rumale 0.18.2 → 0.18.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 4028734b509ce8a05301fe152bdcc2a26a0e318e692a866d3bc1669ca7e5f859
4
- data.tar.gz: c2dfc3614f786b59ce72a96adc2ca16b140a72e42f4851cb2cba8cebb3cab8dc
3
+ metadata.gz: a3def8720c4043695c73b01ba991b8d394e8c684bf0fc74458c544d1d17d1512
4
+ data.tar.gz: c758d68350a6f97706aab6ecb1934af21aac0cbd9d4ca03cd8dc940c982411b3
5
5
  SHA512:
6
- metadata.gz: 53b09b0eb4f783e5c9980023ad90749cee0ad7b77de590b0622a97bbc4899d96fdd6b3181a287026c547925d0938af925754c81a6eca5e9aca5746fb65699632
7
- data.tar.gz: 5f45554a4d2fb0486a2c84a317c8faf1ca98a001c175380e12efcaba9ea1a909c337b9674f6d094ca25df2f9fdb372b7e460631a4fa99d19bce68e10200dc213
6
+ metadata.gz: 23202fa7a3a0f61d137575d5742a58e04ba4f84a912e287013465b5620db1b2b88f96fde72ea4a138c4f4386160c7005ef94c8288b8548576c588aa705febd61
7
+ data.tar.gz: 346cf325f959a52ad3b530f4d3a7488b1f313501ad0b244d9a43357e1cc636ef6a3f00781a6a7cdc763bc1e6df291ded3967fea61cedc4ce58a1ca368d76f9e5
@@ -1,3 +1,13 @@
1
+ # 0.18.3
2
+ - Fix API documentation on [KNeighborsRegressor](https://yoshoku.github.io/rumale/doc/Rumale/NearestNeighbors/KNeighborsRegressor.html)
3
+ - Refector [rbf_kernel](https://yoshoku.github.io/rumale/doc/Rumale/PairwiseMetric.html#rbf_kernel-class_method) method.
4
+ - Delete unneeded marshal dump and load methods. The deletion work is complete.
5
+ - [Tree](https://yoshoku.github.io/rumale/doc/Rumale/Tree.html),
6
+ [Ensemble](https://yoshoku.github.io/rumale/doc/Rumale/Ensemble.html),
7
+ [Optimizer](https://yoshoku.github.io/rumale/doc/Rumale/Optimizer.html),
8
+ [OneVsRestClassifier](https://yoshoku.github.io/rumale/doc/Rumale/Multiclass/OneVsRestClassifier.html),
9
+ [GridSearchCV](https://yoshoku.github.io/rumale/doc/Rumale/ModelSelection/GridSearchCV.html).
10
+
1
11
  # 0.18.2
2
12
  - Change file composition of naive bayes classifiers.
3
13
  - Add classifier class for [ComplementNaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes/ComplementNB.html).
@@ -84,7 +84,7 @@ require 'rumale/decomposition/fast_ica'
84
84
  require 'rumale/manifold/tsne'
85
85
  require 'rumale/manifold/mds'
86
86
  require 'rumale/metric_learning/fisher_discriminant_analysis'
87
- require 'rumale/metric_learning/neighbourhood_component_analysis.rb'
87
+ require 'rumale/metric_learning/neighbourhood_component_analysis'
88
88
  require 'rumale/neural_network/adam'
89
89
  require 'rumale/neural_network/base_mlp'
90
90
  require 'rumale/neural_network/mlp_regressor'
@@ -171,27 +171,6 @@ module Rumale
171
171
  probs /= Numo::DFloat[sum_probs].transpose
172
172
  probs
173
173
  end
174
-
175
- # Dump marshal data.
176
- # @return [Hash] The marshal data about AdaBoostClassifier.
177
- def marshal_dump
178
- { params: @params,
179
- estimators: @estimators,
180
- classes: @classes,
181
- feature_importances: @feature_importances,
182
- rng: @rng }
183
- end
184
-
185
- # Load marshal data.
186
- # @return [nil]
187
- def marshal_load(obj)
188
- @params = obj[:params]
189
- @estimators = obj[:estimators]
190
- @classes = obj[:classes]
191
- @feature_importances = obj[:feature_importances]
192
- @rng = obj[:rng]
193
- nil
194
- end
195
174
  end
196
175
  end
197
176
  end
@@ -153,27 +153,6 @@ module Rumale
153
153
  sum_weight = @estimator_weights.sum
154
154
  predictions / sum_weight
155
155
  end
156
-
157
- # Dump marshal data.
158
- # @return [Hash] The marshal data about AdaBoostRegressor.
159
- def marshal_dump
160
- { params: @params,
161
- estimators: @estimators,
162
- estimator_weights: @estimator_weights,
163
- feature_importances: @feature_importances,
164
- rng: @rng }
165
- end
166
-
167
- # Load marshal data.
168
- # @return [nil]
169
- def marshal_load(obj)
170
- @params = obj[:params]
171
- @estimators = obj[:estimators]
172
- @estimator_weights = obj[:estimator_weights]
173
- @feature_importances = obj[:feature_importances]
174
- @rng = obj[:rng]
175
- nil
176
- end
177
156
  end
178
157
  end
179
158
  end
@@ -125,18 +125,6 @@ module Rumale
125
125
  super
126
126
  end
127
127
 
128
- # Dump marshal data.
129
- # @return [Hash] The marshal data about ExtraTreesClassifier.
130
- def marshal_dump
131
- super
132
- end
133
-
134
- # Load marshal data.
135
- # @return [nil]
136
- def marshal_load(obj)
137
- super
138
- end
139
-
140
128
  private
141
129
 
142
130
  def plant_tree(rnd_seed)
@@ -111,18 +111,6 @@ module Rumale
111
111
  super
112
112
  end
113
113
 
114
- # Dump marshal data.
115
- # @return [Hash] The marshal data about ExtraTreesRegressor.
116
- def marshal_dump
117
- super
118
- end
119
-
120
- # Load marshal data.
121
- # @return [nil]
122
- def marshal_load(obj)
123
- super
124
- end
125
-
126
114
  private
127
115
 
128
116
  def plant_tree(rnd_seed)
@@ -185,29 +185,6 @@ module Rumale
185
185
  Numo::Int32[*leaf_ids].transpose
186
186
  end
187
187
 
188
- # Dump marshal data.
189
- # @return [Hash] The marshal data about GradientBoostingClassifier.
190
- def marshal_dump
191
- { params: @params,
192
- estimators: @estimators,
193
- classes: @classes,
194
- base_predictions: @base_predictions,
195
- feature_importances: @feature_importances,
196
- rng: @rng }
197
- end
198
-
199
- # Load marshal data.
200
- # @return [nil]
201
- def marshal_load(obj)
202
- @params = obj[:params]
203
- @estimators = obj[:estimators]
204
- @classes = obj[:classes]
205
- @base_predictions = obj[:base_predictions]
206
- @feature_importances = obj[:feature_importances]
207
- @rng = obj[:rng]
208
- nil
209
- end
210
-
211
188
  private
212
189
 
213
190
  def partial_fit(x, y, init_pred)
@@ -149,27 +149,6 @@ module Rumale
149
149
  Numo::Int32[*leaf_ids].transpose
150
150
  end
151
151
 
152
- # Dump marshal data.
153
- # @return [Hash] The marshal data about GradientBoostingRegressor.
154
- def marshal_dump
155
- { params: @params,
156
- estimators: @estimators,
157
- base_predictions: @base_predictions,
158
- feature_importances: @feature_importances,
159
- rng: @rng }
160
- end
161
-
162
- # Load marshal data.
163
- # @return [nil]
164
- def marshal_load(obj)
165
- @params = obj[:params]
166
- @estimators = obj[:estimators]
167
- @base_predictions = obj[:base_predictions]
168
- @feature_importances = obj[:feature_importances]
169
- @rng = obj[:rng]
170
- nil
171
- end
172
-
173
152
  private
174
153
 
175
154
  def partial_fit(x, y, init_pred)
@@ -162,27 +162,6 @@ module Rumale
162
162
  Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
163
163
  end
164
164
 
165
- # Dump marshal data.
166
- # @return [Hash] The marshal data about RandomForestClassifier.
167
- def marshal_dump
168
- { params: @params,
169
- estimators: @estimators,
170
- classes: @classes,
171
- feature_importances: @feature_importances,
172
- rng: @rng }
173
- end
174
-
175
- # Load marshal data.
176
- # @return [nil]
177
- def marshal_load(obj)
178
- @params = obj[:params]
179
- @estimators = obj[:estimators]
180
- @classes = obj[:classes]
181
- @feature_importances = obj[:feature_importances]
182
- @rng = obj[:rng]
183
- nil
184
- end
185
-
186
165
  private
187
166
 
188
167
  def plant_tree(rnd_seed)
@@ -139,25 +139,6 @@ module Rumale
139
139
  Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
140
140
  end
141
141
 
142
- # Dump marshal data.
143
- # @return [Hash] The marshal data about RandomForestRegressor.
144
- def marshal_dump
145
- { params: @params,
146
- estimators: @estimators,
147
- feature_importances: @feature_importances,
148
- rng: @rng }
149
- end
150
-
151
- # Load marshal data.
152
- # @return [nil]
153
- def marshal_load(obj)
154
- @params = obj[:params]
155
- @estimators = obj[:estimators]
156
- @feature_importances = obj[:feature_importances]
157
- @rng = obj[:rng]
158
- nil
159
- end
160
-
161
142
  private
162
143
 
163
144
  def plant_tree(rnd_seed)
@@ -152,29 +152,6 @@ module Rumale
152
152
  @best_estimator.score(x, y)
153
153
  end
154
154
 
155
- # Dump marshal data.
156
- # @return [Hash] The marshal data about GridSearchCV.
157
- def marshal_dump
158
- { params: @params,
159
- cv_results: @cv_results,
160
- best_score: @best_score,
161
- best_params: @best_params,
162
- best_index: @best_index,
163
- best_estimator: @best_estimator }
164
- end
165
-
166
- # Load marshal data.
167
- # @return [nil]
168
- def marshal_load(obj)
169
- @params = obj[:params]
170
- @cv_results = obj[:cv_results]
171
- @best_score = obj[:best_score]
172
- @best_params = obj[:best_params]
173
- @best_index = obj[:best_index]
174
- @best_estimator = obj[:best_estimator]
175
- nil
176
- end
177
-
178
155
  private
179
156
 
180
157
  def valid_param_grid(grid)
@@ -78,23 +78,6 @@ module Rumale
78
78
  decision_values = decision_function(x)
79
79
  Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
80
80
  end
81
-
82
- # Dump marshal data.
83
- # @return [Hash] The marshal data about OneVsRestClassifier.
84
- def marshal_dump
85
- { params: @params,
86
- classes: @classes,
87
- estimators: @estimators.map { |e| Marshal.dump(e) } }
88
- end
89
-
90
- # Load marshal data.
91
- # @return [nil]
92
- def marshal_load(obj)
93
- @params = obj[:params]
94
- @classes = obj[:classes]
95
- @estimators = obj[:estimators].map { |e| Marshal.load(e) }
96
- nil
97
- end
98
81
  end
99
82
  end
100
83
  end
@@ -21,11 +21,11 @@ module Rumale
21
21
  # Return the prototypes for the nearest neighbor regressor.
22
22
  # If the metric is 'precomputed', that returns nil.
23
23
  # If the algorithm is 'vptree', that returns Rumale::NearestNeighbors::VPTree.
24
- # @return [Numo::DFloat] (shape: [n_testing_samples, n_features])
24
+ # @return [Numo::DFloat] (shape: [n_training_samples, n_features])
25
25
  attr_reader :prototypes
26
26
 
27
27
  # Return the values of the prototypes
28
- # @return [Numo::DFloat] (shape: [n_testing_samples, n_outputs])
28
+ # @return [Numo::DFloat] (shape: [n_training_samples, n_outputs])
29
29
  attr_reader :values
30
30
 
31
31
  # Create a new regressor with the nearest neighbor rule.
@@ -74,9 +74,9 @@ module Rumale
74
74
 
75
75
  # Predict values for samples.
76
76
  #
77
- # @param x [Numo::DFloat] (shape: [n_training_samples, n_features]) The samples to predict the values.
77
+ # @param x [Numo::DFloat] (shape: [n_testing_samples, n_features]) The samples to predict the values.
78
78
  # If the metric is 'precomputed', x must be a square distance matrix (shape: [n_testing_samples, n_training_samples]).
79
- # @return [Numo::DFloat] (shape: [n_training_samples, n_outputs]) Predicted values per sample.
79
+ # @return [Numo::DFloat] (shape: [n_testing_samples, n_outputs]) Predicted values per sample.
80
80
  def predict(x)
81
81
  x = check_convert_sample_array(x)
82
82
  if @params[:metric] == 'precomputed' && x.shape[1] != @values.shape[0]
@@ -34,21 +34,6 @@ module Rumale
34
34
  @moment += gradient**2
35
35
  weight - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
36
36
  end
37
-
38
- # Dump marshal data.
39
- # @return [Hash] The marshal data.
40
- def marshal_dump
41
- { params: @params,
42
- moment: @moment }
43
- end
44
-
45
- # Load marshal data.
46
- # @return [nil]
47
- def marshal_load(obj)
48
- @params = obj[:params]
49
- @moment = obj[:moment]
50
- nil
51
- end
52
37
  end
53
38
  end
54
39
  end
@@ -48,25 +48,6 @@ module Rumale
48
48
 
49
49
  weight - @params[:learning_rate] * nm_fst_moment / (nm_sec_moment**0.5 + 1e-8)
50
50
  end
51
-
52
- # Dump marshal data.
53
- # @return [Hash] The marshal data.
54
- def marshal_dump
55
- { params: @params,
56
- fst_moment: @fst_moment,
57
- sec_moment: @sec_moment,
58
- iter: @iter }
59
- end
60
-
61
- # Load marshal data.
62
- # @return [nil]
63
- def marshal_load(obj)
64
- @params = obj[:params]
65
- @fst_moment = obj[:fst_moment]
66
- @sec_moment = obj[:sec_moment]
67
- @iter = obj[:iter]
68
- nil
69
- end
70
51
  end
71
52
  end
72
53
  end
@@ -57,27 +57,6 @@ module Rumale
57
57
 
58
58
  weight - (@params[:learning_rate] / (nm_sec_moment**0.5 + 1e-8)) * ((1 - decay1_curr) * nm_gradient + decay1_next * nm_fst_moment)
59
59
  end
60
-
61
- # Dump marshal data.
62
- # @return [Hash] The marshal data.
63
- def marshal_dump
64
- { params: @params,
65
- fst_moment: @fst_moment,
66
- sec_moment: @sec_moment,
67
- decay1_prod: @decay1_prod,
68
- iter: @iter }
69
- end
70
-
71
- # Load marshal data.
72
- # @return [nil]
73
- def marshal_load(obj)
74
- @params = obj[:params]
75
- @fst_moment = obj[:fst_moment]
76
- @sec_moment = obj[:sec_moment]
77
- @decay1_prod = obj[:decay1_prod]
78
- @iter = obj[:iter]
79
- nil
80
- end
81
60
  end
82
61
  end
83
62
  end
@@ -42,23 +42,6 @@ module Rumale
42
42
  @update = @params[:momentum] * @update - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
43
43
  weight + @update
44
44
  end
45
-
46
- # Dump marshal data.
47
- # @return [Hash] The marshal data.
48
- def marshal_dump
49
- { params: @params,
50
- moment: @moment,
51
- update: @update }
52
- end
53
-
54
- # Load marshal data.
55
- # @return [nil]
56
- def marshal_load(obj)
57
- @params = obj[:params]
58
- @moment = obj[:moment]
59
- @update = obj[:update]
60
- nil
61
- end
62
45
  end
63
46
  end
64
47
  end
@@ -38,23 +38,6 @@ module Rumale
38
38
  @update = @params[:momentum] * @update - current_learning_rate * gradient
39
39
  weight + @update
40
40
  end
41
-
42
- # Dump marshal data.
43
- # @return [Hash] The marshal data.
44
- def marshal_dump
45
- { params: @params,
46
- iter: @iter,
47
- update: @update }
48
- end
49
-
50
- # Load marshal data.
51
- # @return [nil]
52
- def marshal_load(obj)
53
- @params = obj[:params]
54
- @iter = obj[:iter]
55
- @update = obj[:update]
56
- nil
57
- end
58
41
  end
59
42
  end
60
43
  end
@@ -96,43 +96,6 @@ module Rumale
96
96
  @curve_mean = @params[:decay] * @curve_mean + (1 - @params[:decay]) * grad_sqr
97
97
  @distance_mean = @params[:decay] * @distance_mean + (1 - @params[:decay]) * (@grad_norm_mean / @curve_mean)
98
98
  end
99
-
100
- # Dump marshal data.
101
- # @return [Hash] The marshal data.
102
- def marshal_dump
103
- { params: @params,
104
- smth_learning_rate: @smth_learning_rate,
105
- smth_momentum: @smth_momentum,
106
- grad_norms: @grad_norms,
107
- grad_norm_min: @grad_norm_min,
108
- grad_norm_max: @grad_norm_max,
109
- grad_mean_sqr: @grad_mean_sqr,
110
- grad_mean: @grad_mean,
111
- grad_var: @grad_var,
112
- grad_norm_mean: @grad_norm_mean,
113
- curve_mean: @curve_mean,
114
- distance_mean: @distance_mean,
115
- update: @update }
116
- end
117
-
118
- # Load marshal data.
119
- # @return [nis]
120
- def marshal_load(obj)
121
- @params = obj[:params]
122
- @smth_learning_rate = obj[:smth_learning_rate]
123
- @smth_momentum = obj[:smth_momentum]
124
- @grad_norms = obj[:grad_norms]
125
- @grad_norm_min = obj[:grad_norm_min]
126
- @grad_norm_max = obj[:grad_norm_max]
127
- @grad_mean_sqr = obj[:grad_mean_sqr]
128
- @grad_mean = obj[:grad_mean]
129
- @grad_var = obj[:grad_var]
130
- @grad_norm_mean = obj[:grad_norm_mean]
131
- @curve_mean = obj[:curve_mean]
132
- @distance_mean = obj[:distance_mean]
133
- @update = obj[:update]
134
- nil
135
- end
136
99
  end
137
100
  end
138
101
  end
@@ -61,12 +61,13 @@ module Rumale
61
61
  # @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
62
62
  # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
63
63
  def rbf_kernel(x, y = nil, gamma = nil)
64
- y = x if y.nil?
65
- gamma ||= 1.0 / x.shape[1]
64
+ y_not_given = y.nil?
65
+ y = x if y_not_given
66
66
  x = Rumale::Validation.check_convert_sample_array(x)
67
- y = Rumale::Validation.check_convert_sample_array(y)
67
+ y = Rumale::Validation.check_convert_sample_array(y) unless y_not_given
68
+ gamma ||= 1.0 / x.shape[1]
68
69
  Rumale::Validation.check_params_numeric(gamma: gamma)
69
- Numo::NMath.exp(-gamma * squared_error(x, y).abs)
70
+ Numo::NMath.exp(-gamma * squared_error(x, y))
70
71
  end
71
72
 
72
73
  # Calculate the linear kernel between x and y.
@@ -104,29 +104,6 @@ module Rumale
104
104
  Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_proba_at_node(@tree, x[n, true]) })]
105
105
  end
106
106
 
107
- # Dump marshal data.
108
- # @return [Hash] The marshal data about DecisionTreeClassifier
109
- def marshal_dump
110
- { params: @params,
111
- classes: @classes,
112
- tree: @tree,
113
- feature_importances: @feature_importances,
114
- leaf_labels: @leaf_labels,
115
- rng: @rng }
116
- end
117
-
118
- # Load marshal data.
119
- # @return [nil]
120
- def marshal_load(obj)
121
- @params = obj[:params]
122
- @classes = obj[:classes]
123
- @tree = obj[:tree]
124
- @feature_importances = obj[:feature_importances]
125
- @leaf_labels = obj[:leaf_labels]
126
- @rng = obj[:rng]
127
- nil
128
- end
129
-
130
107
  private
131
108
 
132
109
  def predict_proba_at_node(node, sample)
@@ -90,27 +90,6 @@ module Rumale
90
90
  @leaf_values.shape[1].nil? ? @leaf_values[apply(x)].dup : @leaf_values[apply(x), true].dup
91
91
  end
92
92
 
93
- # Dump marshal data.
94
- # @return [Hash] The marshal data about DecisionTreeRegressor
95
- def marshal_dump
96
- { params: @params,
97
- tree: @tree,
98
- feature_importances: @feature_importances,
99
- leaf_values: @leaf_values,
100
- rng: @rng }
101
- end
102
-
103
- # Load marshal data.
104
- # @return [nil]
105
- def marshal_load(obj)
106
- @params = obj[:params]
107
- @tree = obj[:tree]
108
- @feature_importances = obj[:feature_importances]
109
- @leaf_values = obj[:leaf_values]
110
- @rng = obj[:rng]
111
- nil
112
- end
113
-
114
93
  private
115
94
 
116
95
  def stop_growing?(y)
@@ -89,18 +89,6 @@ module Rumale
89
89
  super
90
90
  end
91
91
 
92
- # Dump marshal data.
93
- # @return [Hash] The marshal data about ExtraTreeClassifier
94
- def marshal_dump
95
- super
96
- end
97
-
98
- # Load marshal data.
99
- # @return [nil]
100
- def marshal_load(obj)
101
- super
102
- end
103
-
104
92
  private
105
93
 
106
94
  def best_split(features, y, whole_impurity)
@@ -76,18 +76,6 @@ module Rumale
76
76
  super
77
77
  end
78
78
 
79
- # Dump marshal data.
80
- # @return [Hash] The marshal data about ExtraTreeRegressor
81
- def marshal_dump
82
- super
83
- end
84
-
85
- # Load marshal data.
86
- # @return [nil]
87
- def marshal_load(obj)
88
- super
89
- end
90
-
91
79
  private
92
80
 
93
81
  def best_split(features, y, whole_impurity)
@@ -118,27 +118,6 @@ module Rumale
118
118
  Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
119
119
  end
120
120
 
121
- # Dump marshal data.
122
- # @return [Hash] The marshal data about DecisionTreeRegressor
123
- def marshal_dump
124
- { params: @params,
125
- tree: @tree,
126
- feature_importances: @feature_importances,
127
- leaf_weights: @leaf_weights,
128
- rng: @rng }
129
- end
130
-
131
- # Load marshal data.
132
- # @return [nil]
133
- def marshal_load(obj)
134
- @params = obj[:params]
135
- @tree = obj[:tree]
136
- @feature_importances = obj[:feature_importances]
137
- @leaf_weights = obj[:leaf_weights]
138
- @rng = obj[:rng]
139
- nil
140
- end
141
-
142
121
  private
143
122
 
144
123
  def apply_at_node(node, sample)
@@ -34,37 +34,6 @@ module Rumale
34
34
  @feature_id = feature_id
35
35
  @threshold = threshold
36
36
  end
37
-
38
- # Dump marshal data.
39
- # @return [Hash] The marshal data about Node
40
- def marshal_dump
41
- { depth: @depth,
42
- impurity: @impurity,
43
- n_samples: @n_samples,
44
- probs: @probs,
45
- leaf: @leaf,
46
- leaf_id: @leaf_id,
47
- left: @left,
48
- right: @right,
49
- feature_id: @feature_id,
50
- threshold: @threshold }
51
- end
52
-
53
- # Load marshal data.
54
- # @return [nil]
55
- def marshal_load(obj)
56
- @depth = obj[:depth]
57
- @impurity = obj[:impurity]
58
- @n_samples = obj[:n_samples]
59
- @probs = obj[:probs]
60
- @leaf = obj[:leaf]
61
- @leaf_id = obj[:leaf_id]
62
- @left = obj[:left]
63
- @right = obj[:right]
64
- @feature_id = obj[:feature_id]
65
- @threshold = obj[:threshold]
66
- nil
67
- end
68
37
  end
69
38
  end
70
39
  end
@@ -3,5 +3,5 @@
3
3
  # Rumale is a machine learning library in Ruby.
4
4
  module Rumale
5
5
  # The version of Rumale you are using.
6
- VERSION = '0.18.2'
6
+ VERSION = '0.18.3'
7
7
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.18.2
4
+ version: 0.18.3
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2020-03-21 00:00:00.000000000 Z
11
+ date: 2020-04-04 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray