simple_neural_network 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/layer.rb +74 -0
- data/lib/network.rb +154 -0
- data/lib/neuron.rb +23 -0
- data/lib/simple_neural_network.rb +3 -0
- metadata +47 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 4ddf41db0522abafd12d51c425246499522c36cd
|
4
|
+
data.tar.gz: 4b576ca87629cd9d98845b3d02c2c41e0a700cf1
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: d11cff2d470e190617dc1ed71b3db48d6585b65b728e9c6490dcc4711535febc34c16130461bfedc1c871b63938906685c36ca34aef2e7882067eb5fdbff17ef
|
7
|
+
data.tar.gz: 6e69176cc45847c10af9d662d70964ca0ff5e868bc1a7dff32ff6ff7f9b0fc1cec62dfd6567f10206f33b5b7a951fc7e30e7a55aa7f7ec86b133c956f370b633
|
data/lib/layer.rb
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
require_relative "neuron"
|
2
|
+
|
3
|
+
class SimpleNeuralNetwork
|
4
|
+
class Layer
|
5
|
+
# Number of neurons
|
6
|
+
attr_accessor :size
|
7
|
+
|
8
|
+
attr_accessor :prev_layer
|
9
|
+
attr_accessor :next_layer
|
10
|
+
|
11
|
+
# List of #{size} neurons
|
12
|
+
attr_accessor :neurons
|
13
|
+
|
14
|
+
attr_accessor :network
|
15
|
+
|
16
|
+
def initialize(size, network)
|
17
|
+
@size = size
|
18
|
+
@neurons = []
|
19
|
+
@network = network
|
20
|
+
|
21
|
+
@prev_layer = nil
|
22
|
+
@next_layer = nil
|
23
|
+
|
24
|
+
populate_neurons
|
25
|
+
end
|
26
|
+
|
27
|
+
# The method that drives network output resolution.
|
28
|
+
# get_output calculates the array of neuron values for this layer.
|
29
|
+
# This is calculated by recursively fetching the output from the previous layer, then applying edge/node weight and bias rules.
|
30
|
+
# The first layer will fetch it's values from @network.inputs
|
31
|
+
def get_output
|
32
|
+
if !prev_layer
|
33
|
+
# This is the first layer, so the output set is simply the network input set
|
34
|
+
@network.inputs
|
35
|
+
else
|
36
|
+
# Each neuron output value is calculated by:
|
37
|
+
# output[i] = (
|
38
|
+
# (prev_layer.neurons[0] * prev_layer.neurons[0].edges[i])
|
39
|
+
# + (prev_layer.neurons[1] * prev_layer.neurons[1].edges[i])
|
40
|
+
# + ...
|
41
|
+
# ) + self.neurons[i].bias
|
42
|
+
|
43
|
+
prev_layer_output = prev_layer.get_output
|
44
|
+
|
45
|
+
# Generate the output values for the layer
|
46
|
+
(0..@size-1).map do |i|
|
47
|
+
value = 0
|
48
|
+
|
49
|
+
prev_layer_output.each_with_index do |output, index|
|
50
|
+
value += (output * prev_layer.neurons[index].edges[i])
|
51
|
+
end
|
52
|
+
|
53
|
+
value + @neurons[i].bias
|
54
|
+
end
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
def initialize_neuron_edges
|
59
|
+
return unless @next_layer
|
60
|
+
|
61
|
+
@neurons.each do |neuron|
|
62
|
+
neuron.initialize_edges(@next_layer.size)
|
63
|
+
end
|
64
|
+
end
|
65
|
+
|
66
|
+
private
|
67
|
+
|
68
|
+
def populate_neurons
|
69
|
+
@size.times do
|
70
|
+
@neurons << Neuron.new(layer: self)
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
74
|
+
end
|
data/lib/network.rb
ADDED
@@ -0,0 +1,154 @@
|
|
1
|
+
require_relative "layer"
|
2
|
+
require 'json'
|
3
|
+
|
4
|
+
# To properly initialze a network:
|
5
|
+
# - Initialize the new Network object
|
6
|
+
# - Create layers using Network#create_layer
|
7
|
+
# (This creates layers from left to right, input -> hidden layers -> output layer)
|
8
|
+
|
9
|
+
# Sample usage:
|
10
|
+
#
|
11
|
+
# network = SimpleNeuralNetwork::Network.new
|
12
|
+
#
|
13
|
+
# network.create_layer(neurons: 10)
|
14
|
+
# network.create_layer(neurons: 2)
|
15
|
+
|
16
|
+
# network.run([0.5]*10)
|
17
|
+
|
18
|
+
class SimpleNeuralNetwork
|
19
|
+
class Network
|
20
|
+
class InvalidInputError < StandardError; end
|
21
|
+
# An array of layers
|
22
|
+
attr_accessor :layers
|
23
|
+
|
24
|
+
attr_accessor :inputs
|
25
|
+
|
26
|
+
attr_writer :normalization_function
|
27
|
+
|
28
|
+
attr_accessor :edge_initialization_function
|
29
|
+
attr_accessor :neuron_bias_initialization_function
|
30
|
+
|
31
|
+
def initialize
|
32
|
+
@layers = []
|
33
|
+
@inputs = []
|
34
|
+
|
35
|
+
@normalization_function = method(:default_normalization_function)
|
36
|
+
@edge_initialization_function = method(:default_edge_initialization_function)
|
37
|
+
@neuron_bias_initialization_function = method(:default_neuron_bias_initialization_function)
|
38
|
+
end
|
39
|
+
|
40
|
+
# Run an input set against the neural network.
|
41
|
+
# Accepts an array of input integers between 0 and 1
|
42
|
+
# Input array length must be equal to the size of the first layer.
|
43
|
+
# Returns an array of outputs.
|
44
|
+
def run(inputs)
|
45
|
+
unless inputs.size == input_size && inputs.all? { |input| input >= 0 && input <= 1 }
|
46
|
+
raise InvalidInputError.new("Invalid input passed to Network#run")
|
47
|
+
end
|
48
|
+
|
49
|
+
@inputs = inputs
|
50
|
+
|
51
|
+
# Get output from last layer. It recursively depends on layers before it.
|
52
|
+
@layers[-1].get_output.map do |output|
|
53
|
+
@normalization_function.call(output)
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
# Returns the number of input nodes
|
58
|
+
def input_size
|
59
|
+
@layers[0].size
|
60
|
+
end
|
61
|
+
|
62
|
+
# Returns the number of output nodes
|
63
|
+
def output_size
|
64
|
+
@layers[-1].size
|
65
|
+
end
|
66
|
+
|
67
|
+
def create_layer(neurons:)
|
68
|
+
unless @layers.empty?
|
69
|
+
new_layer = Layer.new(neurons, self)
|
70
|
+
prev_layer = @layers.last
|
71
|
+
|
72
|
+
@layers << new_layer
|
73
|
+
|
74
|
+
new_layer.prev_layer = prev_layer
|
75
|
+
prev_layer.next_layer = new_layer
|
76
|
+
|
77
|
+
prev_layer.initialize_neuron_edges
|
78
|
+
else
|
79
|
+
@layers << Layer.new(neurons, self)
|
80
|
+
end
|
81
|
+
end
|
82
|
+
|
83
|
+
def reset_normalization_function
|
84
|
+
@normalization_function = method(:default_normalization_function)
|
85
|
+
end
|
86
|
+
|
87
|
+
# Serializes the neural network into a JSON string. This can later be deserialized back into a Network object
|
88
|
+
# Useful for storing partially trained neural networks.
|
89
|
+
# Note: Currently does not serialize bias init function, edge init function, or normalization function
|
90
|
+
def serialize
|
91
|
+
{
|
92
|
+
layers: layers.map do |layer|
|
93
|
+
{
|
94
|
+
neurons: layer.neurons.map do |neuron|
|
95
|
+
{
|
96
|
+
bias: neuron.bias.to_f,
|
97
|
+
edges: neuron.edges.map(&:to_f)
|
98
|
+
}
|
99
|
+
end
|
100
|
+
}
|
101
|
+
end
|
102
|
+
}.to_json
|
103
|
+
end
|
104
|
+
|
105
|
+
# Deserialize a JSON neural network back into a Ruby object
|
106
|
+
# Note that the normalization function will need to be reset.
|
107
|
+
# Normalization function serialization in the future would be cool.
|
108
|
+
def self.deserialize(string)
|
109
|
+
hash = JSON.parse(string)
|
110
|
+
|
111
|
+
network = Network.new
|
112
|
+
|
113
|
+
hash["layers"].each do |layer|
|
114
|
+
neurons_array = layer["neurons"]
|
115
|
+
layer = Layer.new(neurons_array.length, network)
|
116
|
+
network.layers << layer
|
117
|
+
|
118
|
+
layer.neurons.each_with_index do |neuron, index|
|
119
|
+
neuron_hash = neurons_array[index]
|
120
|
+
|
121
|
+
neuron.bias = neuron_hash["bias"].to_f
|
122
|
+
neuron.edges = neuron_hash["edges"].map(&:to_f)
|
123
|
+
end
|
124
|
+
end
|
125
|
+
|
126
|
+
network.layers.each_with_index do |layer, index|
|
127
|
+
unless index == 0
|
128
|
+
layer.prev_layer = network.layers[index - 1]
|
129
|
+
end
|
130
|
+
|
131
|
+
layer.next_layer = network.layers[index + 1]
|
132
|
+
end
|
133
|
+
|
134
|
+
network
|
135
|
+
end
|
136
|
+
|
137
|
+
private
|
138
|
+
|
139
|
+
# The default normalization function for the network output
|
140
|
+
# The standard logistic sigmoid function
|
141
|
+
# f(x) = 1 / (1 + e^(-x))
|
142
|
+
def default_normalization_function(output)
|
143
|
+
1 / (1 + (Math::E ** (-1 * output)))
|
144
|
+
end
|
145
|
+
|
146
|
+
def default_edge_initialization_function
|
147
|
+
rand(-5..5)
|
148
|
+
end
|
149
|
+
|
150
|
+
def default_neuron_bias_initialization_function
|
151
|
+
0
|
152
|
+
end
|
153
|
+
end
|
154
|
+
end
|
data/lib/neuron.rb
ADDED
@@ -0,0 +1,23 @@
|
|
1
|
+
class SimpleNeuralNetwork
|
2
|
+
class Neuron
|
3
|
+
attr_accessor :bias
|
4
|
+
|
5
|
+
# A neuron's edges connect it to the #{layer.next_layer.size} neurons of the next layer
|
6
|
+
attr_accessor :edges
|
7
|
+
|
8
|
+
def initialize(layer:)
|
9
|
+
@layer = layer
|
10
|
+
@bias = layer.network.neuron_bias_initialization_function.call
|
11
|
+
@edges = []
|
12
|
+
end
|
13
|
+
|
14
|
+
# A neuron should have one edge per neuron in the next layer
|
15
|
+
def initialize_edges(next_layer_size)
|
16
|
+
init_function = @layer.network.edge_initialization_function
|
17
|
+
|
18
|
+
next_layer_size.times do
|
19
|
+
@edges << init_function.call
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
metadata
ADDED
@@ -0,0 +1,47 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: simple_neural_network
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Nathaniel Woodthorpe
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-03-11 00:00:00.000000000 Z
|
12
|
+
dependencies: []
|
13
|
+
description: A simple neural network implementation in Ruby.
|
14
|
+
email: njwoodthorpe@gmail.com
|
15
|
+
executables: []
|
16
|
+
extensions: []
|
17
|
+
extra_rdoc_files: []
|
18
|
+
files:
|
19
|
+
- lib/layer.rb
|
20
|
+
- lib/network.rb
|
21
|
+
- lib/neuron.rb
|
22
|
+
- lib/simple_neural_network.rb
|
23
|
+
homepage: https://github.com/d12/SimpleNeuralNetwork
|
24
|
+
licenses:
|
25
|
+
- MIT
|
26
|
+
metadata: {}
|
27
|
+
post_install_message:
|
28
|
+
rdoc_options: []
|
29
|
+
require_paths:
|
30
|
+
- lib
|
31
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
32
|
+
requirements:
|
33
|
+
- - ">="
|
34
|
+
- !ruby/object:Gem::Version
|
35
|
+
version: '0'
|
36
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
requirements: []
|
42
|
+
rubyforge_project:
|
43
|
+
rubygems_version: 2.5.2
|
44
|
+
signing_key:
|
45
|
+
specification_version: 4
|
46
|
+
summary: A simple neural network implementation in Ruby.
|
47
|
+
test_files: []
|