rumale 0.20.3 → 0.21.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: aaaacb965c722e93b75b835f21a870580c709b249829476247ad9b7849ee0ff4
4
- data.tar.gz: 7de234d16943410e396551e42a7e45d436928e61c54834aab3f3d5d3448b058f
3
+ metadata.gz: fd5ca16629a5258be9e577771dc8c6b42dbfdf3a60a4c43d4ee170cc17b72bea
4
+ data.tar.gz: 70b26bcf0b39bb8e716b9bbb4aba100c496152b1c4e71879105046440c7d8758
5
5
  SHA512:
6
- metadata.gz: bd1b318abc92366f00c9e4183948f712e56bc25887f4117b4577ea8673537b2ddc9f91ff2244dfec51a94f9f992c4aff8468aa11553eafcdaa6f38ffd6e7b67d
7
- data.tar.gz: 13450117456e31acb930026ae1a0a22ad7608dea0aba410fd8e030891a336948a2269058b9c7dbd79c57328f9a96c246d9d6d1836c37a0f2981f6c10e1869641
6
+ metadata.gz: 645a6bda6e3601534c69f5ecfbd840c1d6c1ed7a5a3b8bd57995621a03d970cd02e9749a8a70be5af2678c029a26a5e6e1c32376a4514a64e96d6a9b4b12aa3e
7
+ data.tar.gz: 5904c64da9cc30cf0c288dfbeb3051bca3333e588e153cf19619c169d713e93edcb95e6902134e58c823d621ebad9e6a56310123c110b6d810033f5f96a40fbb
@@ -1,3 +1,7 @@
1
+ # 0.21.0
2
+ ## Breaking change
3
+ - Change the default value of max_iter argument on LinearModel estimators to 1000.
4
+
1
5
  # 0.20.3
2
6
  - Fix to use automatic solver of PCA in NeighbourhoodComponentAnalysis.
3
7
  - Refactor some codes with Rubocop.
@@ -171,7 +171,7 @@ module Rumale
171
171
  @params[:fit_bias] = true
172
172
  @params[:reg_param] = 0.0
173
173
  @params[:l1_ratio] = 0.0
174
- @params[:max_iter] = 200
174
+ @params[:max_iter] = 1000
175
175
  @params[:batch_size] = 50
176
176
  @params[:tol] = 0.0001
177
177
  @params[:verbose] = false
@@ -10,7 +10,7 @@ module Rumale
10
10
  #
11
11
  # @example
12
12
  # estimator =
13
- # Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter: 200, batch_size: 50, random_seed: 1)
13
+ # Rumale::LinearModel::ElasticNet.new(reg_param: 0.1, l1_ratio: 0.5, max_iter: 1000, batch_size: 50, random_seed: 1)
14
14
  # estimator.fit(training_samples, traininig_values)
15
15
  # results = estimator.predict(testing_samples)
16
16
  #
@@ -59,7 +59,7 @@ module Rumale
59
59
  # @param random_seed [Integer] The seed value using to initialize the random generator.
60
60
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
61
61
  reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
62
- max_iter: 200, batch_size: 50, tol: 1e-4,
62
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
63
63
  n_jobs: nil, verbose: false, random_seed: nil)
64
64
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
65
65
  reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
@@ -10,7 +10,7 @@ module Rumale
10
10
  #
11
11
  # @example
12
12
  # estimator =
13
- # Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 500, batch_size: 20, random_seed: 1)
13
+ # Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
14
14
  # estimator.fit(training_samples, traininig_values)
15
15
  # results = estimator.predict(testing_samples)
16
16
  #
@@ -55,7 +55,7 @@ module Rumale
55
55
  # @param random_seed [Integer] The seed value using to initialize the random generator.
56
56
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
57
57
  reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
58
- max_iter: 200, batch_size: 50, tol: 1e-4,
58
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
59
59
  n_jobs: nil, verbose: false, random_seed: nil)
60
60
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
61
61
  reg_param: reg_param, bias_scale: bias_scale,
@@ -10,7 +10,7 @@ module Rumale
10
10
  #
11
11
  # @example
12
12
  # estimator =
13
- # Rumale::LinearModel::LinearRegression.new(max_iter: 500, batch_size: 20, random_seed: 1)
13
+ # Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
14
14
  # estimator.fit(training_samples, traininig_values)
15
15
  # results = estimator.predict(testing_samples)
16
16
  #
@@ -68,7 +68,7 @@ module Rumale
68
68
  # If solver = 'svd', this parameter is ignored.
69
69
  # @param random_seed [Integer] The seed value using to initialize the random generator.
70
70
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
71
- fit_bias: true, bias_scale: 1.0, max_iter: 200, batch_size: 50, tol: 1e-4,
71
+ fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4,
72
72
  solver: 'auto',
73
73
  n_jobs: nil, verbose: false, random_seed: nil)
74
74
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
@@ -15,7 +15,7 @@ module Rumale
15
15
  #
16
16
  # @example
17
17
  # estimator =
18
- # Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 200, batch_size: 50, random_seed: 1)
18
+ # Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
19
19
  # estimator.fit(training_samples, traininig_labels)
20
20
  # results = estimator.predict(testing_samples)
21
21
  #
@@ -72,7 +72,7 @@ module Rumale
72
72
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
73
73
  penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
74
74
  fit_bias: true, bias_scale: 1.0,
75
- max_iter: 200, batch_size: 50, tol: 1e-4,
75
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
76
76
  n_jobs: nil, verbose: false, random_seed: nil)
77
77
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
78
78
  reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
@@ -10,7 +10,7 @@ module Rumale
10
10
  #
11
11
  # @example
12
12
  # estimator =
13
- # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 500, batch_size: 20, random_seed: 1)
13
+ # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
14
14
  # estimator.fit(training_samples, traininig_values)
15
15
  # results = estimator.predict(testing_samples)
16
16
  #
@@ -70,7 +70,7 @@ module Rumale
70
70
  # @param random_seed [Integer] The seed value using to initialize the random generator.
71
71
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
72
72
  reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
73
- max_iter: 200, batch_size: 50, tol: 1e-4,
73
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
74
74
  solver: 'auto',
75
75
  n_jobs: nil, verbose: false, random_seed: nil)
76
76
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
@@ -17,7 +17,7 @@ module Rumale
17
17
  #
18
18
  # @example
19
19
  # estimator =
20
- # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 200, batch_size: 50, random_seed: 1)
20
+ # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
21
21
  # estimator.fit(training_samples, traininig_labels)
22
22
  # results = estimator.predict(testing_samples)
23
23
  #
@@ -74,7 +74,7 @@ module Rumale
74
74
  def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
75
75
  penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
76
76
  fit_bias: true, bias_scale: 1.0,
77
- max_iter: 200, batch_size: 50, tol: 1e-4,
77
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
78
78
  probability: false,
79
79
  n_jobs: nil, verbose: false, random_seed: nil)
80
80
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
@@ -14,7 +14,7 @@ module Rumale
14
14
  #
15
15
  # @example
16
16
  # estimator =
17
- # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 200, batch_size: 50, random_seed: 1)
17
+ # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
18
18
  # estimator.fit(training_samples, traininig_target_values)
19
19
  # results = estimator.predict(testing_samples)
20
20
  #
@@ -68,7 +68,7 @@ module Rumale
68
68
  penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
69
69
  fit_bias: true, bias_scale: 1.0,
70
70
  epsilon: 0.1,
71
- max_iter: 200, batch_size: 50, tol: 1e-4,
71
+ max_iter: 1000, batch_size: 50, tol: 1e-4,
72
72
  n_jobs: nil, verbose: false, random_seed: nil)
73
73
  check_params_numeric(learning_rate: learning_rate, momentum: momentum,
74
74
  reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
@@ -3,5 +3,5 @@
3
3
  # Rumale is a machine learning library in Ruby.
4
4
  module Rumale
5
5
  # The version of Rumale you are using.
6
- VERSION = '0.20.3'
6
+ VERSION = '0.21.0'
7
7
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.20.3
4
+ version: 0.21.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2020-09-21 00:00:00.000000000 Z
11
+ date: 2020-10-02 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray