simple_neural_network 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 4ddf41db0522abafd12d51c425246499522c36cd
4
+ data.tar.gz: 4b576ca87629cd9d98845b3d02c2c41e0a700cf1
5
+ SHA512:
6
+ metadata.gz: d11cff2d470e190617dc1ed71b3db48d6585b65b728e9c6490dcc4711535febc34c16130461bfedc1c871b63938906685c36ca34aef2e7882067eb5fdbff17ef
7
+ data.tar.gz: 6e69176cc45847c10af9d662d70964ca0ff5e868bc1a7dff32ff6ff7f9b0fc1cec62dfd6567f10206f33b5b7a951fc7e30e7a55aa7f7ec86b133c956f370b633
data/lib/layer.rb ADDED
@@ -0,0 +1,74 @@
1
+ require_relative "neuron"
2
+
3
+ class SimpleNeuralNetwork
4
+ class Layer
5
+ # Number of neurons
6
+ attr_accessor :size
7
+
8
+ attr_accessor :prev_layer
9
+ attr_accessor :next_layer
10
+
11
+ # List of #{size} neurons
12
+ attr_accessor :neurons
13
+
14
+ attr_accessor :network
15
+
16
+ def initialize(size, network)
17
+ @size = size
18
+ @neurons = []
19
+ @network = network
20
+
21
+ @prev_layer = nil
22
+ @next_layer = nil
23
+
24
+ populate_neurons
25
+ end
26
+
27
+ # The method that drives network output resolution.
28
+ # get_output calculates the array of neuron values for this layer.
29
+ # This is calculated by recursively fetching the output from the previous layer, then applying edge/node weight and bias rules.
30
+ # The first layer will fetch it's values from @network.inputs
31
+ def get_output
32
+ if !prev_layer
33
+ # This is the first layer, so the output set is simply the network input set
34
+ @network.inputs
35
+ else
36
+ # Each neuron output value is calculated by:
37
+ # output[i] = (
38
+ # (prev_layer.neurons[0] * prev_layer.neurons[0].edges[i])
39
+ # + (prev_layer.neurons[1] * prev_layer.neurons[1].edges[i])
40
+ # + ...
41
+ # ) + self.neurons[i].bias
42
+
43
+ prev_layer_output = prev_layer.get_output
44
+
45
+ # Generate the output values for the layer
46
+ (0..@size-1).map do |i|
47
+ value = 0
48
+
49
+ prev_layer_output.each_with_index do |output, index|
50
+ value += (output * prev_layer.neurons[index].edges[i])
51
+ end
52
+
53
+ value + @neurons[i].bias
54
+ end
55
+ end
56
+ end
57
+
58
+ def initialize_neuron_edges
59
+ return unless @next_layer
60
+
61
+ @neurons.each do |neuron|
62
+ neuron.initialize_edges(@next_layer.size)
63
+ end
64
+ end
65
+
66
+ private
67
+
68
+ def populate_neurons
69
+ @size.times do
70
+ @neurons << Neuron.new(layer: self)
71
+ end
72
+ end
73
+ end
74
+ end
data/lib/network.rb ADDED
@@ -0,0 +1,154 @@
1
+ require_relative "layer"
2
+ require 'json'
3
+
4
+ # To properly initialze a network:
5
+ # - Initialize the new Network object
6
+ # - Create layers using Network#create_layer
7
+ # (This creates layers from left to right, input -> hidden layers -> output layer)
8
+
9
+ # Sample usage:
10
+ #
11
+ # network = SimpleNeuralNetwork::Network.new
12
+ #
13
+ # network.create_layer(neurons: 10)
14
+ # network.create_layer(neurons: 2)
15
+
16
+ # network.run([0.5]*10)
17
+
18
+ class SimpleNeuralNetwork
19
+ class Network
20
+ class InvalidInputError < StandardError; end
21
+ # An array of layers
22
+ attr_accessor :layers
23
+
24
+ attr_accessor :inputs
25
+
26
+ attr_writer :normalization_function
27
+
28
+ attr_accessor :edge_initialization_function
29
+ attr_accessor :neuron_bias_initialization_function
30
+
31
+ def initialize
32
+ @layers = []
33
+ @inputs = []
34
+
35
+ @normalization_function = method(:default_normalization_function)
36
+ @edge_initialization_function = method(:default_edge_initialization_function)
37
+ @neuron_bias_initialization_function = method(:default_neuron_bias_initialization_function)
38
+ end
39
+
40
+ # Run an input set against the neural network.
41
+ # Accepts an array of input integers between 0 and 1
42
+ # Input array length must be equal to the size of the first layer.
43
+ # Returns an array of outputs.
44
+ def run(inputs)
45
+ unless inputs.size == input_size && inputs.all? { |input| input >= 0 && input <= 1 }
46
+ raise InvalidInputError.new("Invalid input passed to Network#run")
47
+ end
48
+
49
+ @inputs = inputs
50
+
51
+ # Get output from last layer. It recursively depends on layers before it.
52
+ @layers[-1].get_output.map do |output|
53
+ @normalization_function.call(output)
54
+ end
55
+ end
56
+
57
+ # Returns the number of input nodes
58
+ def input_size
59
+ @layers[0].size
60
+ end
61
+
62
+ # Returns the number of output nodes
63
+ def output_size
64
+ @layers[-1].size
65
+ end
66
+
67
+ def create_layer(neurons:)
68
+ unless @layers.empty?
69
+ new_layer = Layer.new(neurons, self)
70
+ prev_layer = @layers.last
71
+
72
+ @layers << new_layer
73
+
74
+ new_layer.prev_layer = prev_layer
75
+ prev_layer.next_layer = new_layer
76
+
77
+ prev_layer.initialize_neuron_edges
78
+ else
79
+ @layers << Layer.new(neurons, self)
80
+ end
81
+ end
82
+
83
+ def reset_normalization_function
84
+ @normalization_function = method(:default_normalization_function)
85
+ end
86
+
87
+ # Serializes the neural network into a JSON string. This can later be deserialized back into a Network object
88
+ # Useful for storing partially trained neural networks.
89
+ # Note: Currently does not serialize bias init function, edge init function, or normalization function
90
+ def serialize
91
+ {
92
+ layers: layers.map do |layer|
93
+ {
94
+ neurons: layer.neurons.map do |neuron|
95
+ {
96
+ bias: neuron.bias.to_f,
97
+ edges: neuron.edges.map(&:to_f)
98
+ }
99
+ end
100
+ }
101
+ end
102
+ }.to_json
103
+ end
104
+
105
+ # Deserialize a JSON neural network back into a Ruby object
106
+ # Note that the normalization function will need to be reset.
107
+ # Normalization function serialization in the future would be cool.
108
+ def self.deserialize(string)
109
+ hash = JSON.parse(string)
110
+
111
+ network = Network.new
112
+
113
+ hash["layers"].each do |layer|
114
+ neurons_array = layer["neurons"]
115
+ layer = Layer.new(neurons_array.length, network)
116
+ network.layers << layer
117
+
118
+ layer.neurons.each_with_index do |neuron, index|
119
+ neuron_hash = neurons_array[index]
120
+
121
+ neuron.bias = neuron_hash["bias"].to_f
122
+ neuron.edges = neuron_hash["edges"].map(&:to_f)
123
+ end
124
+ end
125
+
126
+ network.layers.each_with_index do |layer, index|
127
+ unless index == 0
128
+ layer.prev_layer = network.layers[index - 1]
129
+ end
130
+
131
+ layer.next_layer = network.layers[index + 1]
132
+ end
133
+
134
+ network
135
+ end
136
+
137
+ private
138
+
139
+ # The default normalization function for the network output
140
+ # The standard logistic sigmoid function
141
+ # f(x) = 1 / (1 + e^(-x))
142
+ def default_normalization_function(output)
143
+ 1 / (1 + (Math::E ** (-1 * output)))
144
+ end
145
+
146
+ def default_edge_initialization_function
147
+ rand(-5..5)
148
+ end
149
+
150
+ def default_neuron_bias_initialization_function
151
+ 0
152
+ end
153
+ end
154
+ end
data/lib/neuron.rb ADDED
@@ -0,0 +1,23 @@
1
+ class SimpleNeuralNetwork
2
+ class Neuron
3
+ attr_accessor :bias
4
+
5
+ # A neuron's edges connect it to the #{layer.next_layer.size} neurons of the next layer
6
+ attr_accessor :edges
7
+
8
+ def initialize(layer:)
9
+ @layer = layer
10
+ @bias = layer.network.neuron_bias_initialization_function.call
11
+ @edges = []
12
+ end
13
+
14
+ # A neuron should have one edge per neuron in the next layer
15
+ def initialize_edges(next_layer_size)
16
+ init_function = @layer.network.edge_initialization_function
17
+
18
+ next_layer_size.times do
19
+ @edges << init_function.call
20
+ end
21
+ end
22
+ end
23
+ end
@@ -0,0 +1,3 @@
1
+ class SimpleNeuralNetwork
2
+ require "network"
3
+ end
metadata ADDED
@@ -0,0 +1,47 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: simple_neural_network
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - Nathaniel Woodthorpe
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2018-03-11 00:00:00.000000000 Z
12
+ dependencies: []
13
+ description: A simple neural network implementation in Ruby.
14
+ email: njwoodthorpe@gmail.com
15
+ executables: []
16
+ extensions: []
17
+ extra_rdoc_files: []
18
+ files:
19
+ - lib/layer.rb
20
+ - lib/network.rb
21
+ - lib/neuron.rb
22
+ - lib/simple_neural_network.rb
23
+ homepage: https://github.com/d12/SimpleNeuralNetwork
24
+ licenses:
25
+ - MIT
26
+ metadata: {}
27
+ post_install_message:
28
+ rdoc_options: []
29
+ require_paths:
30
+ - lib
31
+ required_ruby_version: !ruby/object:Gem::Requirement
32
+ requirements:
33
+ - - ">="
34
+ - !ruby/object:Gem::Version
35
+ version: '0'
36
+ required_rubygems_version: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - ">="
39
+ - !ruby/object:Gem::Version
40
+ version: '0'
41
+ requirements: []
42
+ rubyforge_project:
43
+ rubygems_version: 2.5.2
44
+ signing_key:
45
+ specification_version: 4
46
+ summary: A simple neural network implementation in Ruby.
47
+ test_files: []