rumale 0.20.3 → 0.21.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/rumale/linear_model/base_sgd.rb +1 -1
- data/lib/rumale/linear_model/elastic_net.rb +2 -2
- data/lib/rumale/linear_model/lasso.rb +2 -2
- data/lib/rumale/linear_model/linear_regression.rb +2 -2
- data/lib/rumale/linear_model/logistic_regression.rb +2 -2
- data/lib/rumale/linear_model/ridge.rb +2 -2
- data/lib/rumale/linear_model/svc.rb +2 -2
- data/lib/rumale/linear_model/svr.rb +2 -2
- data/lib/rumale/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fd5ca16629a5258be9e577771dc8c6b42dbfdf3a60a4c43d4ee170cc17b72bea
|
4
|
+
data.tar.gz: 70b26bcf0b39bb8e716b9bbb4aba100c496152b1c4e71879105046440c7d8758
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 645a6bda6e3601534c69f5ecfbd840c1d6c1ed7a5a3b8bd57995621a03d970cd02e9749a8a70be5af2678c029a26a5e6e1c32376a4514a64e96d6a9b4b12aa3e
|
7
|
+
data.tar.gz: 5904c64da9cc30cf0c288dfbeb3051bca3333e588e153cf19619c169d713e93edcb95e6902134e58c823d621ebad9e6a56310123c110b6d810033f5f96a40fbb
|
data/CHANGELOG.md
CHANGED
@@ -10,7 +10,7 @@ module Rumale
|
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter:
|
13
|
+
# Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter: 1000, batch_size: 50, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -59,7 +59,7 @@ module Rumale
|
|
59
59
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
60
60
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
61
61
|
reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
|
62
|
-
max_iter:
|
62
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
63
63
|
n_jobs: nil, verbose: false, random_seed: nil)
|
64
64
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
65
65
|
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
@@ -10,7 +10,7 @@ module Rumale
|
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter:
|
13
|
+
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -55,7 +55,7 @@ module Rumale
|
|
55
55
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
56
56
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
57
57
|
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
58
|
-
max_iter:
|
58
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
59
59
|
n_jobs: nil, verbose: false, random_seed: nil)
|
60
60
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
61
61
|
reg_param: reg_param, bias_scale: bias_scale,
|
@@ -10,7 +10,7 @@ module Rumale
|
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::LinearRegression.new(max_iter:
|
13
|
+
# Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -68,7 +68,7 @@ module Rumale
|
|
68
68
|
# If solver = 'svd', this parameter is ignored.
|
69
69
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
70
70
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
71
|
-
fit_bias: true, bias_scale: 1.0, max_iter:
|
71
|
+
fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4,
|
72
72
|
solver: 'auto',
|
73
73
|
n_jobs: nil, verbose: false, random_seed: nil)
|
74
74
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
@@ -15,7 +15,7 @@ module Rumale
|
|
15
15
|
#
|
16
16
|
# @example
|
17
17
|
# estimator =
|
18
|
-
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter:
|
18
|
+
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
|
19
19
|
# estimator.fit(training_samples, traininig_labels)
|
20
20
|
# results = estimator.predict(testing_samples)
|
21
21
|
#
|
@@ -72,7 +72,7 @@ module Rumale
|
|
72
72
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
73
73
|
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
74
74
|
fit_bias: true, bias_scale: 1.0,
|
75
|
-
max_iter:
|
75
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
76
76
|
n_jobs: nil, verbose: false, random_seed: nil)
|
77
77
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
78
78
|
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
@@ -10,7 +10,7 @@ module Rumale
|
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter:
|
13
|
+
# Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -70,7 +70,7 @@ module Rumale
|
|
70
70
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
71
71
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
72
72
|
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
73
|
-
max_iter:
|
73
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
74
74
|
solver: 'auto',
|
75
75
|
n_jobs: nil, verbose: false, random_seed: nil)
|
76
76
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
@@ -17,7 +17,7 @@ module Rumale
|
|
17
17
|
#
|
18
18
|
# @example
|
19
19
|
# estimator =
|
20
|
-
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter:
|
20
|
+
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
|
21
21
|
# estimator.fit(training_samples, traininig_labels)
|
22
22
|
# results = estimator.predict(testing_samples)
|
23
23
|
#
|
@@ -74,7 +74,7 @@ module Rumale
|
|
74
74
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
75
75
|
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
76
76
|
fit_bias: true, bias_scale: 1.0,
|
77
|
-
max_iter:
|
77
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
78
78
|
probability: false,
|
79
79
|
n_jobs: nil, verbose: false, random_seed: nil)
|
80
80
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
@@ -14,7 +14,7 @@ module Rumale
|
|
14
14
|
#
|
15
15
|
# @example
|
16
16
|
# estimator =
|
17
|
-
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter:
|
17
|
+
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
|
18
18
|
# estimator.fit(training_samples, traininig_target_values)
|
19
19
|
# results = estimator.predict(testing_samples)
|
20
20
|
#
|
@@ -68,7 +68,7 @@ module Rumale
|
|
68
68
|
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
69
69
|
fit_bias: true, bias_scale: 1.0,
|
70
70
|
epsilon: 0.1,
|
71
|
-
max_iter:
|
71
|
+
max_iter: 1000, batch_size: 50, tol: 1e-4,
|
72
72
|
n_jobs: nil, verbose: false, random_seed: nil)
|
73
73
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
74
74
|
reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.21.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-10-02 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|