rumale 0.19.3 → 0.20.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/lib/rumale.rb +0 -10
- data/lib/rumale/version.rb +1 -1
- metadata +2 -12
- data/lib/rumale/linear_model/base_linear_model.rb +0 -102
- data/lib/rumale/optimizer/ada_grad.rb +0 -42
- data/lib/rumale/optimizer/adam.rb +0 -56
- data/lib/rumale/optimizer/nadam.rb +0 -67
- data/lib/rumale/optimizer/rmsprop.rb +0 -50
- data/lib/rumale/optimizer/sgd.rb +0 -46
- data/lib/rumale/optimizer/yellow_fin.rb +0 -104
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -125
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -220
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -134
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 358515f8785eb3de2e6571a957ca76cece6b774bb022c1a0951c92d44ab422b4
|
4
|
+
data.tar.gz: '0289b7eb382cd3300845412af0fd43626f4f827bb719083c879b574e3ab37eb0'
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f03fc0f27f99ed4acea3fb7d7bf34017c1dbf923b20dabc9a78d6d44f0b151bc9dc78ba24d122f81607a43fd1852e398a603b75b87656a2f79109f87c0db0d98
|
7
|
+
data.tar.gz: 69f6b8892f6bfb4c43706513245c3fba687dcb6a347c1c5185a70d5e45a024b2848a019bfae48726e1f49212878e8d6d67c811ec5f4a990fdbb3a2841efdfe9b
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,7 @@
|
|
1
|
+
# 0.20.0
|
2
|
+
## Breaking changes
|
3
|
+
- Delete deprecated estimators such as PolynomialModel, Optimizer, and BaseLinearModel.
|
4
|
+
|
1
5
|
# 0.19.3
|
2
6
|
- Add preprocessing class for [Binarizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/Binarizer.html)
|
3
7
|
- Add preprocessing class for [MaxNormalizer](https://yoshoku.github.io/rumale/doc/Rumale/Preprocessing/MaxNormalizer.html)
|
@@ -13,6 +17,7 @@
|
|
13
17
|
- Fix some typos.
|
14
18
|
|
15
19
|
# 0.19.0
|
20
|
+
## Breaking changes
|
16
21
|
- Change mmh3 and mopti gem to non-runtime dependent library.
|
17
22
|
- The mmh3 gem is used in [FeatureHasher](https://yoshoku.github.io/rumale/doc/Rumale/FeatureExtraction/FeatureHasher.html).
|
18
23
|
You only need to require mmh3 gem when using FeatureHasher.
|
data/lib/rumale.rb
CHANGED
@@ -18,17 +18,10 @@ require 'rumale/base/cluster_analyzer'
|
|
18
18
|
require 'rumale/base/transformer'
|
19
19
|
require 'rumale/base/splitter'
|
20
20
|
require 'rumale/base/evaluator'
|
21
|
-
require 'rumale/optimizer/sgd'
|
22
|
-
require 'rumale/optimizer/ada_grad'
|
23
|
-
require 'rumale/optimizer/rmsprop'
|
24
|
-
require 'rumale/optimizer/adam'
|
25
|
-
require 'rumale/optimizer/nadam'
|
26
|
-
require 'rumale/optimizer/yellow_fin'
|
27
21
|
require 'rumale/pipeline/pipeline'
|
28
22
|
require 'rumale/pipeline/feature_union'
|
29
23
|
require 'rumale/kernel_approximation/rbf'
|
30
24
|
require 'rumale/kernel_approximation/nystroem'
|
31
|
-
require 'rumale/linear_model/base_linear_model'
|
32
25
|
require 'rumale/linear_model/base_sgd'
|
33
26
|
require 'rumale/linear_model/svc'
|
34
27
|
require 'rumale/linear_model/svr'
|
@@ -41,9 +34,6 @@ require 'rumale/kernel_machine/kernel_svc'
|
|
41
34
|
require 'rumale/kernel_machine/kernel_pca'
|
42
35
|
require 'rumale/kernel_machine/kernel_fda'
|
43
36
|
require 'rumale/kernel_machine/kernel_ridge'
|
44
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
45
|
-
require 'rumale/polynomial_model/factorization_machine_classifier'
|
46
|
-
require 'rumale/polynomial_model/factorization_machine_regressor'
|
47
37
|
require 'rumale/multiclass/one_vs_rest_classifier'
|
48
38
|
require 'rumale/nearest_neighbors/vp_tree'
|
49
39
|
require 'rumale/nearest_neighbors/k_neighbors_classifier'
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.20.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-08-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -120,7 +120,6 @@ files:
|
|
120
120
|
- lib/rumale/kernel_machine/kernel_pca.rb
|
121
121
|
- lib/rumale/kernel_machine/kernel_ridge.rb
|
122
122
|
- lib/rumale/kernel_machine/kernel_svc.rb
|
123
|
-
- lib/rumale/linear_model/base_linear_model.rb
|
124
123
|
- lib/rumale/linear_model/base_sgd.rb
|
125
124
|
- lib/rumale/linear_model/elastic_net.rb
|
126
125
|
- lib/rumale/linear_model/lasso.rb
|
@@ -154,18 +153,9 @@ files:
|
|
154
153
|
- lib/rumale/neural_network/base_mlp.rb
|
155
154
|
- lib/rumale/neural_network/mlp_classifier.rb
|
156
155
|
- lib/rumale/neural_network/mlp_regressor.rb
|
157
|
-
- lib/rumale/optimizer/ada_grad.rb
|
158
|
-
- lib/rumale/optimizer/adam.rb
|
159
|
-
- lib/rumale/optimizer/nadam.rb
|
160
|
-
- lib/rumale/optimizer/rmsprop.rb
|
161
|
-
- lib/rumale/optimizer/sgd.rb
|
162
|
-
- lib/rumale/optimizer/yellow_fin.rb
|
163
156
|
- lib/rumale/pairwise_metric.rb
|
164
157
|
- lib/rumale/pipeline/feature_union.rb
|
165
158
|
- lib/rumale/pipeline/pipeline.rb
|
166
|
-
- lib/rumale/polynomial_model/base_factorization_machine.rb
|
167
|
-
- lib/rumale/polynomial_model/factorization_machine_classifier.rb
|
168
|
-
- lib/rumale/polynomial_model/factorization_machine_regressor.rb
|
169
159
|
- lib/rumale/preprocessing/bin_discretizer.rb
|
170
160
|
- lib/rumale/preprocessing/binarizer.rb
|
171
161
|
- lib/rumale/preprocessing/l1_normalizer.rb
|
@@ -1,102 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/optimizer/nadam'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module LinearModel
|
8
|
-
# @note
|
9
|
-
# In version 0.17.0, a new linear model abstract class called BaseSGD is introduced.
|
10
|
-
# BaseLienarModel is deprecated and will be removed in the future.
|
11
|
-
# @deprecated Use BaseSGD class instead. This class will be deleted in version 0.20.0.
|
12
|
-
#
|
13
|
-
# BaseLinearModel is an abstract class for implementation of linear estimator
|
14
|
-
# with mini-batch stochastic gradient descent optimization.
|
15
|
-
# This class is used for internal process.
|
16
|
-
class BaseLinearModel
|
17
|
-
# :nocov:
|
18
|
-
include Base::BaseEstimator
|
19
|
-
|
20
|
-
# Initialize a linear estimator.
|
21
|
-
#
|
22
|
-
# @param reg_param [Float] The regularization parameter.
|
23
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
24
|
-
# @param bias_scale [Float] The scale of the bias term.
|
25
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
26
|
-
# @param batch_size [Integer] The size of the mini batches.
|
27
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
28
|
-
# If nil is given, Nadam is used.
|
29
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
30
|
-
# If nil is given, the methods do not execute in parallel.
|
31
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
32
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
33
|
-
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
34
|
-
max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
|
35
|
-
warn 'warning: BaseLinearModel is deprecated. Use BaseSGD instead.'
|
36
|
-
@params = {}
|
37
|
-
@params[:reg_param] = reg_param
|
38
|
-
@params[:fit_bias] = fit_bias
|
39
|
-
@params[:bias_scale] = bias_scale
|
40
|
-
@params[:max_iter] = max_iter
|
41
|
-
@params[:batch_size] = batch_size
|
42
|
-
@params[:optimizer] = optimizer
|
43
|
-
@params[:optimizer] ||= Rumale::Optimizer::Nadam.new
|
44
|
-
@params[:n_jobs] = n_jobs
|
45
|
-
@params[:random_seed] = random_seed
|
46
|
-
@params[:random_seed] ||= srand
|
47
|
-
@weight_vec = nil
|
48
|
-
@bias_term = nil
|
49
|
-
@rng = Random.new(@params[:random_seed])
|
50
|
-
end
|
51
|
-
|
52
|
-
private
|
53
|
-
|
54
|
-
def partial_fit(x, y)
|
55
|
-
# Expand feature vectors for bias term.
|
56
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
57
|
-
# Initialize some variables.
|
58
|
-
n_samples, n_features = samples.shape
|
59
|
-
rand_ids = Array(0...n_samples).shuffle(random: @rng.dup)
|
60
|
-
weight = Numo::DFloat.zeros(n_features)
|
61
|
-
optimizer = @params[:optimizer].dup
|
62
|
-
# Optimization.
|
63
|
-
@params[:max_iter].times do |_t|
|
64
|
-
# Random sampling
|
65
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
66
|
-
rand_ids.concat(subset_ids)
|
67
|
-
sub_samples = samples[subset_ids, true]
|
68
|
-
sub_targets = y[subset_ids]
|
69
|
-
# Update weight.
|
70
|
-
loss_gradient = calc_loss_gradient(sub_samples, sub_targets, weight)
|
71
|
-
next if loss_gradient.ne(0.0).count.zero?
|
72
|
-
|
73
|
-
weight = calc_new_weight(optimizer, sub_samples, weight, loss_gradient)
|
74
|
-
end
|
75
|
-
split_weight(weight)
|
76
|
-
end
|
77
|
-
|
78
|
-
def calc_loss_gradient(_x, _y, _weight)
|
79
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
80
|
-
end
|
81
|
-
|
82
|
-
def calc_new_weight(optimizer, x, weight, loss_gradient)
|
83
|
-
weight_gradient = x.transpose.dot(loss_gradient) / @params[:batch_size] + @params[:reg_param] * weight
|
84
|
-
optimizer.call(weight, weight_gradient)
|
85
|
-
end
|
86
|
-
|
87
|
-
def expand_feature(x)
|
88
|
-
n_samples = x.shape[0]
|
89
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
90
|
-
end
|
91
|
-
|
92
|
-
def split_weight(weight)
|
93
|
-
if @params[:fit_bias]
|
94
|
-
[weight[0...-1].dup, weight[-1]]
|
95
|
-
else
|
96
|
-
[weight, 0.0]
|
97
|
-
end
|
98
|
-
end
|
99
|
-
# :nocov:
|
100
|
-
end
|
101
|
-
end
|
102
|
-
end
|
@@ -1,42 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# AdaGrad is a class that implements AdaGrad optimizer.
|
9
|
-
#
|
10
|
-
# @deprecated AdaGrad will be deleted in version 0.20.0.
|
11
|
-
#
|
12
|
-
# *Reference*
|
13
|
-
# - Duchi, J., Hazan, E., and Singer, Y., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," J. Machine Learning Research, vol. 12, pp. 2121--2159, 2011.
|
14
|
-
class AdaGrad
|
15
|
-
include Base::BaseEstimator
|
16
|
-
include Validation
|
17
|
-
|
18
|
-
# Create a new optimizer with AdaGrad.
|
19
|
-
#
|
20
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
21
|
-
def initialize(learning_rate: 0.01)
|
22
|
-
warn 'warning: AdaGrad is deprecated. This class will be deleted in version 0.20.0.'
|
23
|
-
check_params_numeric(learning_rate: learning_rate)
|
24
|
-
check_params_positive(learning_rate: learning_rate)
|
25
|
-
@params = {}
|
26
|
-
@params[:learning_rate] = learning_rate
|
27
|
-
@moment = nil
|
28
|
-
end
|
29
|
-
|
30
|
-
# Calculate the updated weight with AdaGrad adaptive learning rate.
|
31
|
-
#
|
32
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
33
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
34
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
35
|
-
def call(weight, gradient)
|
36
|
-
@moment ||= Numo::DFloat.zeros(weight.shape[0])
|
37
|
-
@moment += gradient**2
|
38
|
-
weight - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
|
39
|
-
end
|
40
|
-
end
|
41
|
-
end
|
42
|
-
end
|
@@ -1,56 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# Adam is a class that implements Adam optimizer.
|
9
|
-
#
|
10
|
-
# @deprecated Adam will be deleted in version 0.20.0.
|
11
|
-
#
|
12
|
-
# *Reference*
|
13
|
-
# - Kingma, D P., and Ba, J., "Adam: A Method for Stochastic Optimization," Proc. ICLR'15, 2015.
|
14
|
-
class Adam
|
15
|
-
include Base::BaseEstimator
|
16
|
-
include Validation
|
17
|
-
|
18
|
-
# Create a new optimizer with Adam
|
19
|
-
#
|
20
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
21
|
-
# @param decay1 [Float] The smoothing parameter for the first moment.
|
22
|
-
# @param decay2 [Float] The smoothing parameter for the second moment.
|
23
|
-
def initialize(learning_rate: 0.001, decay1: 0.9, decay2: 0.999)
|
24
|
-
warn 'warning: Adam is deprecated. This class will be deleted in version 0.20.0.'
|
25
|
-
check_params_numeric(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
26
|
-
check_params_positive(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
27
|
-
@params = {}
|
28
|
-
@params[:learning_rate] = learning_rate
|
29
|
-
@params[:decay1] = decay1
|
30
|
-
@params[:decay2] = decay2
|
31
|
-
@fst_moment = nil
|
32
|
-
@sec_moment = nil
|
33
|
-
@iter = 0
|
34
|
-
end
|
35
|
-
|
36
|
-
# Calculate the updated weight with Nadam adaptive learning rate.
|
37
|
-
#
|
38
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
39
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
41
|
-
def call(weight, gradient)
|
42
|
-
@fst_moment ||= Numo::DFloat.zeros(weight.shape)
|
43
|
-
@sec_moment ||= Numo::DFloat.zeros(weight.shape)
|
44
|
-
|
45
|
-
@iter += 1
|
46
|
-
|
47
|
-
@fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
|
48
|
-
@sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
|
49
|
-
nm_fst_moment = @fst_moment / (1.0 - @params[:decay1]**@iter)
|
50
|
-
nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
|
51
|
-
|
52
|
-
weight - @params[:learning_rate] * nm_fst_moment / (nm_sec_moment**0.5 + 1e-8)
|
53
|
-
end
|
54
|
-
end
|
55
|
-
end
|
56
|
-
end
|
@@ -1,67 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement optimizers adaptively tuning hyperparameters.
|
8
|
-
#
|
9
|
-
# @deprecated Optimizer module will be deleted in version 0.20.0.
|
10
|
-
module Optimizer
|
11
|
-
# Nadam is a class that implements Nadam optimizer.
|
12
|
-
#
|
13
|
-
# @deprecated Nadam will be deleted in version 0.20.0.
|
14
|
-
#
|
15
|
-
# *Reference*
|
16
|
-
# - Dozat, T., "Incorporating Nesterov Momentum into Adam," Tech. Repo. Stanford University, 2015.
|
17
|
-
class Nadam
|
18
|
-
include Base::BaseEstimator
|
19
|
-
include Validation
|
20
|
-
|
21
|
-
# Create a new optimizer with Nadam
|
22
|
-
#
|
23
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
24
|
-
# @param decay1 [Float] The smoothing parameter for the first moment.
|
25
|
-
# @param decay2 [Float] The smoothing parameter for the second moment.
|
26
|
-
def initialize(learning_rate: 0.01, decay1: 0.9, decay2: 0.999)
|
27
|
-
warn 'warning: Nadam is deprecated. This class will be deleted in version 0.20.0.'
|
28
|
-
check_params_numeric(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
29
|
-
check_params_positive(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
|
30
|
-
@params = {}
|
31
|
-
@params[:learning_rate] = learning_rate
|
32
|
-
@params[:decay1] = decay1
|
33
|
-
@params[:decay2] = decay2
|
34
|
-
@fst_moment = nil
|
35
|
-
@sec_moment = nil
|
36
|
-
@decay1_prod = 1.0
|
37
|
-
@iter = 0
|
38
|
-
end
|
39
|
-
|
40
|
-
# Calculate the updated weight with Nadam adaptive learning rate.
|
41
|
-
#
|
42
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
43
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
44
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
45
|
-
def call(weight, gradient)
|
46
|
-
@fst_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
47
|
-
@sec_moment ||= Numo::DFloat.zeros(weight.shape[0])
|
48
|
-
|
49
|
-
@iter += 1
|
50
|
-
|
51
|
-
decay1_curr = @params[:decay1] * (1.0 - 0.5 * 0.96**(@iter * 0.004))
|
52
|
-
decay1_next = @params[:decay1] * (1.0 - 0.5 * 0.96**((@iter + 1) * 0.004))
|
53
|
-
decay1_prod_curr = @decay1_prod * decay1_curr
|
54
|
-
decay1_prod_next = @decay1_prod * decay1_curr * decay1_next
|
55
|
-
@decay1_prod = decay1_prod_curr
|
56
|
-
|
57
|
-
@fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
|
58
|
-
@sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
|
59
|
-
nm_gradient = gradient / (1.0 - decay1_prod_curr)
|
60
|
-
nm_fst_moment = @fst_moment / (1.0 - decay1_prod_next)
|
61
|
-
nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
|
62
|
-
|
63
|
-
weight - (@params[:learning_rate] / (nm_sec_moment**0.5 + 1e-8)) * ((1 - decay1_curr) * nm_gradient + decay1_next * nm_fst_moment)
|
64
|
-
end
|
65
|
-
end
|
66
|
-
end
|
67
|
-
end
|
@@ -1,50 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# RMSProp is a class that implements RMSProp optimizer.
|
9
|
-
#
|
10
|
-
# @deprecated RMSProp will be deleted in version 0.20.0.
|
11
|
-
#
|
12
|
-
# *Reference*
|
13
|
-
# - Sutskever, I., Martens, J., Dahl, G., and Hinton, G., "On the importance of initialization and momentum in deep learning," Proc. ICML' 13, pp. 1139--1147, 2013.
|
14
|
-
# - Hinton, G., Srivastava, N., and Swersky, K., "Lecture 6e rmsprop," Neural Networks for Machine Learning, 2012.
|
15
|
-
class RMSProp
|
16
|
-
include Base::BaseEstimator
|
17
|
-
include Validation
|
18
|
-
|
19
|
-
# Create a new optimizer with RMSProp.
|
20
|
-
#
|
21
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
22
|
-
# @param momentum [Float] The initial value of momentum.
|
23
|
-
# @param decay [Float] The smooting parameter.
|
24
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
|
25
|
-
warn 'warning: RMSProp is deprecated. This class will be deleted in version 0.20.0.'
|
26
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
27
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
28
|
-
@params = {}
|
29
|
-
@params[:learning_rate] = learning_rate
|
30
|
-
@params[:momentum] = momentum
|
31
|
-
@params[:decay] = decay
|
32
|
-
@moment = nil
|
33
|
-
@update = nil
|
34
|
-
end
|
35
|
-
|
36
|
-
# Calculate the updated weight with RMSProp adaptive learning rate.
|
37
|
-
#
|
38
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
39
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
41
|
-
def call(weight, gradient)
|
42
|
-
@moment ||= Numo::DFloat.zeros(weight.shape[0])
|
43
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
44
|
-
@moment = @params[:decay] * @moment + (1.0 - @params[:decay]) * gradient**2
|
45
|
-
@update = @params[:momentum] * @update - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
|
46
|
-
weight + @update
|
47
|
-
end
|
48
|
-
end
|
49
|
-
end
|
50
|
-
end
|
data/lib/rumale/optimizer/sgd.rb
DELETED
@@ -1,46 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# SGD is a class that implements SGD optimizer.
|
9
|
-
#
|
10
|
-
# @deprecated SGD will be deleted in version 0.20.0.
|
11
|
-
class SGD
|
12
|
-
include Base::BaseEstimator
|
13
|
-
include Validation
|
14
|
-
|
15
|
-
# Create a new optimizer with SGD.
|
16
|
-
#
|
17
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
18
|
-
# @param momentum [Float] The initial value of momentum.
|
19
|
-
# @param decay [Float] The smooting parameter.
|
20
|
-
def initialize(learning_rate: 0.01, momentum: 0.0, decay: 0.0)
|
21
|
-
warn 'warning: SGD is deprecated. This class will be deleted in version 0.20.0.'
|
22
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
23
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
|
24
|
-
@params = {}
|
25
|
-
@params[:learning_rate] = learning_rate
|
26
|
-
@params[:momentum] = momentum
|
27
|
-
@params[:decay] = decay
|
28
|
-
@iter = 0
|
29
|
-
@update = nil
|
30
|
-
end
|
31
|
-
|
32
|
-
# Calculate the updated weight with SGD.
|
33
|
-
#
|
34
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
35
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
37
|
-
def call(weight, gradient)
|
38
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
39
|
-
current_learning_rate = @params[:learning_rate] / (1.0 + @params[:decay] * @iter)
|
40
|
-
@iter += 1
|
41
|
-
@update = @params[:momentum] * @update - current_learning_rate * gradient
|
42
|
-
weight + @update
|
43
|
-
end
|
44
|
-
end
|
45
|
-
end
|
46
|
-
end
|
@@ -1,104 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/validation'
|
4
|
-
require 'rumale/base/base_estimator'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module Optimizer
|
8
|
-
# YellowFin is a class that implements YellowFin optimizer.
|
9
|
-
#
|
10
|
-
# @deprecated YellowFin will be deleted in version 0.20.0.
|
11
|
-
#
|
12
|
-
# *Reference*
|
13
|
-
# - Zhang, J., and Mitliagkas, I., "YellowFin and the Art of Momentum Tuning," CoRR abs/1706.03471, 2017.
|
14
|
-
class YellowFin
|
15
|
-
include Base::BaseEstimator
|
16
|
-
include Validation
|
17
|
-
|
18
|
-
# Create a new optimizer with YellowFin.
|
19
|
-
#
|
20
|
-
# @param learning_rate [Float] The initial value of learning rate.
|
21
|
-
# @param momentum [Float] The initial value of momentum.
|
22
|
-
# @param decay [Float] The smooting parameter.
|
23
|
-
# @param window_width [Integer] The sliding window width for searching curvature range.
|
24
|
-
def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.999, window_width: 20)
|
25
|
-
warn 'warning: YellowFin is deprecated. This class will be deleted in version 0.20.0.'
|
26
|
-
check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
|
27
|
-
check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
|
28
|
-
@params = {}
|
29
|
-
@params[:learning_rate] = learning_rate
|
30
|
-
@params[:momentum] = momentum
|
31
|
-
@params[:decay] = decay
|
32
|
-
@params[:window_width] = window_width
|
33
|
-
@smth_learning_rate = learning_rate
|
34
|
-
@smth_momentum = momentum
|
35
|
-
@grad_norms = nil
|
36
|
-
@grad_norm_min = 0.0
|
37
|
-
@grad_norm_max = 0.0
|
38
|
-
@grad_mean_sqr = 0.0
|
39
|
-
@grad_mean = 0.0
|
40
|
-
@grad_var = 0.0
|
41
|
-
@grad_norm_mean = 0.0
|
42
|
-
@curve_mean = 0.0
|
43
|
-
@distance_mean = 0.0
|
44
|
-
@update = nil
|
45
|
-
end
|
46
|
-
|
47
|
-
# Calculate the updated weight with adaptive momentum coefficient and learning rate.
|
48
|
-
#
|
49
|
-
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
50
|
-
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
51
|
-
# @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
|
52
|
-
def call(weight, gradient)
|
53
|
-
@update ||= Numo::DFloat.zeros(weight.shape[0])
|
54
|
-
curvature_range(gradient)
|
55
|
-
gradient_variance(gradient)
|
56
|
-
distance_to_optimum(gradient)
|
57
|
-
@smth_momentum = @params[:decay] * @smth_momentum + (1 - @params[:decay]) * current_momentum
|
58
|
-
@smth_learning_rate = @params[:decay] * @smth_learning_rate + (1 - @params[:decay]) * current_learning_rate
|
59
|
-
@update = @smth_momentum * @update - @smth_learning_rate * gradient
|
60
|
-
weight + @update
|
61
|
-
end
|
62
|
-
|
63
|
-
private
|
64
|
-
|
65
|
-
def current_momentum
|
66
|
-
dr = Math.sqrt(@grad_norm_max / @grad_norm_min + 1.0e-8)
|
67
|
-
[cubic_root**2, ((dr - 1) / (dr + 1))**2].max
|
68
|
-
end
|
69
|
-
|
70
|
-
def current_learning_rate
|
71
|
-
(1.0 - Math.sqrt(@params[:momentum]))**2 / (@grad_norm_min + 1.0e-8)
|
72
|
-
end
|
73
|
-
|
74
|
-
def cubic_root
|
75
|
-
p = (@distance_mean**2 * @grad_norm_min**2) / (2 * @grad_var + 1.0e-8)
|
76
|
-
w3 = (-Math.sqrt(p**2 + 4.fdiv(27) * p**3) - p).fdiv(2)
|
77
|
-
w = (w3 >= 0.0 ? 1 : -1) * w3.abs**1.fdiv(3)
|
78
|
-
y = w - p / (3 * w + 1.0e-8)
|
79
|
-
y + 1
|
80
|
-
end
|
81
|
-
|
82
|
-
def curvature_range(gradient)
|
83
|
-
@grad_norms ||= []
|
84
|
-
@grad_norms.push((gradient**2).sum)
|
85
|
-
@grad_norms.shift(@grad_norms.size - @params[:window_width]) if @grad_norms.size > @params[:window_width]
|
86
|
-
@grad_norm_min = @params[:decay] * @grad_norm_min + (1 - @params[:decay]) * @grad_norms.min
|
87
|
-
@grad_norm_max = @params[:decay] * @grad_norm_max + (1 - @params[:decay]) * @grad_norms.max
|
88
|
-
end
|
89
|
-
|
90
|
-
def gradient_variance(gradient)
|
91
|
-
@grad_mean_sqr = @params[:decay] * @grad_mean_sqr + (1 - @params[:decay]) * gradient**2
|
92
|
-
@grad_mean = @params[:decay] * @grad_mean + (1 - @params[:decay]) * gradient
|
93
|
-
@grad_var = (@grad_mean_sqr - @grad_mean**2).sum
|
94
|
-
end
|
95
|
-
|
96
|
-
def distance_to_optimum(gradient)
|
97
|
-
grad_sqr = (gradient**2).sum
|
98
|
-
@grad_norm_mean = @params[:decay] * @grad_norm_mean + (1 - @params[:decay]) * Math.sqrt(grad_sqr + 1.0e-8)
|
99
|
-
@curve_mean = @params[:decay] * @curve_mean + (1 - @params[:decay]) * grad_sqr
|
100
|
-
@distance_mean = @params[:decay] * @distance_mean + (1 - @params[:decay]) * (@grad_norm_mean / @curve_mean)
|
101
|
-
end
|
102
|
-
end
|
103
|
-
end
|
104
|
-
end
|
@@ -1,125 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/optimizer/nadam'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement polynomial models.
|
8
|
-
#
|
9
|
-
# @deprecated PolynomialModel module will be deleted in version 0.20.0.
|
10
|
-
module PolynomialModel
|
11
|
-
# BaseFactorizationMachine is an abstract class for implementation of Factorization Machine-based estimators.
|
12
|
-
# This class is used internally.
|
13
|
-
#
|
14
|
-
# @deprecated BaseFactorizationMachine will be deleted in version 0.20.0.
|
15
|
-
class BaseFactorizationMachine
|
16
|
-
include Base::BaseEstimator
|
17
|
-
|
18
|
-
# Initialize a Factorization Machine-based estimator.
|
19
|
-
#
|
20
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
21
|
-
# @param loss [String] The loss function ('hinge' or 'logistic' or nil).
|
22
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
23
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
24
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
25
|
-
# how many times the whole data is given to the training process.
|
26
|
-
# @param batch_size [Integer] The size of the mini batches.
|
27
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
28
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
29
|
-
# If nil is given, Nadam is used.
|
30
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
31
|
-
# If nil is given, the methods do not execute in parallel.
|
32
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
33
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
34
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
35
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
36
|
-
def initialize(n_factors: 2, loss: nil, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
37
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
38
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
39
|
-
@params = {}
|
40
|
-
@params[:n_factors] = n_factors
|
41
|
-
@params[:loss] = loss unless loss.nil?
|
42
|
-
@params[:reg_param_linear] = reg_param_linear
|
43
|
-
@params[:reg_param_factor] = reg_param_factor
|
44
|
-
@params[:max_iter] = max_iter
|
45
|
-
@params[:batch_size] = batch_size
|
46
|
-
@params[:tol] = tol
|
47
|
-
@params[:optimizer] = optimizer
|
48
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
49
|
-
@params[:n_jobs] = n_jobs
|
50
|
-
@params[:verbose] = verbose
|
51
|
-
@params[:random_seed] = random_seed
|
52
|
-
@params[:random_seed] ||= srand
|
53
|
-
@factor_mat = nil
|
54
|
-
@weight_vec = nil
|
55
|
-
@bias_term = nil
|
56
|
-
@rng = Random.new(@params[:random_seed])
|
57
|
-
end
|
58
|
-
|
59
|
-
private
|
60
|
-
|
61
|
-
def partial_fit(x, y)
|
62
|
-
# Initialize some variables.
|
63
|
-
class_name = self.class.to_s.split('::').last if @params[:verbose]
|
64
|
-
n_samples, n_features = x.shape
|
65
|
-
sub_rng = @rng.dup
|
66
|
-
weight_vec = Numo::DFloat.zeros(n_features + 1)
|
67
|
-
factor_mat = Rumale::Utils.rand_normal([@params[:n_factors], n_features], sub_rng)
|
68
|
-
weight_optimizer = @params[:optimizer].dup
|
69
|
-
factor_optimizers = Array.new(@params[:n_factors]) { @params[:optimizer].dup }
|
70
|
-
# Start optimization.
|
71
|
-
@params[:max_iter].times do |t|
|
72
|
-
sample_ids = Array(0...n_samples)
|
73
|
-
sample_ids.shuffle!(random: sub_rng)
|
74
|
-
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
75
|
-
# Sampling.
|
76
|
-
sub_x = x[subset_ids, true]
|
77
|
-
sub_y = y[subset_ids]
|
78
|
-
ex_sub_x = expand_feature(sub_x)
|
79
|
-
# Calculate gradients for loss function.
|
80
|
-
loss_grad = loss_gradient(sub_x, ex_sub_x, sub_y, factor_mat, weight_vec)
|
81
|
-
next if loss_grad.ne(0.0).count.zero?
|
82
|
-
|
83
|
-
# Update each parameter.
|
84
|
-
weight_vec = weight_optimizer.call(weight_vec, weight_gradient(loss_grad, ex_sub_x, weight_vec))
|
85
|
-
@params[:n_factors].times do |n|
|
86
|
-
factor_mat[n, true] = factor_optimizers[n].call(factor_mat[n, true],
|
87
|
-
factor_gradient(loss_grad, sub_x, factor_mat[n, true]))
|
88
|
-
end
|
89
|
-
end
|
90
|
-
loss = loss_func(x, expand_feature(x), y, factor_mat, weight_vec)
|
91
|
-
puts "[#{class_name}] Loss after #{t + 1} epochs: #{loss}" if @params[:verbose]
|
92
|
-
break if loss < @params[:tol]
|
93
|
-
end
|
94
|
-
[factor_mat, *split_weight_vec_bias(weight_vec)]
|
95
|
-
end
|
96
|
-
|
97
|
-
def loss_func(_x, _expanded_x, _y, _factor, _weight)
|
98
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
99
|
-
end
|
100
|
-
|
101
|
-
def loss_gradient(_x, _expanded_x, _y, _factor, _weight)
|
102
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
103
|
-
end
|
104
|
-
|
105
|
-
def weight_gradient(loss_grad, data, weight)
|
106
|
-
(loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param_linear] * weight
|
107
|
-
end
|
108
|
-
|
109
|
-
def factor_gradient(loss_grad, data, factor)
|
110
|
-
(loss_grad.expand_dims(1) * (data * data.dot(factor).expand_dims(1) - factor * (data**2))).mean(0) +
|
111
|
-
@params[:reg_param_factor] * factor
|
112
|
-
end
|
113
|
-
|
114
|
-
def expand_feature(x)
|
115
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
116
|
-
end
|
117
|
-
|
118
|
-
def split_weight_vec_bias(weight_vec)
|
119
|
-
weights = weight_vec[0...-1].dup
|
120
|
-
bias = weight_vec[-1]
|
121
|
-
[weights, bias]
|
122
|
-
end
|
123
|
-
end
|
124
|
-
end
|
125
|
-
end
|
@@ -1,220 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/classifier'
|
4
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement polynomial models.
|
8
|
-
module PolynomialModel
|
9
|
-
# FactorizationMachineClassifier is a class that implements Factorization Machine
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
12
|
-
#
|
13
|
-
# @deprecated
|
14
|
-
# FactorizationMachineClassifier will be deleted in version 0.20.0.
|
15
|
-
# The Ruamle author recommends using the xlearn gem instead.
|
16
|
-
#
|
17
|
-
# @example
|
18
|
-
# estimator =
|
19
|
-
# Rumale::PolynomialModel::FactorizationMachineClassifier.new(
|
20
|
-
# n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
|
21
|
-
# max_iter: 500, batch_size: 50, random_seed: 1)
|
22
|
-
# estimator.fit(training_samples, traininig_labels)
|
23
|
-
# results = estimator.predict(testing_samples)
|
24
|
-
#
|
25
|
-
# *Reference*
|
26
|
-
# - Rendle, S., "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
27
|
-
# - Rendle, S., "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
28
|
-
class FactorizationMachineClassifier < BaseFactorizationMachine
|
29
|
-
include Base::Classifier
|
30
|
-
|
31
|
-
# Return the factor matrix for Factorization Machine.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_factors, n_features])
|
33
|
-
attr_reader :factor_mat
|
34
|
-
|
35
|
-
# Return the weight vector for Factorization Machine.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
37
|
-
attr_reader :weight_vec
|
38
|
-
|
39
|
-
# Return the bias term for Factoriazation Machine.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
41
|
-
attr_reader :bias_term
|
42
|
-
|
43
|
-
# Return the class labels.
|
44
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
45
|
-
attr_reader :classes
|
46
|
-
|
47
|
-
# Return the random generator for random sampling.
|
48
|
-
# @return [Random]
|
49
|
-
attr_reader :rng
|
50
|
-
|
51
|
-
# Create a new classifier with Factorization Machine.
|
52
|
-
#
|
53
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
54
|
-
# @param loss [String] The loss function ('hinge' or 'logistic').
|
55
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
56
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
57
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
58
|
-
# how many times the whole data is given to the training process.
|
59
|
-
# @param batch_size [Integer] The size of the mini batches.
|
60
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
61
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
62
|
-
# If nil is given, Nadam is used.
|
63
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
64
|
-
# If nil is given, the methods do not execute in parallel.
|
65
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
66
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
67
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
68
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
69
|
-
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
70
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
71
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
72
|
-
warn 'warning: FactorizationMachineClassifier is deprecated. This class will be deleted in version 0.20.0.'
|
73
|
-
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
74
|
-
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size, tol: tol)
|
75
|
-
check_params_string(loss: loss)
|
76
|
-
check_params_boolean(verbose: verbose)
|
77
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
78
|
-
check_params_positive(n_factors: n_factors,
|
79
|
-
reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
80
|
-
max_iter: max_iter, batch_size: batch_size)
|
81
|
-
super
|
82
|
-
@classes = nil
|
83
|
-
end
|
84
|
-
|
85
|
-
# Fit the model with given training data.
|
86
|
-
#
|
87
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
89
|
-
# @return [FactorizationMachineClassifier] The learned classifier itself.
|
90
|
-
def fit(x, y)
|
91
|
-
x = check_convert_sample_array(x)
|
92
|
-
y = check_convert_label_array(y)
|
93
|
-
check_sample_label_size(x, y)
|
94
|
-
|
95
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
96
|
-
|
97
|
-
if multiclass_problem?
|
98
|
-
n_classes = @classes.size
|
99
|
-
n_features = x.shape[1]
|
100
|
-
@factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
|
101
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
102
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
103
|
-
if enable_parallel?
|
104
|
-
# :nocov:
|
105
|
-
models = parallel_map(n_classes) do |n|
|
106
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
107
|
-
partial_fit(x, bin_y)
|
108
|
-
end
|
109
|
-
# :nocov:
|
110
|
-
n_classes.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
|
111
|
-
else
|
112
|
-
n_classes.times do |n|
|
113
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
114
|
-
@factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
115
|
-
end
|
116
|
-
end
|
117
|
-
else
|
118
|
-
negative_label = @classes[0]
|
119
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
120
|
-
@factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y)
|
121
|
-
end
|
122
|
-
|
123
|
-
self
|
124
|
-
end
|
125
|
-
|
126
|
-
# Calculate confidence scores for samples.
|
127
|
-
#
|
128
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
129
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
130
|
-
def decision_function(x)
|
131
|
-
x = check_convert_sample_array(x)
|
132
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
133
|
-
factor_term = if multiclass_problem?
|
134
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
135
|
-
else
|
136
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
137
|
-
end
|
138
|
-
linear_term + factor_term
|
139
|
-
end
|
140
|
-
|
141
|
-
# Predict class labels for samples.
|
142
|
-
#
|
143
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
144
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
145
|
-
def predict(x)
|
146
|
-
x = check_convert_sample_array(x)
|
147
|
-
|
148
|
-
n_samples = x.shape[0]
|
149
|
-
predicted = if multiclass_problem?
|
150
|
-
decision_values = decision_function(x)
|
151
|
-
if enable_parallel?
|
152
|
-
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
153
|
-
else
|
154
|
-
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
155
|
-
end
|
156
|
-
else
|
157
|
-
decision_values = decision_function(x).ge(0.0).to_a
|
158
|
-
Array.new(n_samples) { |n| @classes[decision_values[n]] }
|
159
|
-
end
|
160
|
-
Numo::Int32.asarray(predicted)
|
161
|
-
end
|
162
|
-
|
163
|
-
# Predict probability for samples.
|
164
|
-
#
|
165
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
166
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
167
|
-
def predict_proba(x)
|
168
|
-
x = check_convert_sample_array(x)
|
169
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
170
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
171
|
-
|
172
|
-
n_samples, = x.shape
|
173
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
174
|
-
probs[true, 1] = proba
|
175
|
-
probs[true, 0] = 1.0 - proba
|
176
|
-
probs
|
177
|
-
end
|
178
|
-
|
179
|
-
private
|
180
|
-
|
181
|
-
def bin_decision_function(x, ex_x, factor, weight)
|
182
|
-
ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
183
|
-
end
|
184
|
-
|
185
|
-
def loss_func(x, ex_x, y, factor, weight)
|
186
|
-
z = bin_decision_function(x, ex_x, factor, weight)
|
187
|
-
if @params[:loss] == 'hinge'
|
188
|
-
z.class.maximum(0.0, 1 - y * z).sum.fdiv(y.shape[0])
|
189
|
-
else
|
190
|
-
Numo::NMath.log(1 + Numo::NMath.exp(-y * z)).sum.fdiv(y.shape[0])
|
191
|
-
end
|
192
|
-
end
|
193
|
-
|
194
|
-
def hinge_loss_gradient(x, ex_x, y, factor, weight)
|
195
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
196
|
-
gradient = Numo::DFloat.zeros(evaluated.size)
|
197
|
-
gradient[evaluated < 1.0] = -y[evaluated < 1.0]
|
198
|
-
gradient
|
199
|
-
end
|
200
|
-
|
201
|
-
def logistic_loss_gradient(x, ex_x, y, factor, weight)
|
202
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
203
|
-
sigmoid_func = 1.0 / (Numo::NMath.exp(-evaluated) + 1.0)
|
204
|
-
(sigmoid_func - 1.0) * y
|
205
|
-
end
|
206
|
-
|
207
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
208
|
-
if @params[:loss] == 'hinge'
|
209
|
-
hinge_loss_gradient(x, ex_x, y, factor, weight)
|
210
|
-
else
|
211
|
-
logistic_loss_gradient(x, ex_x, y, factor, weight)
|
212
|
-
end
|
213
|
-
end
|
214
|
-
|
215
|
-
def multiclass_problem?
|
216
|
-
@classes.size > 2
|
217
|
-
end
|
218
|
-
end
|
219
|
-
end
|
220
|
-
end
|
@@ -1,134 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/regressor'
|
4
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module PolynomialModel
|
8
|
-
# FactorizationMachineRegressor is a class that implements Factorization Machine
|
9
|
-
# with stochastic gradient descent (SGD) optimization.
|
10
|
-
#
|
11
|
-
# @deprecated
|
12
|
-
# FactorizationMachineRegressor will be deleted in version 0.20.0.
|
13
|
-
# The Ruamle author recommends using the xlearn gem instead.
|
14
|
-
#
|
15
|
-
# @example
|
16
|
-
# estimator =
|
17
|
-
# Rumale::PolynomialModel::FactorizationMachineRegressor.new(
|
18
|
-
# n_factors: 10, reg_param_linear: 0.1, reg_param_factor: 0.1,
|
19
|
-
# max_iter: 500, batch_size: 50, random_seed: 1)
|
20
|
-
# estimator.fit(training_samples, traininig_values)
|
21
|
-
# results = estimator.predict(testing_samples)
|
22
|
-
#
|
23
|
-
# *Reference*
|
24
|
-
# - Rendle, S., "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
25
|
-
# - Rendle, S., "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
26
|
-
class FactorizationMachineRegressor < BaseFactorizationMachine
|
27
|
-
include Base::Regressor
|
28
|
-
|
29
|
-
# Return the factor matrix for Factorization Machine.
|
30
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_factors, n_features])
|
31
|
-
attr_reader :factor_mat
|
32
|
-
|
33
|
-
# Return the weight vector for Factorization Machine.
|
34
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
35
|
-
attr_reader :weight_vec
|
36
|
-
|
37
|
-
# Return the bias term for Factoriazation Machine.
|
38
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
39
|
-
attr_reader :bias_term
|
40
|
-
|
41
|
-
# Return the random generator for random sampling.
|
42
|
-
# @return [Random]
|
43
|
-
attr_reader :rng
|
44
|
-
|
45
|
-
# Create a new regressor with Factorization Machine.
|
46
|
-
#
|
47
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
48
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
49
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
50
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
51
|
-
# how many times the whole data is given to the training process.
|
52
|
-
# @param batch_size [Integer] The size of the mini batches.
|
53
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
54
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
55
|
-
# If nil is given, Nadam is used.
|
56
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
57
|
-
# If nil is given, the method does not execute in parallel.
|
58
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
59
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
60
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
61
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
|
-
def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
63
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
64
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
65
|
-
warn 'warning: FactorizationMachineClassifier is deprecated. This class will be deleted in version 0.20.0.'
|
66
|
-
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
67
|
-
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size, tol: tol)
|
68
|
-
check_params_boolean(verbose: verbose)
|
69
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
70
|
-
check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
71
|
-
max_iter: max_iter, batch_size: batch_size)
|
72
|
-
keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(loss: nil)
|
73
|
-
super(**keywd_args)
|
74
|
-
end
|
75
|
-
|
76
|
-
# Fit the model with given training data.
|
77
|
-
#
|
78
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
79
|
-
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
80
|
-
# @return [FactorizationMachineRegressor] The learned regressor itself.
|
81
|
-
def fit(x, y)
|
82
|
-
x = check_convert_sample_array(x)
|
83
|
-
y = check_convert_tvalue_array(y)
|
84
|
-
check_sample_tvalue_size(x, y)
|
85
|
-
|
86
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
87
|
-
_n_samples, n_features = x.shape
|
88
|
-
|
89
|
-
if n_outputs > 1
|
90
|
-
@factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features)
|
91
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
92
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
93
|
-
if enable_parallel?
|
94
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
95
|
-
n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
|
96
|
-
else
|
97
|
-
n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
98
|
-
end
|
99
|
-
else
|
100
|
-
@factor_mat, @weight_vec, @bias_term = partial_fit(x, y)
|
101
|
-
end
|
102
|
-
|
103
|
-
self
|
104
|
-
end
|
105
|
-
|
106
|
-
# Predict values for samples.
|
107
|
-
#
|
108
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
109
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
110
|
-
def predict(x)
|
111
|
-
x = check_convert_sample_array(x)
|
112
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
113
|
-
factor_term = if @weight_vec.shape[1].nil?
|
114
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
115
|
-
else
|
116
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
117
|
-
end
|
118
|
-
linear_term + factor_term
|
119
|
-
end
|
120
|
-
|
121
|
-
private
|
122
|
-
|
123
|
-
def loss_func(x, ex_x, y, factor, weight)
|
124
|
-
z = ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
125
|
-
((z - y)**2).sum.fdiv(y.shape[0])
|
126
|
-
end
|
127
|
-
|
128
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
129
|
-
z = ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
130
|
-
2.0 * (z - y)
|
131
|
-
end
|
132
|
-
end
|
133
|
-
end
|
134
|
-
end
|