sc2ai-kdtree 0.4.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.github/workflows/ci.yml +16 -0
- data/.gitignore +70 -0
- data/Gemfile +2 -0
- data/LICENSE +20 -0
- data/README.md +5 -0
- data/Rakefile +41 -0
- data/ext/kdtree/extconf.rb +3 -0
- data/ext/kdtree/kdtree.c +505 -0
- data/kdtree.gemspec +22 -0
- data/lib/kdtree.rb +1 -0
- data/test/test_kdtree.rb +148 -0
- metadata +86 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 1b02e78ec134ea010fae56b8e79c189453f5d2e62aa932c553366463f336ef88
|
4
|
+
data.tar.gz: bda73cdbdf514e92593e06738573a1389f4a1f190a29281a2a342dab71ff007e
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 30b32791ff9d76b5bf24d9b28730dfa72fa41c68b2bd7972511a75de782a48244caccb27e29a371c6373805bfcd7359d4867027763c922a7575625d1f186f562
|
7
|
+
data.tar.gz: 9fb55e05aef40736c61ca61e84d8d21de7df357e82419281feca054920da557af3122794d3d5fd50787f7d5d596497bb1be1a8df24e810764150677940478247
|
@@ -0,0 +1,16 @@
|
|
1
|
+
name: ci
|
2
|
+
on: [push]
|
3
|
+
jobs:
|
4
|
+
test:
|
5
|
+
runs-on: ubuntu-latest
|
6
|
+
strategy:
|
7
|
+
fail-fast: false
|
8
|
+
matrix:
|
9
|
+
ruby: [2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, head]
|
10
|
+
steps:
|
11
|
+
- uses: actions/checkout@v2
|
12
|
+
- uses: ruby/setup-ruby@v1
|
13
|
+
with:
|
14
|
+
ruby-version: ${{ matrix.ruby }}
|
15
|
+
bundler-cache: true # bundle install
|
16
|
+
- run: bundle exec rake
|
data/.gitignore
ADDED
@@ -0,0 +1,70 @@
|
|
1
|
+
*.gem
|
2
|
+
.ruby-version
|
3
|
+
Gemfile.lock
|
4
|
+
lib/*.so
|
5
|
+
lib/kdtree.bundle
|
6
|
+
tmp
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
*.rbc
|
11
|
+
/.config
|
12
|
+
/coverage/
|
13
|
+
/InstalledFiles
|
14
|
+
/pkg/
|
15
|
+
/spec/reports/
|
16
|
+
/spec/examples.txt
|
17
|
+
/test/tmp/
|
18
|
+
/test/version_tmp/
|
19
|
+
/tmp/
|
20
|
+
|
21
|
+
# rspec failure tracking
|
22
|
+
.rspec_status
|
23
|
+
|
24
|
+
# Used by dotenv library to load environment variables.
|
25
|
+
.env
|
26
|
+
|
27
|
+
# Ignore Byebug command history file.
|
28
|
+
.byebug_history
|
29
|
+
|
30
|
+
## Specific to RubyMotion:
|
31
|
+
.dat*
|
32
|
+
.repl_history
|
33
|
+
build/
|
34
|
+
*.bridgesupport
|
35
|
+
build-iPhoneOS/
|
36
|
+
build-iPhoneSimulator/
|
37
|
+
|
38
|
+
## Specific to RubyMotion (use of CocoaPods):
|
39
|
+
#
|
40
|
+
# We recommend against adding the Pods directory to your .gitignore. However
|
41
|
+
# you should judge for yourself, the pros and cons are mentioned at:
|
42
|
+
# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-control
|
43
|
+
#
|
44
|
+
# vendor/Pods/
|
45
|
+
|
46
|
+
## Specific to RubyMine
|
47
|
+
/.idea
|
48
|
+
|
49
|
+
## Documentation cache and generated files:
|
50
|
+
/.yardoc/
|
51
|
+
/_yardoc/
|
52
|
+
/doc/
|
53
|
+
/rdoc/
|
54
|
+
|
55
|
+
## Environment normalization:
|
56
|
+
/.bundle/
|
57
|
+
/vendor/bundle
|
58
|
+
/lib/bundler/man/
|
59
|
+
|
60
|
+
# for a library or gem, you might want to ignore these files since the code is
|
61
|
+
# intended to run in multiple environments; otherwise, check them in:
|
62
|
+
.ruby-gemset
|
63
|
+
|
64
|
+
# unless supporting rvm < 1.11.0 or doing something fancy, ignore this:
|
65
|
+
.rvmrc
|
66
|
+
|
67
|
+
# Used by RuboCop. Remote config files pulled in from inherit_from directive.
|
68
|
+
# .rubocop-https?--*
|
69
|
+
|
70
|
+
|
data/Gemfile
ADDED
data/LICENSE
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
Copyright (c) 2012 Adam Doppelt
|
2
|
+
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
4
|
+
a copy of this software and associated documentation files (the
|
5
|
+
"Software"), to deal in the Software without restriction, including
|
6
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
7
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
8
|
+
permit persons to whom the Software is furnished to do so, subject to
|
9
|
+
the following conditions:
|
10
|
+
|
11
|
+
The above copyright notice and this permission notice shall be
|
12
|
+
included in all copies or substantial portions of the Software.
|
13
|
+
|
14
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
15
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
16
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
17
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
18
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
19
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
20
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
data/Rakefile
ADDED
@@ -0,0 +1,41 @@
|
|
1
|
+
require "bundler/setup"
|
2
|
+
require "rake/extensiontask"
|
3
|
+
require "rake/testtask"
|
4
|
+
|
5
|
+
# load the spec, we use it below
|
6
|
+
spec = Gem::Specification.load("kdtree.gemspec")
|
7
|
+
|
8
|
+
#
|
9
|
+
# gem
|
10
|
+
#
|
11
|
+
|
12
|
+
task :build do
|
13
|
+
system "gem build --quiet kdtree.gemspec"
|
14
|
+
end
|
15
|
+
|
16
|
+
task install: :build do
|
17
|
+
system "sudo gem install --quiet sc2ai-kdtree-#{spec.version}.gem"
|
18
|
+
end
|
19
|
+
|
20
|
+
task release: :build do
|
21
|
+
system "git tag -a #{spec.version} -m 'Tagging #{spec.version}'"
|
22
|
+
system "git push --tags"
|
23
|
+
system "gem push kdtree-#{spec.version}.gem"
|
24
|
+
end
|
25
|
+
|
26
|
+
#
|
27
|
+
# rake-compiler
|
28
|
+
#
|
29
|
+
|
30
|
+
Rake::ExtensionTask.new("kdtree", spec)
|
31
|
+
|
32
|
+
|
33
|
+
#
|
34
|
+
# testing
|
35
|
+
#
|
36
|
+
|
37
|
+
Rake::TestTask.new(:test) do |test|
|
38
|
+
test.libs << "test"
|
39
|
+
end
|
40
|
+
task test: :compile
|
41
|
+
task default: :test
|
data/ext/kdtree/kdtree.c
ADDED
@@ -0,0 +1,505 @@
|
|
1
|
+
#include "ruby.h"
|
2
|
+
|
3
|
+
//
|
4
|
+
// interface
|
5
|
+
//
|
6
|
+
|
7
|
+
// the tree itself
|
8
|
+
typedef struct kdtree_data
|
9
|
+
{
|
10
|
+
int root;
|
11
|
+
int len;
|
12
|
+
struct kdtree_node *nodes;
|
13
|
+
} kdtree_data;
|
14
|
+
|
15
|
+
// a node in the tree
|
16
|
+
typedef struct kdtree_node
|
17
|
+
{
|
18
|
+
float x, y;
|
19
|
+
int id;
|
20
|
+
int left;
|
21
|
+
int right;
|
22
|
+
} kdtree_node;
|
23
|
+
|
24
|
+
// a result node from kdtree_nearestk0
|
25
|
+
typedef struct kresult {
|
26
|
+
int index;
|
27
|
+
float distance;
|
28
|
+
} kresult;
|
29
|
+
|
30
|
+
// helper macro for digging out our struct
|
31
|
+
#define KDTREEP \
|
32
|
+
struct kdtree_data *kdtreep; \
|
33
|
+
Data_Get_Struct(kdtree, struct kdtree_data, kdtreep);
|
34
|
+
|
35
|
+
// kdtree public methods
|
36
|
+
static VALUE kdtree_alloc(VALUE klass);
|
37
|
+
static void kdtree_free(struct kdtree_data *kdtreep);
|
38
|
+
static VALUE kdtree_initialize(VALUE kdtree, VALUE points);
|
39
|
+
static VALUE kdtree_nearest(VALUE kdtree, VALUE x, VALUE y);
|
40
|
+
static VALUE kdtree_nearestk(VALUE kdtree, VALUE x, VALUE y, VALUE k);
|
41
|
+
static VALUE kdtree_persist(VALUE kdtree, VALUE io);
|
42
|
+
static VALUE kdtree_to_s(VALUE kdtree);
|
43
|
+
|
44
|
+
// kdtree helpers
|
45
|
+
static int kdtree_build(struct kdtree_data *kdtreep, int min, int max, int depth);
|
46
|
+
static void kdtree_nearest0(struct kdtree_data *kdtreep, int i, float x, float y, int depth, int *n_index, float *n_dist);
|
47
|
+
static void kdtree_nearestk0(struct kdtree_data *kdtreep, int i, float x, float y, int k, int depth, kresult *k_list, int *k_len, float *k_dist);
|
48
|
+
|
49
|
+
// io helpers
|
50
|
+
static void read_all(VALUE io, void *buf, int len);
|
51
|
+
static void write_all(VALUE io, const void *buf, int len);
|
52
|
+
|
53
|
+
#define KDTREE_MAGIC "KdTr"
|
54
|
+
|
55
|
+
// ids
|
56
|
+
static ID id_read, id_write, id_binmode;
|
57
|
+
|
58
|
+
//
|
59
|
+
// implementation
|
60
|
+
//
|
61
|
+
|
62
|
+
static VALUE kdtree_alloc(VALUE klass)
|
63
|
+
{
|
64
|
+
struct kdtree_data *kdtreep;
|
65
|
+
VALUE obj = Data_Make_Struct(klass, struct kdtree_data, 0, kdtree_free, kdtreep);
|
66
|
+
kdtreep->root = -1;
|
67
|
+
return obj;
|
68
|
+
}
|
69
|
+
|
70
|
+
static void kdtree_free(struct kdtree_data *kdtreep)
|
71
|
+
{
|
72
|
+
if (kdtreep) {
|
73
|
+
free(kdtreep->nodes);
|
74
|
+
}
|
75
|
+
}
|
76
|
+
|
77
|
+
/*
|
78
|
+
* call-seq:
|
79
|
+
* Kdtree.new(points) => kdtree
|
80
|
+
* Kdtree.new(io) => kdtree
|
81
|
+
*
|
82
|
+
* Returns a new <code>Kdtree</code>. To construct a tree, pass an array of
|
83
|
+
* <i>points</i>. Each point should be an array of the form <code>[x, y,
|
84
|
+
* id]</code>, where <i>x</i> and <i>y</i> are floats and <i>id</i> is an
|
85
|
+
* integer. The <i>id</i> is arbitrary and will be returned to you whenever you
|
86
|
+
* search with nearest or nearestk.
|
87
|
+
*
|
88
|
+
* # create a new tree
|
89
|
+
* points = []
|
90
|
+
* points << [47.6, -122.3, 1] # Seattle
|
91
|
+
* points << [40.7, -74.0, 2] # New York
|
92
|
+
* kd = Kdtree.new(points)
|
93
|
+
*
|
94
|
+
* Alternately, you can pass in an <i>IO</i> object containing a persisted
|
95
|
+
* kdtree. This makes it possible to build the tree in advance, persist it, and
|
96
|
+
* start it up quickly later. See persist for more information.
|
97
|
+
*/
|
98
|
+
static VALUE kdtree_initialize(VALUE kdtree, VALUE arg)
|
99
|
+
{
|
100
|
+
KDTREEP;
|
101
|
+
|
102
|
+
if (TYPE(arg) == T_ARRAY) {
|
103
|
+
// init from array of pints
|
104
|
+
VALUE points = arg;
|
105
|
+
int i;
|
106
|
+
kdtreep->len = (int)RARRAY_LEN(points);
|
107
|
+
kdtreep->nodes = ALLOC_N(struct kdtree_node, kdtreep->len);
|
108
|
+
|
109
|
+
for (i = 0; i < RARRAY_LEN(points); ++i) {
|
110
|
+
struct kdtree_node *n = kdtreep->nodes + i;
|
111
|
+
|
112
|
+
VALUE ptr = rb_ary_entry(points, i);
|
113
|
+
VALUE v = rb_check_array_type(ptr);
|
114
|
+
if (NIL_P(v) || RARRAY_LEN(v) != 3) {
|
115
|
+
continue;
|
116
|
+
}
|
117
|
+
n->x = NUM2DBL(rb_ary_entry(v, 0));
|
118
|
+
n->y = NUM2DBL(rb_ary_entry(v, 1));
|
119
|
+
n->id = NUM2INT(rb_ary_entry(v, 2));
|
120
|
+
}
|
121
|
+
|
122
|
+
// now build the tree
|
123
|
+
kdtreep->root = kdtree_build(kdtreep, 0, kdtreep->len, 0);
|
124
|
+
} else if (rb_respond_to(arg, rb_intern("read"))) {
|
125
|
+
VALUE io = arg;
|
126
|
+
char buf[4];
|
127
|
+
if (rb_respond_to(io, id_binmode)) {
|
128
|
+
rb_funcall(io, id_binmode, 0);
|
129
|
+
}
|
130
|
+
|
131
|
+
// check magic
|
132
|
+
read_all(io, buf, 4);
|
133
|
+
if (memcmp(KDTREE_MAGIC, buf, 4) != 0) {
|
134
|
+
rb_raise(rb_eRuntimeError, "wrong magic number in kdtree file");
|
135
|
+
}
|
136
|
+
|
137
|
+
// read start of the struct
|
138
|
+
read_all(io, kdtreep, sizeof(struct kdtree_data) - sizeof(struct kdtree_node *));
|
139
|
+
|
140
|
+
// read the nodes
|
141
|
+
kdtreep->nodes = ALLOC_N(struct kdtree_node, kdtreep->len);
|
142
|
+
read_all(io, kdtreep->nodes, sizeof(struct kdtree_node) * kdtreep->len);
|
143
|
+
} else {
|
144
|
+
rb_raise(rb_eTypeError, "array or IO required to init Kdtree");
|
145
|
+
}
|
146
|
+
|
147
|
+
return kdtree;
|
148
|
+
}
|
149
|
+
|
150
|
+
static int comparex(const void *pa, const void *pb)
|
151
|
+
{
|
152
|
+
float a = ((const struct kdtree_node*)pa)->x;
|
153
|
+
float b = ((const struct kdtree_node*)pb)->x;
|
154
|
+
return (a < b) ? -1 : ((a > b) ? 1 : 0);
|
155
|
+
}
|
156
|
+
|
157
|
+
static int comparey(const void *pa, const void *pb)
|
158
|
+
{
|
159
|
+
float a = ((const struct kdtree_node*)pa)->y;
|
160
|
+
float b = ((const struct kdtree_node*)pb)->y;
|
161
|
+
return (a < b) ? -1 : ((a > b) ? 1 : 0);
|
162
|
+
}
|
163
|
+
|
164
|
+
static int kdtree_build(struct kdtree_data *kdtreep, int min, int max, int depth)
|
165
|
+
{
|
166
|
+
int(*compar)(const void *, const void *);
|
167
|
+
struct kdtree_node *m;
|
168
|
+
int median;
|
169
|
+
if (max <= min) {
|
170
|
+
return -1;
|
171
|
+
}
|
172
|
+
|
173
|
+
// sort nodes from min to max
|
174
|
+
compar = (depth % 2) ? comparex : comparey;
|
175
|
+
qsort(kdtreep->nodes + min, max - min, sizeof(struct kdtree_node), compar);
|
176
|
+
|
177
|
+
median = (min + max) / 2;
|
178
|
+
m = kdtreep->nodes + median;
|
179
|
+
m->left = kdtree_build(kdtreep, min, median, depth + 1);
|
180
|
+
m->right = kdtree_build(kdtreep, median + 1, max, depth + 1);
|
181
|
+
return median;
|
182
|
+
}
|
183
|
+
|
184
|
+
/*
|
185
|
+
* call-seq:
|
186
|
+
* kd.nearest(x, y) => id
|
187
|
+
*
|
188
|
+
* Finds the point closest to <i>x</i>, <i>y</i> and returns the id for that
|
189
|
+
* point. Returns -1 if the tree is empty.
|
190
|
+
*
|
191
|
+
* points = []
|
192
|
+
* points << [47.6, -122.3, 1] # Seattle
|
193
|
+
* points << [40.7, -74.0, 2] # New York
|
194
|
+
* kd = Kdtree.new(points)
|
195
|
+
*
|
196
|
+
* # which city is closest to Portland?
|
197
|
+
* kd.nearest(45.5, -122.8) #=> 1
|
198
|
+
* # which city is closest to Boston?
|
199
|
+
* kd.nearest(42.4, -71.1) #=> 2
|
200
|
+
*/
|
201
|
+
static VALUE kdtree_nearest(VALUE kdtree, VALUE x, VALUE y)
|
202
|
+
{
|
203
|
+
int n_index;
|
204
|
+
float n_dist;
|
205
|
+
KDTREEP;
|
206
|
+
|
207
|
+
n_index = -1;
|
208
|
+
n_dist = INT_MAX;
|
209
|
+
|
210
|
+
kdtree_nearest0(kdtreep, kdtreep->root, NUM2DBL(x), NUM2DBL(y), 0, &n_index, &n_dist);
|
211
|
+
if (n_index == -1) {
|
212
|
+
return -1;
|
213
|
+
}
|
214
|
+
return INT2NUM((kdtreep->nodes + n_index)->id);
|
215
|
+
}
|
216
|
+
|
217
|
+
static void kdtree_nearest0(struct kdtree_data *kdtreep, int i, float x, float y, int depth, int *n_index, float *n_dist)
|
218
|
+
{
|
219
|
+
struct kdtree_node *n;
|
220
|
+
float ad;
|
221
|
+
int nearer, further;
|
222
|
+
float dx;
|
223
|
+
|
224
|
+
if (i == -1) {
|
225
|
+
return;
|
226
|
+
}
|
227
|
+
|
228
|
+
n = kdtreep->nodes + i;
|
229
|
+
|
230
|
+
ad = (depth % 2) ? (x - n->x) : (y - n->y);
|
231
|
+
|
232
|
+
//
|
233
|
+
// recurse near, and perhaps far as well
|
234
|
+
//
|
235
|
+
|
236
|
+
if (ad <= 0) {
|
237
|
+
nearer = n->left; further = n->right;
|
238
|
+
} else {
|
239
|
+
nearer = n->right; further = n->left;
|
240
|
+
}
|
241
|
+
kdtree_nearest0(kdtreep, nearer, x, y, depth + 1, n_index, n_dist);
|
242
|
+
if (ad * ad < *n_dist) {
|
243
|
+
kdtree_nearest0(kdtreep, further, x, y, depth + 1, n_index, n_dist);
|
244
|
+
}
|
245
|
+
|
246
|
+
//
|
247
|
+
// do we beat the old distance?
|
248
|
+
//
|
249
|
+
|
250
|
+
dx = (x - n->x) * (x - n->x);
|
251
|
+
if (dx < *n_dist) {
|
252
|
+
float d = dx + ((y - n->y) * (y - n->y));
|
253
|
+
if (d < *n_dist) {
|
254
|
+
*n_index = i;
|
255
|
+
*n_dist = d;
|
256
|
+
}
|
257
|
+
}
|
258
|
+
}
|
259
|
+
|
260
|
+
//
|
261
|
+
// nearestK
|
262
|
+
//
|
263
|
+
|
264
|
+
#define MAX_K 255
|
265
|
+
|
266
|
+
/*
|
267
|
+
* call-seq:
|
268
|
+
* kd.nearestk(x, y, k) => array
|
269
|
+
*
|
270
|
+
* Finds the <i>k</i> points closest to <i>x</i>, <i>y</i>. Returns an array of
|
271
|
+
* ids, sorted by distance. Returns an empty array if the tree is empty. Note
|
272
|
+
* that <i>k</i> is capped at 255.
|
273
|
+
*
|
274
|
+
* points = []
|
275
|
+
* points << [47.6, -122.3, 1] # Seattle
|
276
|
+
* points << [45.5, -122.8, 2] # Portland
|
277
|
+
* points << [40.7, -74.0, 3] # New York
|
278
|
+
* kd = Kdtree.new(points)
|
279
|
+
*
|
280
|
+
* # which two cities are closest to San Francisco?
|
281
|
+
* kd.nearestk(34.1, -118.2, 2) #=> [2, 1]
|
282
|
+
*/
|
283
|
+
static VALUE kdtree_nearestk(VALUE kdtree, VALUE x, VALUE y, VALUE k)
|
284
|
+
{
|
285
|
+
// note I leave an extra slot here at the end because of the way our binary insert works
|
286
|
+
kresult k_list[MAX_K + 1];
|
287
|
+
int k_len = 0;
|
288
|
+
float k_dist = INT_MAX;
|
289
|
+
int ki = NUM2INT(k);
|
290
|
+
VALUE ary;
|
291
|
+
int i;
|
292
|
+
KDTREEP;
|
293
|
+
|
294
|
+
if (ki < 1) {
|
295
|
+
ki = 1;
|
296
|
+
} else if (ki > MAX_K) {
|
297
|
+
ki = MAX_K;
|
298
|
+
}
|
299
|
+
kdtree_nearestk0(kdtreep, kdtreep->root, NUM2DBL(x), NUM2DBL(y), ki, 0, k_list, &k_len, &k_dist);
|
300
|
+
|
301
|
+
// convert result to ruby array
|
302
|
+
ary = rb_ary_new();
|
303
|
+
for (i = 0; i < k_len; ++i) {
|
304
|
+
rb_ary_push(ary, INT2NUM(kdtreep->nodes[k_list[i].index].id));
|
305
|
+
}
|
306
|
+
return ary;
|
307
|
+
}
|
308
|
+
|
309
|
+
static void kdtree_nearestk0(struct kdtree_data *kdtreep, int i, float x, float y, int k, int depth, kresult *k_list, int *k_len, float *k_dist)
|
310
|
+
{
|
311
|
+
struct kdtree_node *n;
|
312
|
+
float ad;
|
313
|
+
int nearer, further;
|
314
|
+
float dx;
|
315
|
+
int lo, hi;
|
316
|
+
|
317
|
+
if (i == -1) {
|
318
|
+
return;
|
319
|
+
}
|
320
|
+
|
321
|
+
n = kdtreep->nodes + i;
|
322
|
+
|
323
|
+
ad = (depth % 2) ? (x - n->x) : (y - n->y);
|
324
|
+
|
325
|
+
//
|
326
|
+
// recurse near, and then perhaps far as well
|
327
|
+
//
|
328
|
+
|
329
|
+
if (ad <= 0) {
|
330
|
+
nearer = n->left; further = n->right;
|
331
|
+
} else {
|
332
|
+
nearer = n->right; further = n->left;
|
333
|
+
}
|
334
|
+
kdtree_nearestk0(kdtreep, nearer, x, y, k, depth + 1, k_list, k_len, k_dist);
|
335
|
+
if (ad * ad < *k_dist) {
|
336
|
+
kdtree_nearestk0(kdtreep, further, x, y, k, depth + 1, k_list, k_len, k_dist);
|
337
|
+
}
|
338
|
+
//
|
339
|
+
// do we beat the old distance?
|
340
|
+
//
|
341
|
+
|
342
|
+
dx = (x - n->x) * (x - n->x);
|
343
|
+
if (dx < *k_dist) {
|
344
|
+
float d = dx + ((y - n->y) * (y - n->y));
|
345
|
+
if (d < *k_dist) {
|
346
|
+
//
|
347
|
+
// find spot to insert
|
348
|
+
//
|
349
|
+
lo = 0, hi = *k_len;
|
350
|
+
while (lo < hi) {
|
351
|
+
int mid = (lo + hi) / 2;
|
352
|
+
if (k_list[mid].distance < d) {
|
353
|
+
lo = mid + 1;
|
354
|
+
} else {
|
355
|
+
hi = mid;
|
356
|
+
}
|
357
|
+
}
|
358
|
+
|
359
|
+
//
|
360
|
+
// insert
|
361
|
+
//
|
362
|
+
|
363
|
+
memmove(k_list + lo + 1, k_list + lo, (*k_len - lo) * sizeof(struct kresult));
|
364
|
+
k_list[lo].index = i;
|
365
|
+
k_list[lo].distance = d;
|
366
|
+
|
367
|
+
//
|
368
|
+
// adjust len/dist if necessary
|
369
|
+
//
|
370
|
+
|
371
|
+
if (*k_len < k) {
|
372
|
+
++(*k_len);
|
373
|
+
} else {
|
374
|
+
*k_dist = k_list[k - 1].distance;
|
375
|
+
}
|
376
|
+
}
|
377
|
+
}
|
378
|
+
}
|
379
|
+
|
380
|
+
/*
|
381
|
+
* call-seq:
|
382
|
+
* kd.persist(io)
|
383
|
+
*
|
384
|
+
* Writes the tree out to <i>io</i> so you can quickly load it later with
|
385
|
+
* Kdtree.new. This avoids the startup cost of initializing a tree. Apart from a
|
386
|
+
* small header, the size of the file is proportional to the number of points,
|
387
|
+
* requiring 20 bytes per point.
|
388
|
+
*
|
389
|
+
* This file is <b>NOT PORTABLE</b> across different architectures due to endian
|
390
|
+
* issues.
|
391
|
+
*
|
392
|
+
* points = []
|
393
|
+
* points << [47.6, -122.3, 1] # Seattle
|
394
|
+
* points << [45.5, -122.8, 2] # Portland
|
395
|
+
* points << [40.7, -74.0, 3] # New York
|
396
|
+
* kd = Kdtree.new(points)
|
397
|
+
*
|
398
|
+
* # persist the tree to disk
|
399
|
+
* File.open("treefile", "w") { |f| kd.persist(f) }
|
400
|
+
*
|
401
|
+
* ...
|
402
|
+
*
|
403
|
+
* # later, read the tree from disk
|
404
|
+
* kd2 = File.open("treefile") { |f| Kdtree.new(f) }
|
405
|
+
*/
|
406
|
+
static VALUE kdtree_persist(VALUE kdtree, VALUE io)
|
407
|
+
{
|
408
|
+
KDTREEP;
|
409
|
+
|
410
|
+
if (!rb_respond_to(io, rb_intern("write"))) {
|
411
|
+
rb_raise(rb_eTypeError, "instance of IO needed");
|
412
|
+
}
|
413
|
+
if (rb_respond_to(io, id_binmode)) {
|
414
|
+
rb_funcall(io, id_binmode, 0);
|
415
|
+
}
|
416
|
+
|
417
|
+
write_all(io, KDTREE_MAGIC, 4);
|
418
|
+
write_all(io, kdtreep, sizeof(struct kdtree_data) - sizeof(struct kdtree_node *));
|
419
|
+
write_all(io, kdtreep->nodes, sizeof(struct kdtree_node) * kdtreep->len);
|
420
|
+
return io;
|
421
|
+
}
|
422
|
+
|
423
|
+
/*
|
424
|
+
* call-seq:
|
425
|
+
* kd.to_s => string
|
426
|
+
*
|
427
|
+
* A string that tells you a bit about the tree.
|
428
|
+
*/
|
429
|
+
static VALUE kdtree_to_s(VALUE kdtree)
|
430
|
+
{
|
431
|
+
char buf[256];
|
432
|
+
KDTREEP;
|
433
|
+
|
434
|
+
sprintf(buf, "#<%s:%p nodes=%d>", rb_obj_classname(kdtree), (void*)kdtree, kdtreep->len);
|
435
|
+
return rb_str_new(buf, strlen(buf));
|
436
|
+
}
|
437
|
+
|
438
|
+
//
|
439
|
+
// io helpers
|
440
|
+
//
|
441
|
+
|
442
|
+
static void read_all(VALUE io, void *buf, int len)
|
443
|
+
{
|
444
|
+
VALUE string = rb_funcall(io, id_read, 1, INT2NUM(len));
|
445
|
+
if (NIL_P(string) || RSTRING_LEN(string) != len) {
|
446
|
+
rb_raise(rb_eEOFError, "end of file reached");
|
447
|
+
}
|
448
|
+
memcpy(buf, RSTRING_PTR(string), len);
|
449
|
+
}
|
450
|
+
|
451
|
+
static void write_all(VALUE io, const void *buf, int len)
|
452
|
+
{
|
453
|
+
rb_funcall(io, id_write, 1, rb_str_new(buf, len));
|
454
|
+
}
|
455
|
+
|
456
|
+
//
|
457
|
+
// entry point
|
458
|
+
//
|
459
|
+
|
460
|
+
/*
|
461
|
+
* Kdtree is an insanely fast data structure for finding the nearest
|
462
|
+
* neighbor(s) to a given point. This implementation only supports 2d
|
463
|
+
* points. Also, it only supports static points - there is no way to edit the
|
464
|
+
* tree after it has been initialized. Kdtree should scale to millions of
|
465
|
+
* points, though it's only been tested with around 1 million.
|
466
|
+
*
|
467
|
+
* Once the tree is constructed, it can be searched with nearest and nearestk.
|
468
|
+
*
|
469
|
+
* To avoid the startup costs associated with creating a new tree, use persist
|
470
|
+
* to write the tree to disk. You can then construct the tree later from that
|
471
|
+
* file.
|
472
|
+
*
|
473
|
+
* points = []
|
474
|
+
* points << [47.6, -122.3, 1] # Seattle
|
475
|
+
* points << [45.5, -122.8, 2] # Portland
|
476
|
+
* points << [40.7, -74.0, 3] # New York
|
477
|
+
* kd = Kdtree.new(points)
|
478
|
+
*
|
479
|
+
* # which city is closest to San Francisco?
|
480
|
+
* kd.nearest(34.1, -118.2) #=> 2
|
481
|
+
* # which two cities are closest to San Francisco?
|
482
|
+
* kd.nearestk(34.1, -118.2, 2) #=> [2, 1]
|
483
|
+
*
|
484
|
+
* For more information on kd trees, see:
|
485
|
+
*
|
486
|
+
* http://en.wikipedia.org/wiki/Kd-tree
|
487
|
+
*/
|
488
|
+
void Init_kdtree()
|
489
|
+
{
|
490
|
+
static VALUE clazz;
|
491
|
+
|
492
|
+
clazz = rb_define_class("Kdtree", rb_cObject);
|
493
|
+
|
494
|
+
rb_define_alloc_func(clazz, kdtree_alloc);
|
495
|
+
rb_define_method(clazz, "initialize", kdtree_initialize, 1);
|
496
|
+
rb_define_method(clazz, "nearest", kdtree_nearest, 2);
|
497
|
+
rb_define_method(clazz, "nearestk", kdtree_nearestk, 3);
|
498
|
+
rb_define_method(clazz, "persist", kdtree_persist, 1);
|
499
|
+
rb_define_method(clazz, "to_s", kdtree_to_s, 0);
|
500
|
+
|
501
|
+
// function ids
|
502
|
+
id_binmode = rb_intern("binmode");
|
503
|
+
id_read = rb_intern("read");
|
504
|
+
id_write = rb_intern("write");
|
505
|
+
}
|
data/kdtree.gemspec
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Gem::Specification.new do |s|
|
2
|
+
s.name = "sc2ai-kdtree"
|
3
|
+
s.version = "0.4.1"
|
4
|
+
|
5
|
+
s.authors = ["Adam Doppelt"]
|
6
|
+
s.email = ["amd@gurge.com"]
|
7
|
+
s.homepage = "http://github.com/gurgeous/kdtree"
|
8
|
+
s.license = "MIT"
|
9
|
+
s.summary = "A fork of gem 'kdtree', which builds on Windows and depends on sc2ai."
|
10
|
+
s.description = <<EOF
|
11
|
+
A fork of gem 'kdtree', which builds on Windows and depends on sc2ai.
|
12
|
+
Use the original 'kdtree' instead. See homepage link.
|
13
|
+
EOF
|
14
|
+
|
15
|
+
s.add_development_dependency "minitest", "~> 5.0"
|
16
|
+
s.add_development_dependency "rake-compiler", "~> 1.0"
|
17
|
+
|
18
|
+
s.files = `git ls-files`.split("\n")
|
19
|
+
s.test_files = `git ls-files -- {test,spec,features}/*`.split("\n")
|
20
|
+
s.extensions = ["ext/kdtree/extconf.rb"]
|
21
|
+
s.require_paths = ["lib"]
|
22
|
+
end
|
data/lib/kdtree.rb
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
require "kdtree.so"
|
data/test/test_kdtree.rb
ADDED
@@ -0,0 +1,148 @@
|
|
1
|
+
require "benchmark"
|
2
|
+
require "kdtree"
|
3
|
+
require "tempfile"
|
4
|
+
require "minitest/autorun"
|
5
|
+
|
6
|
+
#
|
7
|
+
# create a tree
|
8
|
+
#
|
9
|
+
|
10
|
+
class KdtreeTest < Minitest::Test
|
11
|
+
TMP = "#{Dir.tmpdir}/kdtree_test"
|
12
|
+
|
13
|
+
def setup
|
14
|
+
@points = (0...1000).map { |i| [rand_coord, rand_coord, i] }
|
15
|
+
@kdtree = Kdtree.new(@points)
|
16
|
+
end
|
17
|
+
|
18
|
+
def teardown
|
19
|
+
File.unlink(TMP) if File.exist?(TMP)
|
20
|
+
end
|
21
|
+
|
22
|
+
def test_nearest
|
23
|
+
100.times do
|
24
|
+
pt = [rand_coord, rand_coord]
|
25
|
+
|
26
|
+
# kdtree search
|
27
|
+
id = @kdtree.nearest(pt[0], pt[1])
|
28
|
+
kdpt = @points[id]
|
29
|
+
|
30
|
+
# slow search
|
31
|
+
sortpt = @points.sort_by { |i| distance(i, pt) }.first
|
32
|
+
|
33
|
+
# assert
|
34
|
+
kdd = distance(kdpt, pt)
|
35
|
+
sortd = distance(sortpt, pt)
|
36
|
+
assert((kdd - sortd).abs < 0.0000001, "kdtree didn't return the closest result")
|
37
|
+
end
|
38
|
+
end
|
39
|
+
|
40
|
+
def test_nearestk
|
41
|
+
100.times do
|
42
|
+
pt = [rand_coord, rand_coord]
|
43
|
+
|
44
|
+
# kdtree search
|
45
|
+
list = @kdtree.nearestk(pt[0], pt[1], 5)
|
46
|
+
kdpt = @points[list.last]
|
47
|
+
|
48
|
+
# slow search
|
49
|
+
sortpt = @points.sort_by { |i| distance(i, pt) }[list.length - 1]
|
50
|
+
|
51
|
+
# assert
|
52
|
+
kdd = distance(kdpt, pt)
|
53
|
+
sortd = distance(sortpt, pt)
|
54
|
+
assert((kdd - sortd).abs < 0.0000001, "kdtree didn't return the closest result")
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
def test_persist
|
59
|
+
# write
|
60
|
+
File.open(TMP, "w") { |f| @kdtree.persist(f) }
|
61
|
+
# read
|
62
|
+
kdtree2 = File.open(TMP, "r") { |f| Kdtree.new(f) }
|
63
|
+
|
64
|
+
# now test some random points
|
65
|
+
100.times do
|
66
|
+
pt = [rand_coord, rand_coord]
|
67
|
+
id1 = @kdtree.nearest(*pt)
|
68
|
+
id2 = kdtree2.nearest(*pt)
|
69
|
+
assert(id1 == id2, "kdtree2 differed from kdtree")
|
70
|
+
end
|
71
|
+
end
|
72
|
+
|
73
|
+
def test_bad_magic
|
74
|
+
File.open(TMP, "w") { |f| f.puts "That ain't right" }
|
75
|
+
assert_raises RuntimeError do
|
76
|
+
File.open(TMP, "r") { |f| Kdtree.new(f) }
|
77
|
+
end
|
78
|
+
end
|
79
|
+
|
80
|
+
def test_eof
|
81
|
+
File.open(TMP, "w") { |f| @kdtree.persist(f) }
|
82
|
+
bytes = File.read(TMP)
|
83
|
+
|
84
|
+
[2, 10, 100].each do |len|
|
85
|
+
File.open(TMP, "w") { |f| f.write(bytes[0, len]) }
|
86
|
+
assert_raises EOFError do
|
87
|
+
File.open(TMP, "r") { |f| Kdtree.new(f) }
|
88
|
+
end
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
def dont_test_speed
|
93
|
+
sizes = [1, 100, 1000, 10000, 100000, 1000000]
|
94
|
+
ks = [1, 5, 50, 255]
|
95
|
+
sizes.each do |s|
|
96
|
+
points = (0...s).map { |i| [rand_coord, rand_coord, i] }
|
97
|
+
|
98
|
+
# build
|
99
|
+
Benchmark.bm(17) do |bm|
|
100
|
+
kdtree = nil
|
101
|
+
bm.report "build" do
|
102
|
+
kdtree = Kdtree.new(points)
|
103
|
+
end
|
104
|
+
bm.report "persist" do
|
105
|
+
File.open(TMP, "w") { |f| kdtree.persist(f) }
|
106
|
+
end
|
107
|
+
bm.report "read" do
|
108
|
+
File.open(TMP, "r") { |f| Kdtree.new(f) }
|
109
|
+
end
|
110
|
+
|
111
|
+
ks.each do |k|
|
112
|
+
bm.report "100 queries (#{k})" do
|
113
|
+
100.times do
|
114
|
+
if k == 1
|
115
|
+
kdtree.nearest(rand_coord, rand_coord)
|
116
|
+
else
|
117
|
+
kdtree.nearestk(rand_coord, rand_coord, k)
|
118
|
+
end
|
119
|
+
end
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
123
|
+
puts
|
124
|
+
end
|
125
|
+
end
|
126
|
+
|
127
|
+
protected
|
128
|
+
|
129
|
+
def distance(a, b)
|
130
|
+
x, y = a[0] - b[0], a[1] - b[1]
|
131
|
+
x * x + y * y
|
132
|
+
end
|
133
|
+
|
134
|
+
def rand_coord
|
135
|
+
rand(0) * 10 - 5
|
136
|
+
end
|
137
|
+
end
|
138
|
+
|
139
|
+
# running dont_test_speed on my i5 2.8ghz:
|
140
|
+
#
|
141
|
+
# user system total real
|
142
|
+
# build 3.350000 0.020000 3.370000 ( 3.520528)
|
143
|
+
# persist 0.150000 0.020000 0.170000 ( 0.301963)
|
144
|
+
# read 0.280000 0.000000 0.280000 ( 0.432676)
|
145
|
+
# 100 queries (1) 0.000000 0.000000 0.000000 ( 0.000319)
|
146
|
+
# 100 queries (5) 0.000000 0.000000 0.000000 ( 0.000412)
|
147
|
+
# 100 queries (50) 0.000000 0.000000 0.000000 ( 0.001417)
|
148
|
+
# 100 queries (255) 0.000000 0.000000 0.000000 ( 0.006268)
|
metadata
ADDED
@@ -0,0 +1,86 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: sc2ai-kdtree
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.4.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Adam Doppelt
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2024-02-06 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: minitest
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '5.0'
|
20
|
+
type: :development
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '5.0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rake-compiler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.0'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.0'
|
41
|
+
description: |
|
42
|
+
A fork of gem 'kdtree', which builds on Windows and depends on sc2ai.
|
43
|
+
Use the original 'kdtree' instead. See homepage link.
|
44
|
+
email:
|
45
|
+
- amd@gurge.com
|
46
|
+
executables: []
|
47
|
+
extensions:
|
48
|
+
- ext/kdtree/extconf.rb
|
49
|
+
extra_rdoc_files: []
|
50
|
+
files:
|
51
|
+
- ".github/workflows/ci.yml"
|
52
|
+
- ".gitignore"
|
53
|
+
- Gemfile
|
54
|
+
- LICENSE
|
55
|
+
- README.md
|
56
|
+
- Rakefile
|
57
|
+
- ext/kdtree/extconf.rb
|
58
|
+
- ext/kdtree/kdtree.c
|
59
|
+
- kdtree.gemspec
|
60
|
+
- lib/kdtree.rb
|
61
|
+
- test/test_kdtree.rb
|
62
|
+
homepage: http://github.com/gurgeous/kdtree
|
63
|
+
licenses:
|
64
|
+
- MIT
|
65
|
+
metadata: {}
|
66
|
+
post_install_message:
|
67
|
+
rdoc_options: []
|
68
|
+
require_paths:
|
69
|
+
- lib
|
70
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
71
|
+
requirements:
|
72
|
+
- - ">="
|
73
|
+
- !ruby/object:Gem::Version
|
74
|
+
version: '0'
|
75
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
76
|
+
requirements:
|
77
|
+
- - ">="
|
78
|
+
- !ruby/object:Gem::Version
|
79
|
+
version: '0'
|
80
|
+
requirements: []
|
81
|
+
rubygems_version: 3.5.3
|
82
|
+
signing_key:
|
83
|
+
specification_version: 4
|
84
|
+
summary: A fork of gem 'kdtree', which builds on Windows and depends on sc2ai.
|
85
|
+
test_files:
|
86
|
+
- test/test_kdtree.rb
|