rumale 0.18.3 → 0.18.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/lib/rumale.rb +1 -0
- data/lib/rumale/evaluation_measure/function.rb +1 -1
- data/lib/rumale/kernel_machine/kernel_fda.rb +120 -0
- data/lib/rumale/kernel_machine/kernel_pca.rb +5 -4
- data/lib/rumale/version.rb +1 -1
- metadata +3 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a4ec0f04029a88ea7950bb74bf9e0bd970cf8b546253da4ef4545244ad0adf68
|
4
|
+
data.tar.gz: ed927fb58359fe49d4834593ec2034535f5ac8d37c773d6cb5a53227c4777f61
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 58727ddc9c5c6f9c12ac8231f57295988795bf07ec6f748543fff924a4d8085472a210789992ba2a3cc4827300823d141313da1fd20a10be3b5970b40871e4e3
|
7
|
+
data.tar.gz: cc1af7ff552a9fe516e0588081ad6645cb03d4c8dd774492ea35c3e1a28eece7383dc88604c41e1cc1417f5d05af1324a7b97c121cb7ee76bcc697e4173195be
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,8 @@
|
|
1
|
+
# 0.18.4
|
2
|
+
- Add transformer class for [KernelFDA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelFDA.html).
|
3
|
+
- Refactor [KernelPCA](https://yoshoku.github.io/rumale/doc/Rumale/KernelMachine/KernelPCA.html).
|
4
|
+
- Fix API documentation.
|
5
|
+
|
1
6
|
# 0.18.3
|
2
7
|
- Fix API documentation on [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html)
|
3
8
|
- Refector [rbf_kernel](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html#rbf_kernel-class_method) method.
|
data/lib/rumale.rb
CHANGED
@@ -39,6 +39,7 @@ require 'rumale/linear_model/lasso'
|
|
39
39
|
require 'rumale/linear_model/elastic_net'
|
40
40
|
require 'rumale/kernel_machine/kernel_svc'
|
41
41
|
require 'rumale/kernel_machine/kernel_pca'
|
42
|
+
require 'rumale/kernel_machine/kernel_fda'
|
42
43
|
require 'rumale/kernel_machine/kernel_ridge'
|
43
44
|
require 'rumale/polynomial_model/base_factorization_machine'
|
44
45
|
require 'rumale/polynomial_model/factorization_machine_classifier'
|
@@ -13,7 +13,7 @@ module Rumale
|
|
13
13
|
# @example
|
14
14
|
# y_true = Numo::Int32[2, 0, 2, 2, 0, 1]
|
15
15
|
# y_pred = Numo::Int32[0, 0, 2, 2, 0, 2]
|
16
|
-
# p confusion_matrix(y_true, y_pred)
|
16
|
+
# p Rumale::EvaluationMeasure.confusion_matrix(y_true, y_pred)
|
17
17
|
#
|
18
18
|
# # Numo::Int32#shape=[3,3]
|
19
19
|
# # [[2, 0, 0],
|
@@ -0,0 +1,120 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module KernelMachine
|
8
|
+
# KernelFDA is a class that implements Kernel Fisher Discriminant Analysis.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# require 'numo/linalg/autoloader'
|
12
|
+
#
|
13
|
+
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(x_train)
|
14
|
+
# kfda = Rumale::KernelMachine::KernelFDA.new
|
15
|
+
# mapped_traininig_samples = kfda.fit_transform(kernel_mat_train, y)
|
16
|
+
#
|
17
|
+
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(x_test, x_train)
|
18
|
+
# mapped_test_samples = kfda.transform(kernel_mat_test)
|
19
|
+
#
|
20
|
+
# *Reference*
|
21
|
+
# - Baudat, G. and Anouar, F., "Generalized Discriminant Analysis using a Kernel Approach," Neural Computation, vol. 12, pp. 2385--2404, 2000.
|
22
|
+
class KernelFDA
|
23
|
+
include Base::BaseEstimator
|
24
|
+
include Base::Transformer
|
25
|
+
|
26
|
+
# Returns the eigenvectors for embedding.
|
27
|
+
# @return [Numo::DFloat] (shape: [n_training_sampes, n_components])
|
28
|
+
attr_reader :alphas
|
29
|
+
|
30
|
+
# Create a new transformer with Kernel FDA.
|
31
|
+
#
|
32
|
+
# @param n_components [Integer] The number of components.
|
33
|
+
# @param reg_param [Float] The regularization parameter.
|
34
|
+
def initialize(n_components: nil, reg_param: 1e-8)
|
35
|
+
check_params_numeric_or_nil(n_components: n_components)
|
36
|
+
check_params_numeric(reg_param: reg_param)
|
37
|
+
@params = {}
|
38
|
+
@params[:n_components] = n_components
|
39
|
+
@params[:reg_param] = reg_param
|
40
|
+
@alphas = nil
|
41
|
+
@row_mean = nil
|
42
|
+
@all_mean = nil
|
43
|
+
end
|
44
|
+
|
45
|
+
# Fit the model with given training data.
|
46
|
+
# To execute this method, Numo::Linalg must be loaded.
|
47
|
+
#
|
48
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
49
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
50
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
51
|
+
# @return [KernelFDA] The learned transformer itself.
|
52
|
+
def fit(x, y)
|
53
|
+
x = check_convert_sample_array(x)
|
54
|
+
y = check_convert_label_array(y)
|
55
|
+
check_sample_label_size(x, y)
|
56
|
+
raise ArgumentError, 'Expect the kernel matrix of training data to be square.' unless x.shape[0] == x.shape[1]
|
57
|
+
raise 'KernelFDA#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
58
|
+
|
59
|
+
# initialize some variables.
|
60
|
+
n_samples = x.shape[0]
|
61
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
62
|
+
n_classes = @classes.size
|
63
|
+
n_components = if @params[:n_components].nil?
|
64
|
+
[n_samples, n_classes - 1].min
|
65
|
+
else
|
66
|
+
[n_samples, @params[:n_components]].min
|
67
|
+
end
|
68
|
+
|
69
|
+
# centering
|
70
|
+
@row_mean = x.mean(0)
|
71
|
+
@all_mean = @row_mean.sum.fdiv(n_samples)
|
72
|
+
centered_kernel_mat = x - x.mean(1).expand_dims(1) - @row_mean + @all_mean
|
73
|
+
|
74
|
+
# calculate between and within scatter matrix.
|
75
|
+
class_mat = Numo::DFloat.zeros(n_samples, n_samples)
|
76
|
+
@classes.each do |label|
|
77
|
+
idx_vec = y.eq(label)
|
78
|
+
class_mat += Numo::DFloat.cast(idx_vec).outer(idx_vec) / idx_vec.count
|
79
|
+
end
|
80
|
+
between_mat = centered_kernel_mat.dot(class_mat).dot(centered_kernel_mat.transpose)
|
81
|
+
within_mat = centered_kernel_mat.dot(centered_kernel_mat.transpose) + @params[:reg_param] * Numo::DFloat.eye(n_samples)
|
82
|
+
|
83
|
+
# calculate projection matrix.
|
84
|
+
eig_vals, eig_vecs = Numo::Linalg.eigh(
|
85
|
+
between_mat, within_mat,
|
86
|
+
vals_range: (n_samples - n_components)...n_samples
|
87
|
+
)
|
88
|
+
@alphas = eig_vecs.reverse(1).dup
|
89
|
+
self
|
90
|
+
end
|
91
|
+
|
92
|
+
# Fit the model with training data, and then transform them with the learned model.
|
93
|
+
# To execute this method, Numo::Linalg must be loaded.
|
94
|
+
#
|
95
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_samples])
|
96
|
+
# The kernel matrix of the training data to be used for fitting the model and transformed.
|
97
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
98
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
99
|
+
def fit_transform(x, y)
|
100
|
+
x = check_convert_sample_array(x)
|
101
|
+
y = check_convert_label_array(y)
|
102
|
+
check_sample_label_size(x, y)
|
103
|
+
fit(x, y).transform(x)
|
104
|
+
end
|
105
|
+
|
106
|
+
# Transform the given data with the learned model.
|
107
|
+
#
|
108
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
109
|
+
# The kernel matrix between testing samples and training samples to be transformed.
|
110
|
+
# @return [Numo::DFloat] (shape: [n_testing_samples, n_components]) The transformed data.
|
111
|
+
def transform(x)
|
112
|
+
x = check_convert_sample_array(x)
|
113
|
+
col_mean = x.sum(1) / @row_mean.shape[0]
|
114
|
+
centered_kernel_mat = x - col_mean.expand_dims(1) - @row_mean + @all_mean
|
115
|
+
transformed = centered_kernel_mat.dot(@alphas)
|
116
|
+
@params[:n_components] == 1 ? transformed[true, 0].dup : transformed
|
117
|
+
end
|
118
|
+
end
|
119
|
+
end
|
120
|
+
end
|
@@ -11,7 +11,7 @@ module Rumale
|
|
11
11
|
# require 'numo/linalg/autoloader'
|
12
12
|
#
|
13
13
|
# kernel_mat_train = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
14
|
-
# kpca = Rumale::KernelMachine::KernelPCA(n_components: 2)
|
14
|
+
# kpca = Rumale::KernelMachine::KernelPCA.new(n_components: 2)
|
15
15
|
# mapped_traininig_samples = kpca.fit_transform(kernel_mat_train)
|
16
16
|
#
|
17
17
|
# kernel_mat_test = Rumale::PairwiseMetric::rbf_kernel(test_samples, training_samples)
|
@@ -27,7 +27,7 @@ module Rumale
|
|
27
27
|
# @return [Numo::DFloat] (shape: [n_components])
|
28
28
|
attr_reader :lambdas
|
29
29
|
|
30
|
-
# Returns the
|
30
|
+
# Returns the eigenvectors of the centered kernel matrix.
|
31
31
|
# @return [Numo::DFloat] (shape: [n_training_sampes, n_components])
|
32
32
|
attr_reader :alphas
|
33
33
|
|
@@ -40,6 +40,7 @@ module Rumale
|
|
40
40
|
@params[:n_components] = n_components
|
41
41
|
@alphas = nil
|
42
42
|
@lambdas = nil
|
43
|
+
@transform_mat = nil
|
43
44
|
@row_mean = nil
|
44
45
|
@all_mean = nil
|
45
46
|
end
|
@@ -63,6 +64,7 @@ module Rumale
|
|
63
64
|
eig_vals, eig_vecs = Numo::Linalg.eigh(centered_kernel_mat, vals_range: (n_samples - @params[:n_components])...n_samples)
|
64
65
|
@alphas = eig_vecs.reverse(1).dup
|
65
66
|
@lambdas = eig_vals.reverse.dup
|
67
|
+
@transform_mat = @alphas.dot((1.0 / Numo::NMath.sqrt(@lambdas)).diag)
|
66
68
|
self
|
67
69
|
end
|
68
70
|
|
@@ -87,8 +89,7 @@ module Rumale
|
|
87
89
|
x = check_convert_sample_array(x)
|
88
90
|
col_mean = x.sum(1) / @row_mean.shape[0]
|
89
91
|
centered_kernel_mat = x - col_mean.expand_dims(1) - @row_mean + @all_mean
|
90
|
-
|
91
|
-
transformed = centered_kernel_mat.dot(transform_mat)
|
92
|
+
transformed = centered_kernel_mat.dot(@transform_mat)
|
92
93
|
@params[:n_components] == 1 ? transformed[true, 0].dup : transformed
|
93
94
|
end
|
94
95
|
end
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.18.
|
4
|
+
version: 0.18.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-04-
|
11
|
+
date: 2020-04-11 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -242,6 +242,7 @@ files:
|
|
242
242
|
- lib/rumale/feature_extraction/hash_vectorizer.rb
|
243
243
|
- lib/rumale/kernel_approximation/nystroem.rb
|
244
244
|
- lib/rumale/kernel_approximation/rbf.rb
|
245
|
+
- lib/rumale/kernel_machine/kernel_fda.rb
|
245
246
|
- lib/rumale/kernel_machine/kernel_pca.rb
|
246
247
|
- lib/rumale/kernel_machine/kernel_ridge.rb
|
247
248
|
- lib/rumale/kernel_machine/kernel_svc.rb
|