factor; v++) {
|
449
|
+
for (var u = 0; u < factor; u++) {
|
450
|
+
var j = ((y * factor + v) * iwidth + (x * factor + u)) * 4;
|
451
|
+
r += idata[j];
|
452
|
+
g += idata[j + 1];
|
453
|
+
b += idata[j + 2];
|
454
|
+
a += idata[j + 3];
|
455
|
+
mr = Math.max(mr, idata[j]);
|
456
|
+
mg = Math.max(mg, idata[j + 1]);
|
457
|
+
// unused
|
458
|
+
// mb = Math.max(mb, idata[j + 2]);
|
459
|
+
}
|
430
460
|
}
|
461
|
+
// this is some funky magic to preserve detail a bit more for
|
462
|
+
// skin (r) and detail (g). Saturation (b) does not get this boost.
|
463
|
+
data[i] = r * ifactor2 * 0.5 + mr * 0.5;
|
464
|
+
data[i + 1] = g * ifactor2 * 0.7 + mg * 0.3;
|
465
|
+
data[i + 2] = b * ifactor2;
|
466
|
+
data[i + 3] = a * ifactor2;
|
431
467
|
}
|
432
|
-
// this is some funky magic to preserve detail a bit more for
|
433
|
-
// skin (r) and detail (g). Saturation (b) does not get this boost.
|
434
|
-
data[i] = r * ifactor2 * 0.5 + mr * 0.5;
|
435
|
-
data[i + 1] = g * ifactor2 * 0.7 + mg * 0.3;
|
436
|
-
data[i + 2] = b * ifactor2;
|
437
|
-
data[i + 3] = a * ifactor2;
|
438
468
|
}
|
469
|
+
return output;
|
439
470
|
}
|
440
|
-
|
441
|
-
}
|
442
|
-
smartcrop._downSample = downSample;
|
443
|
-
|
444
|
-
function defaultCanvasFactory(w, h) {
|
445
|
-
var c = document.createElement('canvas');
|
446
|
-
c.width = w;
|
447
|
-
c.height = h;
|
448
|
-
return c;
|
449
|
-
}
|
450
|
-
|
451
|
-
function canvasImageOperations(canvasFactory) {
|
452
|
-
return {
|
453
|
-
// Takes imageInput as argument
|
454
|
-
// returns an object which has at least
|
455
|
-
// {width: n, height: n}
|
456
|
-
open: function(image) {
|
457
|
-
// Work around images scaled in css by drawing them onto a canvas
|
458
|
-
var w = image.naturalWidth || image.width;
|
459
|
-
var h = image.naturalHeight || image.height;
|
460
|
-
var c = canvasFactory(w, h);
|
461
|
-
var ctx = c.getContext('2d');
|
462
|
-
if (image.naturalWidth && (image.naturalWidth != image.width || image.naturalHeight != image.height)) {
|
463
|
-
c.width = image.naturalWidth;
|
464
|
-
c.height = image.naturalHeight;
|
465
|
-
}
|
466
|
-
else {
|
467
|
-
c.width = image.width;
|
468
|
-
c.height = image.height;
|
469
|
-
}
|
470
|
-
ctx.drawImage(image, 0, 0);
|
471
|
-
return smartcrop.Promise.resolve(c);
|
472
|
-
},
|
473
|
-
// Takes an image (as returned by open), and changes it's size by resampling
|
474
|
-
resample: function(image, width, height) {
|
475
|
-
return Promise.resolve(image).then(function(image) {
|
476
|
-
var c = canvasFactory(~~width, ~~height);
|
477
|
-
var ctx = c.getContext('2d');
|
471
|
+
smartcrop._downSample = downSample;
|
478
472
|
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
473
|
+
function defaultCanvasFactory(w, h) {
|
474
|
+
var c = document.createElement('canvas');
|
475
|
+
c.width = w;
|
476
|
+
c.height = h;
|
477
|
+
return c;
|
478
|
+
}
|
479
|
+
|
480
|
+
function canvasImageOperations(canvasFactory) {
|
481
|
+
return {
|
482
|
+
// Takes imageInput as argument
|
483
|
+
// returns an object which has at least
|
484
|
+
// {width: n, height: n}
|
485
|
+
open: function(image) {
|
486
|
+
// Work around images scaled in css by drawing them onto a canvas
|
487
|
+
var w = image.naturalWidth || image.width;
|
488
|
+
var h = image.naturalHeight || image.height;
|
489
|
+
var c = canvasFactory(w, h);
|
485
490
|
var ctx = c.getContext('2d');
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
function
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
491
|
+
if (
|
492
|
+
image.naturalWidth &&
|
493
|
+
(image.naturalWidth != image.width ||
|
494
|
+
image.naturalHeight != image.height)
|
495
|
+
) {
|
496
|
+
c.width = image.naturalWidth;
|
497
|
+
c.height = image.naturalHeight;
|
498
|
+
} else {
|
499
|
+
c.width = image.width;
|
500
|
+
c.height = image.height;
|
501
|
+
}
|
502
|
+
ctx.drawImage(image, 0, 0);
|
503
|
+
return smartcrop.Promise.resolve(c);
|
504
|
+
},
|
505
|
+
// Takes an image (as returned by open), and changes it's size by resampling
|
506
|
+
resample: function(image, width, height) {
|
507
|
+
return Promise.resolve(image).then(function(image) {
|
508
|
+
var c = canvasFactory(~~width, ~~height);
|
509
|
+
var ctx = c.getContext('2d');
|
510
|
+
|
511
|
+
ctx.drawImage(
|
512
|
+
image,
|
513
|
+
0,
|
514
|
+
0,
|
515
|
+
image.width,
|
516
|
+
image.height,
|
517
|
+
0,
|
518
|
+
0,
|
519
|
+
c.width,
|
520
|
+
c.height
|
521
|
+
);
|
522
|
+
return smartcrop.Promise.resolve(c);
|
523
|
+
});
|
524
|
+
},
|
525
|
+
getData: function(image) {
|
526
|
+
return Promise.resolve(image).then(function(c) {
|
527
|
+
var ctx = c.getContext('2d');
|
528
|
+
var id = ctx.getImageData(0, 0, c.width, c.height);
|
529
|
+
return new ImgData(c.width, c.height, id.data);
|
530
|
+
});
|
531
|
+
}
|
532
|
+
};
|
533
|
+
}
|
534
|
+
smartcrop._canvasImageOperations = canvasImageOperations;
|
535
|
+
|
536
|
+
// Aliases and helpers
|
537
|
+
var min = Math.min;
|
538
|
+
var max = Math.max;
|
539
|
+
var abs = Math.abs;
|
540
|
+
var sqrt = Math.sqrt;
|
541
|
+
|
542
|
+
function extend(o) {
|
543
|
+
for (var i = 1, iLen = arguments.length; i < iLen; i++) {
|
544
|
+
var arg = arguments[i];
|
545
|
+
if (arg) {
|
546
|
+
for (var name in arg) {
|
547
|
+
o[name] = arg[name];
|
548
|
+
}
|
507
549
|
}
|
508
550
|
}
|
551
|
+
return o;
|
509
552
|
}
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
function cie(r, g, b) {
|
521
|
-
return 0.5126 * b + 0.7152 * g + 0.0722 * r;
|
522
|
-
}
|
523
|
-
function sample(id, p) {
|
524
|
-
return cie(id[p], id[p + 1], id[p + 2]);
|
525
|
-
}
|
526
|
-
function saturation(r, g, b) {
|
527
|
-
var maximum = max(r / 255, g / 255, b / 255);
|
528
|
-
var minumum = min(r / 255, g / 255, b / 255);
|
529
|
-
|
530
|
-
if (maximum === minumum) {
|
531
|
-
return 0;
|
553
|
+
|
554
|
+
// Gets value in the range of [0, 1] where 0 is the center of the pictures
|
555
|
+
// returns weight of rule of thirds [0, 1]
|
556
|
+
function thirds(x) {
|
557
|
+
x = (((x - 1 / 3 + 1.0) % 2.0) * 0.5 - 0.5) * 16;
|
558
|
+
return Math.max(1.0 - x * x, 0.0);
|
559
|
+
}
|
560
|
+
|
561
|
+
function cie(r, g, b) {
|
562
|
+
return 0.5126 * b + 0.7152 * g + 0.0722 * r;
|
532
563
|
}
|
564
|
+
function sample(id, p) {
|
565
|
+
return cie(id[p], id[p + 1], id[p + 2]);
|
566
|
+
}
|
567
|
+
function saturation(r, g, b) {
|
568
|
+
var maximum = max(r / 255, g / 255, b / 255);
|
569
|
+
var minumum = min(r / 255, g / 255, b / 255);
|
570
|
+
|
571
|
+
if (maximum === minumum) {
|
572
|
+
return 0;
|
573
|
+
}
|
533
574
|
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
}
|
539
|
-
|
540
|
-
// Amd
|
541
|
-
if (typeof define !== 'undefined' && define.amd)
|
542
|
-
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
if (typeof
|
548
|
-
|
549
|
-
|
550
|
-
|
575
|
+
var l = (maximum + minumum) / 2;
|
576
|
+
var d = maximum - minumum;
|
577
|
+
|
578
|
+
return l > 0.5 ? d / (2 - maximum - minumum) : d / (maximum + minumum);
|
579
|
+
}
|
580
|
+
|
581
|
+
// Amd
|
582
|
+
if (typeof define !== 'undefined' && define.amd)
|
583
|
+
define(function() {
|
584
|
+
return smartcrop;
|
585
|
+
});
|
586
|
+
// Common js
|
587
|
+
if (typeof exports !== 'undefined') exports.smartcrop = smartcrop;
|
588
|
+
else if (typeof navigator !== 'undefined')
|
589
|
+
// Browser
|
590
|
+
window.SmartCrop = window.smartcrop = smartcrop;
|
591
|
+
// Nodejs
|
592
|
+
if (typeof module !== 'undefined') {
|
593
|
+
module.exports = smartcrop;
|
594
|
+
}
|
595
|
+
})();
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: smartcrop-rails
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 2.0.3.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Mohammed Sadiq
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2018-05-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -80,7 +80,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
80
80
|
version: '0'
|
81
81
|
requirements: []
|
82
82
|
rubyforge_project:
|
83
|
-
rubygems_version: 2.6
|
83
|
+
rubygems_version: 2.7.6
|
84
84
|
signing_key:
|
85
85
|
specification_version: 4
|
86
86
|
summary: ''
|