rumale 0.16.1 → 0.17.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +2 -2
- data/CHANGELOG.md +22 -0
- data/README.md +11 -7
- data/lib/rumale/linear_model/base_linear_model.rb +7 -0
- data/lib/rumale/linear_model/base_sgd.rb +55 -0
- data/lib/rumale/linear_model/elastic_net.rb +2 -2
- data/lib/rumale/linear_model/lasso.rb +32 -61
- data/lib/rumale/linear_model/linear_regression.rb +54 -43
- data/lib/rumale/linear_model/logistic_regression.rb +43 -39
- data/lib/rumale/linear_model/ridge.rb +51 -39
- data/lib/rumale/linear_model/svc.rb +45 -48
- data/lib/rumale/linear_model/svr.rb +44 -47
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +20 -17
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +4 -3
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +4 -3
- data/lib/rumale/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d1071dfdccfc177ea5902e5e1b09fce084fd4b6ce403fae6797e6b93c3f826ad
|
4
|
+
data.tar.gz: 30768881f5c826f59dbcca0b17a1192dbdc17ca835c8bcc626e874391131bf92
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e748eedf78b040a7dbe1a1b744f87f1c1e9c3ae751417711eccd5f69dca68335f1a206b9258503da70a8486c3d8588d61ae78081ebdecc6a8ee40f85383a319f
|
7
|
+
data.tar.gz: 2abae603660179e05f8341ab5351fb9e028549674bb13901e4cae4dfd13c99995de0de3c63f8c75182acd155a1d2171b02e4db74fcaa08c1108a1a0e92ad3eee
|
data/.rubocop.yml
CHANGED
@@ -15,7 +15,7 @@ AllCops:
|
|
15
15
|
Style/Documentation:
|
16
16
|
Enabled: false
|
17
17
|
|
18
|
-
|
18
|
+
Layout/LineLength:
|
19
19
|
Max: 145
|
20
20
|
IgnoredPatterns: ['(\A|\s)#']
|
21
21
|
|
@@ -43,7 +43,7 @@ Metrics/BlockLength:
|
|
43
43
|
- 'spec/**/*'
|
44
44
|
|
45
45
|
Metrics/ParameterLists:
|
46
|
-
Max:
|
46
|
+
Max: 15
|
47
47
|
|
48
48
|
Security/MarshalLoad:
|
49
49
|
Enabled: false
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,25 @@
|
|
1
|
+
# 0.17.0
|
2
|
+
## Breaking changes
|
3
|
+
- Fix all linear model estimators to use the new abstract class ([BaseSGD](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/BaseSGD.html)) introduced in version 0.16.1.
|
4
|
+
The major differences from the old abstract class are that
|
5
|
+
the optimizer of LinearModel estimators is fixed to mini-batch SGD with momentum term,
|
6
|
+
the max_iter parameter indicates the number of epochs instead of the maximum number of iterations,
|
7
|
+
the fit_bias parameter is true by default, and elastic-net style regularization can be used.
|
8
|
+
Note that there are additions and changes to hyperparameters.
|
9
|
+
Existing trained linear models may need to re-train the model and adjust the hyperparameters.
|
10
|
+
- [LogisticRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LogisticRegression.html)
|
11
|
+
- [SVC](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVC.html)
|
12
|
+
- [LinearRegression](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/LinearRegression.html)
|
13
|
+
- [Rdige](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Ridge.html)
|
14
|
+
- [Lasso](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/Lasso.html)
|
15
|
+
- [SVR](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/SVR.html)
|
16
|
+
- Change the default value of solver parameter on LinearRegression and Ridge to 'auto'.
|
17
|
+
If Numo::Linalg is loaded, 'svd' is selected for the solver, otherwise 'sgd' is selected.
|
18
|
+
- The meaning of the `max_iter` parameter of the factorization machine estimators
|
19
|
+
has been changed from the maximum number of iterations to the number of epochs.
|
20
|
+
- [FactorizationMachineClassifier](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineClassifier.html)
|
21
|
+
- [FactorizationMachineRegressor](https://yoshoku.github.io/rumale/doc/Rumale/PolynomialModel/FactorizationMachineRegressor.html)
|
22
|
+
|
1
23
|
# 0.16.1
|
2
24
|
- Add regressor class for [ElasticNet](https://yoshoku.github.io/rumale/doc/Rumale/LinearModel/ElasticNet.html).
|
3
25
|
- Add new linear model abstract class.
|
data/README.md
CHANGED
@@ -6,7 +6,7 @@
|
|
6
6
|
[](https://coveralls.io/github/yoshoku/rumale?branch=master)
|
7
7
|
[](https://badge.fury.io/rb/rumale)
|
8
8
|
[](https://github.com/yoshoku/rumale/blob/master/LICENSE.txt)
|
9
|
-
[](https://yoshoku.github.io/rumale/doc/)
|
10
10
|
|
11
11
|
Rumale (**Ru**by **ma**chine **le**arning) is a machine learning library in Ruby.
|
12
12
|
Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python.
|
@@ -37,6 +37,10 @@ Or install it yourself as:
|
|
37
37
|
|
38
38
|
$ gem install rumale
|
39
39
|
|
40
|
+
## Documentation
|
41
|
+
|
42
|
+
- [Rumale API Documentation](https://yoshoku.github.io/rumale/doc/)
|
43
|
+
|
40
44
|
## Usage
|
41
45
|
|
42
46
|
### Example 1. XOR data
|
@@ -95,7 +99,7 @@ transformer = Rumale::KernelApproximation::RBF.new(gamma: 0.0001, n_components:
|
|
95
99
|
transformed = transformer.fit_transform(samples)
|
96
100
|
|
97
101
|
# Train linear SVM classifier.
|
98
|
-
classifier = Rumale::LinearModel::SVC.new(reg_param: 0.0001,
|
102
|
+
classifier = Rumale::LinearModel::SVC.new(reg_param: 0.0001, random_seed: 1)
|
99
103
|
classifier.fit(transformed, labels)
|
100
104
|
|
101
105
|
# Save the model.
|
@@ -132,7 +136,7 @@ Execution of the above scripts result in the following.
|
|
132
136
|
```bash
|
133
137
|
$ ruby train.rb
|
134
138
|
$ ruby test.rb
|
135
|
-
Accuracy: 98.
|
139
|
+
Accuracy: 98.7%
|
136
140
|
```
|
137
141
|
|
138
142
|
### Example 3. Cross-validation
|
@@ -144,7 +148,7 @@ require 'rumale'
|
|
144
148
|
samples, labels = Rumale::Dataset.load_libsvm_file('pendigits')
|
145
149
|
|
146
150
|
# Define the estimator to be evaluated.
|
147
|
-
lr = Rumale::LinearModel::LogisticRegression.new(reg_param: 0.0001, random_seed: 1)
|
151
|
+
lr = Rumale::LinearModel::LogisticRegression.new(learning_rate: 0.00001, reg_param: 0.0001, random_seed: 1)
|
148
152
|
|
149
153
|
# Define the evaluation measure, splitting strategy, and cross validation.
|
150
154
|
ev = Rumale::EvaluationMeasure::LogLoss.new
|
@@ -163,7 +167,7 @@ Execution of the above scripts result in the following.
|
|
163
167
|
|
164
168
|
```bash
|
165
169
|
$ ruby cross_validation.rb
|
166
|
-
5-CV mean log-loss: 0.
|
170
|
+
5-CV mean log-loss: 0.355
|
167
171
|
```
|
168
172
|
|
169
173
|
### Example 4. Pipeline
|
@@ -176,7 +180,7 @@ samples, labels = Rumale::Dataset.load_libsvm_file('pendigits')
|
|
176
180
|
|
177
181
|
# Construct pipeline with kernel approximation and SVC.
|
178
182
|
rbf = Rumale::KernelApproximation::RBF.new(gamma: 0.0001, n_components: 800, random_seed: 1)
|
179
|
-
svc = Rumale::LinearModel::SVC.new(reg_param: 0.0001,
|
183
|
+
svc = Rumale::LinearModel::SVC.new(reg_param: 0.0001, random_seed: 1)
|
180
184
|
pipeline = Rumale::Pipeline::Pipeline.new(steps: { trns: rbf, clsf: svc })
|
181
185
|
|
182
186
|
# Define the splitting strategy and cross validation.
|
@@ -195,7 +199,7 @@ Execution of the above scripts result in the following.
|
|
195
199
|
|
196
200
|
```bash
|
197
201
|
$ ruby pipeline.rb
|
198
|
-
5-CV mean accuracy: 99.
|
202
|
+
5-CV mean accuracy: 99.6 %
|
199
203
|
```
|
200
204
|
|
201
205
|
## Speeding up
|
@@ -5,10 +5,15 @@ require 'rumale/optimizer/nadam'
|
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
|
+
# @note
|
9
|
+
# In version 0.17.0, a new linear model abstract class called BaseSGD is introduced.
|
10
|
+
# BaseLienarModel is deprecated and will be removed in the future.
|
11
|
+
#
|
8
12
|
# BaseLinearModel is an abstract class for implementation of linear estimator
|
9
13
|
# with mini-batch stochastic gradient descent optimization.
|
10
14
|
# This class is used for internal process.
|
11
15
|
class BaseLinearModel
|
16
|
+
# :nocov:
|
12
17
|
include Base::BaseEstimator
|
13
18
|
|
14
19
|
# Initialize a linear estimator.
|
@@ -26,6 +31,7 @@ module Rumale
|
|
26
31
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
27
32
|
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
28
33
|
max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
|
34
|
+
warn 'warning: BaseLinearModel is deprecated. Use BaseSGD instead.'
|
29
35
|
@params = {}
|
30
36
|
@params[:reg_param] = reg_param
|
31
37
|
@params[:fit_bias] = fit_bias
|
@@ -88,6 +94,7 @@ module Rumale
|
|
88
94
|
[weight, 0.0]
|
89
95
|
end
|
90
96
|
end
|
97
|
+
# :nocov:
|
91
98
|
end
|
92
99
|
end
|
93
100
|
end
|
@@ -99,6 +99,61 @@ module Rumale
|
|
99
99
|
2.fdiv(y.shape[0]) * (out - y)
|
100
100
|
end
|
101
101
|
end
|
102
|
+
|
103
|
+
# @!visibility private
|
104
|
+
# LogLoss is a class that calculates logistic loss for logistic regression.
|
105
|
+
class LogLoss
|
106
|
+
# @!visibility private
|
107
|
+
def loss(out, y)
|
108
|
+
Numo::NMath.log(1 + Numo::NMath.exp(-y * out)).sum.fdiv(y.shape[0])
|
109
|
+
end
|
110
|
+
|
111
|
+
# @!visibility private
|
112
|
+
def dloss(out, y)
|
113
|
+
y / (1 + Numo::NMath.exp(-y * out)) - y
|
114
|
+
end
|
115
|
+
end
|
116
|
+
|
117
|
+
# @!visibility private
|
118
|
+
# HingeLoss is a class that calculates hinge loss for support vector classifier.
|
119
|
+
class HingeLoss
|
120
|
+
# @!visibility private
|
121
|
+
def loss(out, y)
|
122
|
+
out.class.maximum(0.0, 1 - y * out).sum.fdiv(y.shape[0])
|
123
|
+
end
|
124
|
+
|
125
|
+
# @!visibility private
|
126
|
+
def dloss(out, y)
|
127
|
+
tids = (y * out).lt(1)
|
128
|
+
d = Numo::DFloat.zeros(y.shape[0])
|
129
|
+
d[tids] = -y[tids] if tids.count.positive?
|
130
|
+
d
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
# @!visibility private
|
135
|
+
# EpsilonInsensitive is a class that calculates epsilon insensitive for support vector regressor.
|
136
|
+
class EpsilonInsensitive
|
137
|
+
# @!visibility private
|
138
|
+
def initialize(epsilon: 0.1)
|
139
|
+
@epsilon = epsilon
|
140
|
+
end
|
141
|
+
|
142
|
+
# @!visibility private
|
143
|
+
def loss(out, y)
|
144
|
+
out.class.maximum(0.0, (y - out).abs - @epsilon).sum.fdiv(y.shape[0])
|
145
|
+
end
|
146
|
+
|
147
|
+
# @!visibility private
|
148
|
+
def dloss(out, y)
|
149
|
+
d = Numo::DFloat.zeros(y.shape[0])
|
150
|
+
tids = (out - y).gt(@epsilon)
|
151
|
+
d[tids] = 1 if tids.count.positive?
|
152
|
+
tids = (y - out).gt(@epsilon)
|
153
|
+
d[tids] = -1 if tids.count.positive?
|
154
|
+
d
|
155
|
+
end
|
156
|
+
end
|
102
157
|
end
|
103
158
|
|
104
159
|
# BaseSGD is an abstract class for implementation of linear model with mini-batch stochastic gradient descent (SGD) optimization.
|
@@ -59,13 +59,13 @@ module Rumale
|
|
59
59
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
60
60
|
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
61
61
|
reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
|
62
|
-
max_iter:
|
62
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
63
63
|
n_jobs: nil, verbose: false, random_seed: nil)
|
64
64
|
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
65
65
|
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
66
66
|
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
67
67
|
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
68
|
-
check_params_numeric_or_nil(decay:
|
68
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
69
69
|
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
70
70
|
super()
|
71
71
|
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/regressor'
|
5
5
|
|
6
6
|
module Rumale
|
@@ -10,14 +10,15 @@ module Rumale
|
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter:
|
13
|
+
# Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 500, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
17
17
|
# *Reference*
|
18
18
|
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
19
|
+
# - Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
19
20
|
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
20
|
-
class Lasso <
|
21
|
+
class Lasso < BaseSGD
|
21
22
|
include Base::Regressor
|
22
23
|
|
23
24
|
# Return the weight vector.
|
@@ -34,25 +35,43 @@ module Rumale
|
|
34
35
|
|
35
36
|
# Create a new Lasso regressor.
|
36
37
|
#
|
38
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
39
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
40
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
41
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
42
|
+
# @param momentum [Float] The momentum factor.
|
37
43
|
# @param reg_param [Float] The regularization parameter.
|
38
44
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
39
45
|
# @param bias_scale [Float] The scale of the bias term.
|
40
|
-
# @param max_iter [Integer] The maximum number of
|
46
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
47
|
+
# how many times the whole data is given to the training process.
|
41
48
|
# @param batch_size [Integer] The size of the mini batches.
|
42
|
-
# @param
|
43
|
-
# If nil is given, Nadam is used.
|
49
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
44
50
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
45
51
|
# If nil is given, the method does not execute in parallel.
|
46
52
|
# If zero or less is given, it becomes equal to the number of processors.
|
47
53
|
# This parameter is ignored if the Parallel gem is not loaded.
|
54
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
48
55
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
|
-
def initialize(
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
57
|
+
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
58
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
59
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
60
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
61
|
+
reg_param: reg_param, bias_scale: bias_scale,
|
62
|
+
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
63
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
64
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
65
|
+
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
66
|
+
super()
|
67
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
68
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
69
|
+
@params[:random_seed] ||= srand
|
70
|
+
@rng = Random.new(@params[:random_seed])
|
71
|
+
@penalty_type = L1_PENALTY
|
72
|
+
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
73
|
+
@weight_vec = nil
|
74
|
+
@bias_term = nil
|
56
75
|
end
|
57
76
|
|
58
77
|
# Fit the model with given training data.
|
@@ -91,54 +110,6 @@ module Rumale
|
|
91
110
|
x = check_convert_sample_array(x)
|
92
111
|
x.dot(@weight_vec.transpose) + @bias_term
|
93
112
|
end
|
94
|
-
|
95
|
-
# Dump marshal data.
|
96
|
-
# @return [Hash] The marshal data about Lasso.
|
97
|
-
def marshal_dump
|
98
|
-
{ params: @params,
|
99
|
-
weight_vec: @weight_vec,
|
100
|
-
bias_term: @bias_term,
|
101
|
-
rng: @rng }
|
102
|
-
end
|
103
|
-
|
104
|
-
# Load marshal data.
|
105
|
-
# @return [nil]
|
106
|
-
def marshal_load(obj)
|
107
|
-
@params = obj[:params]
|
108
|
-
@weight_vec = obj[:weight_vec]
|
109
|
-
@bias_term = obj[:bias_term]
|
110
|
-
@rng = obj[:rng]
|
111
|
-
nil
|
112
|
-
end
|
113
|
-
|
114
|
-
private
|
115
|
-
|
116
|
-
def partial_fit(x, y)
|
117
|
-
n_features = @params[:fit_bias] ? x.shape[1] + 1 : x.shape[1]
|
118
|
-
@left_weight = Numo::DFloat.zeros(n_features)
|
119
|
-
@right_weight = Numo::DFloat.zeros(n_features)
|
120
|
-
@left_optimizer = @params[:optimizer].dup
|
121
|
-
@right_optimizer = @params[:optimizer].dup
|
122
|
-
super
|
123
|
-
end
|
124
|
-
|
125
|
-
def calc_loss_gradient(x, y, weight)
|
126
|
-
2.0 * (x.dot(weight) - y)
|
127
|
-
end
|
128
|
-
|
129
|
-
def calc_new_weight(_optimizer, x, _weight, loss_gradient)
|
130
|
-
@left_weight = round_weight(@left_optimizer.call(@left_weight, calc_weight_gradient(loss_gradient, x)))
|
131
|
-
@right_weight = round_weight(@right_optimizer.call(@right_weight, calc_weight_gradient(-loss_gradient, x)))
|
132
|
-
@left_weight - @right_weight
|
133
|
-
end
|
134
|
-
|
135
|
-
def calc_weight_gradient(loss_gradient, data)
|
136
|
-
((@params[:reg_param] + loss_gradient).expand_dims(1) * data).mean(0)
|
137
|
-
end
|
138
|
-
|
139
|
-
def round_weight(weight)
|
140
|
-
0.5 * (weight + weight.abs)
|
141
|
-
end
|
142
113
|
end
|
143
114
|
end
|
144
115
|
end
|
@@ -1,16 +1,16 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/regressor'
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
8
|
# LinearRegression is a class that implements ordinary least square linear regression
|
9
|
-
# with
|
9
|
+
# with stochastic gradient descent (SGD) optimization or singular value decomposition (SVD).
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::LinearRegression.new(max_iter:
|
13
|
+
# Rumale::LinearModel::LinearRegression.new(max_iter: 500, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -19,7 +19,10 @@ module Rumale
|
|
19
19
|
# estimator = Rumale::LinearModel::LinearRegression.new(solver: 'svd')
|
20
20
|
# estimator.fit(training_samples, traininig_values)
|
21
21
|
# results = estimator.predict(testing_samples)
|
22
|
-
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
25
|
+
class LinearRegression < BaseSGD
|
23
26
|
include Base::Regressor
|
24
27
|
|
25
28
|
# Return the weight vector.
|
@@ -36,34 +39,57 @@ module Rumale
|
|
36
39
|
|
37
40
|
# Create a new ordinary least square linear regressor.
|
38
41
|
#
|
42
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
43
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
44
|
+
# If solver = 'svd', this parameter is ignored.
|
45
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
46
|
+
# If nil is given, the decay sets to 'learning_rate'.
|
47
|
+
# If solver = 'svd', this parameter is ignored.
|
48
|
+
# @param momentum [Float] The momentum factor.
|
49
|
+
# If solver = 'svd', this parameter is ignored.
|
39
50
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
40
51
|
# @param bias_scale [Float] The scale of the bias term.
|
41
|
-
# @param max_iter [Integer] The maximum number of
|
52
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
53
|
+
# how many times the whole data is given to the training process.
|
42
54
|
# If solver = 'svd', this parameter is ignored.
|
43
55
|
# @param batch_size [Integer] The size of the mini batches.
|
44
56
|
# If solver = 'svd', this parameter is ignored.
|
45
|
-
# @param
|
46
|
-
# If nil is given, Nadam is used.
|
57
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
47
58
|
# If solver = 'svd', this parameter is ignored.
|
48
|
-
# @param solver [String] The algorithm to calculate weights. ('sgd' or 'svd').
|
59
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd' or 'svd').
|
60
|
+
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver.
|
49
61
|
# 'sgd' uses the stochastic gradient descent optimization.
|
50
62
|
# 'svd' performs singular value decomposition of samples.
|
51
63
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
52
64
|
# If nil is given, the method does not execute in parallel.
|
53
65
|
# If zero or less is given, it becomes equal to the number of processors.
|
54
66
|
# This parameter is ignored if the Parallel gem is not loaded.
|
67
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
68
|
+
# If solver = 'svd', this parameter is ignored.
|
55
69
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
56
|
-
def initialize(
|
57
|
-
|
58
|
-
|
59
|
-
|
70
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
71
|
+
fit_bias: true, bias_scale: 1.0, max_iter: 200, batch_size: 50, tol: 1e-4,
|
72
|
+
solver: 'auto',
|
73
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
74
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
75
|
+
bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
76
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
60
77
|
check_params_string(solver: solver)
|
61
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
62
|
-
check_params_positive(max_iter: max_iter, batch_size: batch_size)
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
78
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
79
|
+
check_params_positive(learning_rate: learning_rate, max_iter: max_iter, batch_size: batch_size)
|
80
|
+
super()
|
81
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
82
|
+
@params[:solver] = if solver == 'auto'
|
83
|
+
load_linalg? ? 'svd' : 'sgd'
|
84
|
+
else
|
85
|
+
solver != 'svd' ? 'sgd' : 'svd'
|
86
|
+
end
|
87
|
+
@params[:decay] ||= @params[:learning_rate]
|
88
|
+
@params[:random_seed] ||= srand
|
89
|
+
@rng = Random.new(@params[:random_seed])
|
90
|
+
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
91
|
+
@weight_vec = nil
|
92
|
+
@bias_term = nil
|
67
93
|
end
|
68
94
|
|
69
95
|
# Fit the model with given training data.
|
@@ -94,33 +120,12 @@ module Rumale
|
|
94
120
|
x.dot(@weight_vec.transpose) + @bias_term
|
95
121
|
end
|
96
122
|
|
97
|
-
# Dump marshal data.
|
98
|
-
# @return [Hash] The marshal data about LinearRegression.
|
99
|
-
def marshal_dump
|
100
|
-
{ params: @params,
|
101
|
-
weight_vec: @weight_vec,
|
102
|
-
bias_term: @bias_term,
|
103
|
-
rng: @rng }
|
104
|
-
end
|
105
|
-
|
106
|
-
# Load marshal data.
|
107
|
-
# @return [nil]
|
108
|
-
def marshal_load(obj)
|
109
|
-
@params = obj[:params]
|
110
|
-
@weight_vec = obj[:weight_vec]
|
111
|
-
@bias_term = obj[:bias_term]
|
112
|
-
@rng = obj[:rng]
|
113
|
-
nil
|
114
|
-
end
|
115
|
-
|
116
123
|
private
|
117
124
|
|
118
125
|
def fit_svd(x, y)
|
119
|
-
|
126
|
+
x = expand_feature(x) if fit_bias?
|
120
127
|
|
121
|
-
|
122
|
-
d = (s / s**2).diag
|
123
|
-
w = vt.transpose.dot(d).dot(u.transpose).dot(y)
|
128
|
+
w = Numo::Linalg.pinv(x, driver: 'svd').dot(y)
|
124
129
|
|
125
130
|
is_single_target_vals = y.shape[1].nil?
|
126
131
|
if @params[:fit_bias]
|
@@ -150,8 +155,14 @@ module Rumale
|
|
150
155
|
end
|
151
156
|
end
|
152
157
|
|
153
|
-
def
|
154
|
-
|
158
|
+
def fit_bias?
|
159
|
+
@params[:fit_bias] == true
|
160
|
+
end
|
161
|
+
|
162
|
+
def load_linalg?
|
163
|
+
return false if defined?(Numo::Linalg).nil?
|
164
|
+
return false if Numo::Linalg::VERSION < '0.1.4'
|
165
|
+
true
|
155
166
|
end
|
156
167
|
end
|
157
168
|
end
|
@@ -1,12 +1,12 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/classifier'
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
8
|
# LogisticRegression is a class that implements Logistic Regression
|
9
|
-
# with
|
9
|
+
# with stochastic gradient descent optimization.
|
10
10
|
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
11
11
|
#
|
12
12
|
# Rumale::SVM provides Logistic Regression based on LIBLINEAR.
|
@@ -15,13 +15,15 @@ module Rumale
|
|
15
15
|
#
|
16
16
|
# @example
|
17
17
|
# estimator =
|
18
|
-
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter:
|
18
|
+
# Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 200, batch_size: 50, random_seed: 1)
|
19
19
|
# estimator.fit(training_samples, traininig_labels)
|
20
20
|
# results = estimator.predict(testing_samples)
|
21
21
|
#
|
22
22
|
# *Reference*
|
23
23
|
# - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
24
|
-
|
24
|
+
# - Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
25
|
+
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
26
|
+
class LogisticRegression < BaseSGD
|
25
27
|
include Base::Classifier
|
26
28
|
|
27
29
|
# Return the weight vector for Logistic Regression.
|
@@ -42,26 +44,53 @@ module Rumale
|
|
42
44
|
|
43
45
|
# Create a new classifier with Logisitc Regression by the SGD optimization.
|
44
46
|
#
|
47
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
48
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
49
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
50
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
51
|
+
# @param momentum [Float] The momentum factor.
|
52
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
53
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
54
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
55
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
56
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
57
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
45
58
|
# @param reg_param [Float] The regularization parameter.
|
46
59
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
47
60
|
# @param bias_scale [Float] The scale of the bias term.
|
48
61
|
# If fit_bias is true, the feature vector v becoms [v; bias_scale].
|
49
|
-
# @param max_iter [Integer] The maximum number of
|
62
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
63
|
+
# how many times the whole data is given to the training process.
|
50
64
|
# @param batch_size [Integer] The size of the mini batches.
|
51
|
-
# @param
|
52
|
-
# If nil is given, Nadam is used.
|
65
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
53
66
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
54
67
|
# If nil is given, the methods do not execute in parallel.
|
55
68
|
# If zero or less is given, it becomes equal to the number of processors.
|
56
69
|
# This parameter is ignored if the Parallel gem is not loaded.
|
70
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
57
71
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
58
|
-
def initialize(
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
72
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
73
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
74
|
+
fit_bias: true, bias_scale: 1.0,
|
75
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
76
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
77
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
78
|
+
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
79
|
+
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
80
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
81
|
+
check_params_string(penalty: penalty)
|
82
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
83
|
+
check_params_positive(learning_rate: learning_rate, reg_param: reg_param,
|
84
|
+
bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
85
|
+
super()
|
86
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
87
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
88
|
+
@params[:random_seed] ||= srand
|
89
|
+
@rng = Random.new(@params[:random_seed])
|
90
|
+
@penalty_type = @params[:penalty]
|
91
|
+
@loss_func = LinearModel::Loss::LogLoss.new
|
92
|
+
@weight_vec = nil
|
93
|
+
@bias_term = nil
|
65
94
|
@classes = nil
|
66
95
|
end
|
67
96
|
|
@@ -148,33 +177,8 @@ module Rumale
|
|
148
177
|
probs
|
149
178
|
end
|
150
179
|
|
151
|
-
# Dump marshal data.
|
152
|
-
# @return [Hash] The marshal data about LogisticRegression.
|
153
|
-
def marshal_dump
|
154
|
-
{ params: @params,
|
155
|
-
weight_vec: @weight_vec,
|
156
|
-
bias_term: @bias_term,
|
157
|
-
classes: @classes,
|
158
|
-
rng: @rng }
|
159
|
-
end
|
160
|
-
|
161
|
-
# Load marshal data.
|
162
|
-
# @return [nil]
|
163
|
-
def marshal_load(obj)
|
164
|
-
@params = obj[:params]
|
165
|
-
@weight_vec = obj[:weight_vec]
|
166
|
-
@bias_term = obj[:bias_term]
|
167
|
-
@classes = obj[:classes]
|
168
|
-
@rng = obj[:rng]
|
169
|
-
nil
|
170
|
-
end
|
171
|
-
|
172
180
|
private
|
173
181
|
|
174
|
-
def calc_loss_gradient(x, y, weight)
|
175
|
-
y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
|
176
|
-
end
|
177
|
-
|
178
182
|
def multiclass_problem?
|
179
183
|
@classes.size > 2
|
180
184
|
end
|
@@ -1,16 +1,16 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/regressor'
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
8
|
# Ridge is a class that implements Ridge Regression
|
9
|
-
# with
|
9
|
+
# with stochastic gradient descent (SGD) optimization or singular value decomposition (SVD).
|
10
10
|
#
|
11
11
|
# @example
|
12
12
|
# estimator =
|
13
|
-
# Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter:
|
13
|
+
# Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 500, batch_size: 20, random_seed: 1)
|
14
14
|
# estimator.fit(training_samples, traininig_values)
|
15
15
|
# results = estimator.predict(testing_samples)
|
16
16
|
#
|
@@ -19,7 +19,10 @@ module Rumale
|
|
19
19
|
# estimator = Rumale::LinearModel::Ridge.new(reg_param: 0.1, solver: 'svd')
|
20
20
|
# estimator.fit(training_samples, traininig_values)
|
21
21
|
# results = estimator.predict(testing_samples)
|
22
|
-
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
25
|
+
class Ridge < BaseSGD
|
23
26
|
include Base::Regressor
|
24
27
|
|
25
28
|
# Return the weight vector.
|
@@ -36,35 +39,61 @@ module Rumale
|
|
36
39
|
|
37
40
|
# Create a new Ridge regressor.
|
38
41
|
#
|
42
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
43
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
44
|
+
# If solver = 'svd', this parameter is ignored.
|
45
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
46
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
47
|
+
# If solver = 'svd', this parameter is ignored.
|
48
|
+
# @param momentum [Float] The momentum factor.
|
49
|
+
# If solver = 'svd', this parameter is ignored.
|
39
50
|
# @param reg_param [Float] The regularization parameter.
|
40
51
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
41
52
|
# @param bias_scale [Float] The scale of the bias term.
|
42
|
-
# @param max_iter [Integer] The maximum number of
|
53
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
54
|
+
# how many times the whole data is given to the training process.
|
43
55
|
# If solver = 'svd', this parameter is ignored.
|
44
56
|
# @param batch_size [Integer] The size of the mini batches.
|
45
57
|
# If solver = 'svd', this parameter is ignored.
|
46
|
-
# @param
|
47
|
-
# If nil is given, Nadam is used.
|
58
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
48
59
|
# If solver = 'svd', this parameter is ignored.
|
49
|
-
# @param solver [String] The algorithm to calculate weights. ('sgd' or 'svd').
|
60
|
+
# @param solver [String] The algorithm to calculate weights. ('auto', 'sgd' or 'svd').
|
61
|
+
# 'auto' chooses the 'svd' solver if Numo::Linalg is loaded. Otherwise, it chooses the 'sgd' solver.
|
50
62
|
# 'sgd' uses the stochastic gradient descent optimization.
|
51
63
|
# 'svd' performs singular value decomposition of samples.
|
52
64
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
53
65
|
# If nil is given, the method does not execute in parallel.
|
54
66
|
# If zero or less is given, it becomes equal to the number of processors.
|
55
67
|
# This parameter is ignored if the Parallel gem is not loaded or the solver is 'svd'.
|
68
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
69
|
+
# If solver = 'svd', this parameter is ignored.
|
56
70
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
57
|
-
def initialize(
|
58
|
-
|
59
|
-
|
60
|
-
|
71
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
72
|
+
reg_param: 1.0, fit_bias: true, bias_scale: 1.0,
|
73
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
74
|
+
solver: 'auto',
|
75
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
76
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
77
|
+
reg_param: reg_param, bias_scale: bias_scale,
|
78
|
+
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
79
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
61
80
|
check_params_string(solver: solver)
|
62
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
63
|
-
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
81
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
82
|
+
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
83
|
+
super()
|
84
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
85
|
+
@params[:solver] = if solver == 'auto'
|
86
|
+
load_linalg? ? 'svd' : 'sgd'
|
87
|
+
else
|
88
|
+
solver != 'svd' ? 'sgd' : 'svd'
|
89
|
+
end
|
90
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
91
|
+
@params[:random_seed] ||= srand
|
92
|
+
@rng = Random.new(@params[:random_seed])
|
93
|
+
@penalty_type = L2_PENALTY
|
94
|
+
@loss_func = LinearModel::Loss::MeanSquaredError.new
|
95
|
+
@weight_vec = nil
|
96
|
+
@bias_term = nil
|
68
97
|
end
|
69
98
|
|
70
99
|
# Fit the model with given training data.
|
@@ -95,25 +124,6 @@ module Rumale
|
|
95
124
|
x.dot(@weight_vec.transpose) + @bias_term
|
96
125
|
end
|
97
126
|
|
98
|
-
# Dump marshal data.
|
99
|
-
# @return [Hash] The marshal data about Ridge.
|
100
|
-
def marshal_dump
|
101
|
-
{ params: @params,
|
102
|
-
weight_vec: @weight_vec,
|
103
|
-
bias_term: @bias_term,
|
104
|
-
rng: @rng }
|
105
|
-
end
|
106
|
-
|
107
|
-
# Load marshal data.
|
108
|
-
# @return [nil]
|
109
|
-
def marshal_load(obj)
|
110
|
-
@params = obj[:params]
|
111
|
-
@weight_vec = obj[:weight_vec]
|
112
|
-
@bias_term = obj[:bias_term]
|
113
|
-
@rng = obj[:rng]
|
114
|
-
nil
|
115
|
-
end
|
116
|
-
|
117
127
|
private
|
118
128
|
|
119
129
|
def fit_svd(x, y)
|
@@ -151,8 +161,10 @@ module Rumale
|
|
151
161
|
end
|
152
162
|
end
|
153
163
|
|
154
|
-
def
|
155
|
-
|
164
|
+
def load_linalg?
|
165
|
+
return false if defined?(Numo::Linalg).nil?
|
166
|
+
return false if Numo::Linalg::VERSION < '0.1.4'
|
167
|
+
true
|
156
168
|
end
|
157
169
|
end
|
158
170
|
end
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/classifier'
|
5
5
|
require 'rumale/probabilistic_output'
|
6
6
|
|
@@ -8,7 +8,7 @@ module Rumale
|
|
8
8
|
# This module consists of the classes that implement generalized linear models.
|
9
9
|
module LinearModel
|
10
10
|
# SVC is a class that implements Support Vector Classifier
|
11
|
-
# with
|
11
|
+
# with stochastic gradient descent optimization.
|
12
12
|
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
13
13
|
#
|
14
14
|
# Rumale::SVM provides linear support vector classifier based on LIBLINEAR.
|
@@ -17,13 +17,15 @@ module Rumale
|
|
17
17
|
#
|
18
18
|
# @example
|
19
19
|
# estimator =
|
20
|
-
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter:
|
20
|
+
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 200, batch_size: 50, random_seed: 1)
|
21
21
|
# estimator.fit(training_samples, traininig_labels)
|
22
22
|
# results = estimator.predict(testing_samples)
|
23
23
|
#
|
24
24
|
# *Reference*
|
25
25
|
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
26
|
-
|
26
|
+
# - Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
27
|
+
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
28
|
+
class SVC < BaseSGD
|
27
29
|
include Base::Classifier
|
28
30
|
|
29
31
|
# Return the weight vector for SVC.
|
@@ -44,31 +46,56 @@ module Rumale
|
|
44
46
|
|
45
47
|
# Create a new classifier with Support Vector Machine by the SGD optimization.
|
46
48
|
#
|
49
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
50
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
51
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
52
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
53
|
+
# @param momentum [Float] The momentum factor.
|
54
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
55
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
56
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
57
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
58
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
59
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
47
60
|
# @param reg_param [Float] The regularization parameter.
|
48
61
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
49
62
|
# @param bias_scale [Float] The scale of the bias term.
|
50
|
-
# @param max_iter [Integer] The maximum number of
|
63
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
64
|
+
# how many times the whole data is given to the training process.
|
51
65
|
# @param batch_size [Integer] The size of the mini batches.
|
66
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
52
67
|
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
53
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
54
|
-
# If nil is given, Nadam is used.
|
55
68
|
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
56
69
|
# If nil is given, the methods do not execute in parallel.
|
57
70
|
# If zero or less is given, it becomes equal to the number of processors.
|
58
71
|
# This parameter is ignored if the Parallel gem is not loaded.
|
72
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
59
73
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
60
|
-
def initialize(
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
74
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
75
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
76
|
+
fit_bias: true, bias_scale: 1.0,
|
77
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
78
|
+
probability: false,
|
79
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
80
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
81
|
+
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
|
82
|
+
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
83
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose, probability: probability)
|
84
|
+
check_params_string(penalty: penalty)
|
85
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
86
|
+
check_params_positive(learning_rate: learning_rate, reg_param: reg_param,
|
87
|
+
bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
88
|
+
super()
|
89
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
90
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
91
|
+
@params[:random_seed] ||= srand
|
92
|
+
@rng = Random.new(@params[:random_seed])
|
93
|
+
@penalty_type = @params[:penalty]
|
94
|
+
@loss_func = LinearModel::Loss::HingeLoss.new
|
95
|
+
@weight_vec = nil
|
96
|
+
@bias_term = nil
|
71
97
|
@classes = nil
|
98
|
+
@prob_param = nil
|
72
99
|
end
|
73
100
|
|
74
101
|
# Fit the model with given training data.
|
@@ -165,29 +192,6 @@ module Rumale
|
|
165
192
|
end
|
166
193
|
end
|
167
194
|
|
168
|
-
# Dump marshal data.
|
169
|
-
# @return [Hash] The marshal data about SVC.
|
170
|
-
def marshal_dump
|
171
|
-
{ params: @params,
|
172
|
-
weight_vec: @weight_vec,
|
173
|
-
bias_term: @bias_term,
|
174
|
-
prob_param: @prob_param,
|
175
|
-
classes: @classes,
|
176
|
-
rng: @rng }
|
177
|
-
end
|
178
|
-
|
179
|
-
# Load marshal data.
|
180
|
-
# @return [nil]
|
181
|
-
def marshal_load(obj)
|
182
|
-
@params = obj[:params]
|
183
|
-
@weight_vec = obj[:weight_vec]
|
184
|
-
@bias_term = obj[:bias_term]
|
185
|
-
@prob_param = obj[:prob_param]
|
186
|
-
@classes = obj[:classes]
|
187
|
-
@rng = obj[:rng]
|
188
|
-
nil
|
189
|
-
end
|
190
|
-
|
191
195
|
private
|
192
196
|
|
193
197
|
def partial_fit(x, bin_y)
|
@@ -200,13 +204,6 @@ module Rumale
|
|
200
204
|
[w, b, p]
|
201
205
|
end
|
202
206
|
|
203
|
-
def calc_loss_gradient(x, y, weight)
|
204
|
-
target_ids = (x.dot(weight) * y).lt(1.0).where
|
205
|
-
grad = Numo::DFloat.zeros(@params[:batch_size])
|
206
|
-
grad[target_ids] = -y[target_ids]
|
207
|
-
grad
|
208
|
-
end
|
209
|
-
|
210
207
|
def multiclass_problem?
|
211
208
|
@classes.size > 2
|
212
209
|
end
|
@@ -1,12 +1,12 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/linear_model/
|
3
|
+
require 'rumale/linear_model/base_sgd'
|
4
4
|
require 'rumale/base/regressor'
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
module LinearModel
|
8
8
|
# SVR is a class that implements Support Vector Regressor
|
9
|
-
# with
|
9
|
+
# with stochastic gradient descent optimization.
|
10
10
|
#
|
11
11
|
# Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
|
12
12
|
# If you prefer execution speed, you should use Rumale::SVM::LinearSVR.
|
@@ -14,13 +14,15 @@ module Rumale
|
|
14
14
|
#
|
15
15
|
# @example
|
16
16
|
# estimator =
|
17
|
-
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter:
|
17
|
+
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 200, batch_size: 50, random_seed: 1)
|
18
18
|
# estimator.fit(training_samples, traininig_target_values)
|
19
19
|
# results = estimator.predict(testing_samples)
|
20
20
|
#
|
21
21
|
# *Reference*
|
22
|
-
#
|
23
|
-
|
22
|
+
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
23
|
+
# - Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
|
24
|
+
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
25
|
+
class SVR < BaseSGD
|
24
26
|
include Base::Regressor
|
25
27
|
|
26
28
|
# Return the weight vector for SVR.
|
@@ -37,30 +39,54 @@ module Rumale
|
|
37
39
|
|
38
40
|
# Create a new regressor with Support Vector Machine by the SGD optimization.
|
39
41
|
#
|
42
|
+
# @param learning_rate [Float] The initial value of learning rate.
|
43
|
+
# The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
|
44
|
+
# @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
|
45
|
+
# If nil is given, the decay sets to 'reg_param * learning_rate'.
|
46
|
+
# @param momentum [Float] The momentum factor.
|
47
|
+
# @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
|
48
|
+
# @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
|
49
|
+
# If penalty set to 'l2' or 'l1', this parameter is ignored.
|
50
|
+
# If l1_ratio = 1, the regularization is similar to Lasso.
|
51
|
+
# If l1_ratio = 0, the regularization is similar to Ridge.
|
52
|
+
# If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
|
40
53
|
# @param reg_param [Float] The regularization parameter.
|
41
54
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
42
55
|
# @param bias_scale [Float] The scale of the bias term.
|
43
56
|
# @param epsilon [Float] The margin of tolerance.
|
44
|
-
# @param max_iter [Integer] The maximum number of
|
57
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
58
|
+
# how many times the whole data is given to the training process.
|
45
59
|
# @param batch_size [Integer] The size of the mini batches.
|
46
|
-
# @param
|
47
|
-
# If nil is given, Nadam is used.
|
60
|
+
# @param tol [Float] The tolerance of loss for terminating optimization.
|
48
61
|
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
49
62
|
# If nil is given, the method does not execute in parallel.
|
50
63
|
# If zero or less is given, it becomes equal to the number of processors.
|
51
64
|
# This parameter is ignored if the Parallel gem is not loaded.
|
65
|
+
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
52
66
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
53
|
-
def initialize(
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
67
|
+
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
|
68
|
+
penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
|
69
|
+
fit_bias: true, bias_scale: 1.0,
|
70
|
+
epsilon: 0.1,
|
71
|
+
max_iter: 200, batch_size: 50, tol: 1e-4,
|
72
|
+
n_jobs: nil, verbose: false, random_seed: nil)
|
73
|
+
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
|
74
|
+
reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
|
75
|
+
max_iter: max_iter, batch_size: batch_size, tol: tol)
|
76
|
+
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
|
77
|
+
check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
|
78
|
+
check_params_positive(learning_rate: learning_rate, reg_param: reg_param,
|
79
|
+
bias_scale: bias_scale, epsilon: epsilon,
|
59
80
|
max_iter: max_iter, batch_size: batch_size)
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
@params[:
|
81
|
+
super()
|
82
|
+
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
|
83
|
+
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
|
84
|
+
@params[:random_seed] ||= srand
|
85
|
+
@rng = Random.new(@params[:random_seed])
|
86
|
+
@penalty_type = @params[:penalty]
|
87
|
+
@loss_func = LinearModel::Loss::EpsilonInsensitive.new(epsilon: @params[:epsilon])
|
88
|
+
@weight_vec = nil
|
89
|
+
@bias_term = nil
|
64
90
|
end
|
65
91
|
|
66
92
|
# Fit the model with given training data.
|
@@ -100,35 +126,6 @@ module Rumale
|
|
100
126
|
x = check_convert_sample_array(x)
|
101
127
|
x.dot(@weight_vec.transpose) + @bias_term
|
102
128
|
end
|
103
|
-
|
104
|
-
# Dump marshal data.
|
105
|
-
# @return [Hash] The marshal data about SVR.
|
106
|
-
def marshal_dump
|
107
|
-
{ params: @params,
|
108
|
-
weight_vec: @weight_vec,
|
109
|
-
bias_term: @bias_term,
|
110
|
-
rng: @rng }
|
111
|
-
end
|
112
|
-
|
113
|
-
# Load marshal data.
|
114
|
-
# @return [nil]
|
115
|
-
def marshal_load(obj)
|
116
|
-
@params = obj[:params]
|
117
|
-
@weight_vec = obj[:weight_vec]
|
118
|
-
@bias_term = obj[:bias_term]
|
119
|
-
@rng = obj[:rng]
|
120
|
-
nil
|
121
|
-
end
|
122
|
-
|
123
|
-
private
|
124
|
-
|
125
|
-
def calc_loss_gradient(x, y, weight)
|
126
|
-
z = x.dot(weight)
|
127
|
-
grad = Numo::DFloat.zeros(@params[:batch_size])
|
128
|
-
grad[(z - y).gt(@params[:epsilon]).where] = 1
|
129
|
-
grad[(y - z).gt(@params[:epsilon]).where] = -1
|
130
|
-
grad
|
131
|
-
end
|
132
129
|
end
|
133
130
|
end
|
134
131
|
end
|
@@ -17,7 +17,8 @@ module Rumale
|
|
17
17
|
# @param loss [String] The loss function ('hinge' or 'logistic' or nil).
|
18
18
|
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
19
19
|
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
20
|
-
# @param max_iter [Integer] The maximum number of
|
20
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
21
|
+
# how many times the whole data is given to the training process.
|
21
22
|
# @param batch_size [Integer] The size of the mini batches.
|
22
23
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
23
24
|
# If nil is given, Nadam is used.
|
@@ -27,7 +28,7 @@ module Rumale
|
|
27
28
|
# This parameter is ignored if the Parallel gem is not loaded.
|
28
29
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
29
30
|
def initialize(n_factors: 2, loss: nil, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
30
|
-
max_iter:
|
31
|
+
max_iter: 200, batch_size: 50, optimizer: nil, n_jobs: nil, random_seed: nil)
|
31
32
|
@params = {}
|
32
33
|
@params[:n_factors] = n_factors
|
33
34
|
@params[:loss] = loss unless loss.nil?
|
@@ -51,27 +52,29 @@ module Rumale
|
|
51
52
|
def partial_fit(x, y)
|
52
53
|
# Initialize some variables.
|
53
54
|
n_samples, n_features = x.shape
|
54
|
-
|
55
|
+
sub_rng = @rng.dup
|
55
56
|
weight_vec = Numo::DFloat.zeros(n_features + 1)
|
56
57
|
factor_mat = Numo::DFloat.zeros(@params[:n_factors], n_features)
|
57
58
|
weight_optimizer = @params[:optimizer].dup
|
58
59
|
factor_optimizers = Array.new(@params[:n_factors]) { @params[:optimizer].dup }
|
59
60
|
# Start optimization.
|
60
61
|
@params[:max_iter].times do |_t|
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
62
|
+
sample_ids = [*0...n_samples]
|
63
|
+
sample_ids.shuffle!(random: sub_rng)
|
64
|
+
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
65
|
+
# Sampling.
|
66
|
+
sub_x = x[subset_ids, true]
|
67
|
+
sub_y = y[subset_ids]
|
68
|
+
ex_sub_x = expand_feature(sub_x)
|
69
|
+
# Calculate gradients for loss function.
|
70
|
+
loss_grad = loss_gradient(sub_x, ex_sub_x, sub_y, factor_mat, weight_vec)
|
71
|
+
next if loss_grad.ne(0.0).count.zero?
|
72
|
+
# Update each parameter.
|
73
|
+
weight_vec = weight_optimizer.call(weight_vec, weight_gradient(loss_grad, ex_sub_x, weight_vec))
|
74
|
+
@params[:n_factors].times do |n|
|
75
|
+
factor_mat[n, true] = factor_optimizers[n].call(factor_mat[n, true],
|
76
|
+
factor_gradient(loss_grad, sub_x, factor_mat[n, true]))
|
77
|
+
end
|
75
78
|
end
|
76
79
|
end
|
77
80
|
[factor_mat, *split_weight_vec_bias(weight_vec)]
|
@@ -14,7 +14,7 @@ module Rumale
|
|
14
14
|
# estimator =
|
15
15
|
# Rumale::PolynomialModel::FactorizationMachineClassifier.new(
|
16
16
|
# n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
|
17
|
-
# max_iter:
|
17
|
+
# max_iter: 500, batch_size: 50, random_seed: 1)
|
18
18
|
# estimator.fit(training_samples, traininig_labels)
|
19
19
|
# results = estimator.predict(testing_samples)
|
20
20
|
#
|
@@ -50,7 +50,8 @@ module Rumale
|
|
50
50
|
# @param loss [String] The loss function ('hinge' or 'logistic').
|
51
51
|
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
52
52
|
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
53
|
-
# @param max_iter [Integer] The maximum number of
|
53
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
54
|
+
# how many times the whole data is given to the training process.
|
54
55
|
# @param batch_size [Integer] The size of the mini batches.
|
55
56
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
56
57
|
# If nil is given, Nadam is used.
|
@@ -60,7 +61,7 @@ module Rumale
|
|
60
61
|
# This parameter is ignored if the Parallel gem is not loaded.
|
61
62
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
63
|
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
63
|
-
max_iter:
|
64
|
+
max_iter: 200, batch_size: 50, optimizer: nil, n_jobs: nil, random_seed: nil)
|
64
65
|
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
65
66
|
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
|
66
67
|
check_params_string(loss: loss)
|
@@ -12,7 +12,7 @@ module Rumale
|
|
12
12
|
# estimator =
|
13
13
|
# Rumale::PolynomialModel::FactorizationMachineRegressor.new(
|
14
14
|
# n_factors: 10, reg_param_linear: 0.1, reg_param_factor: 0.1,
|
15
|
-
# max_iter:
|
15
|
+
# max_iter: 500, batch_size: 50, random_seed: 1)
|
16
16
|
# estimator.fit(training_samples, traininig_values)
|
17
17
|
# results = estimator.predict(testing_samples)
|
18
18
|
#
|
@@ -43,7 +43,8 @@ module Rumale
|
|
43
43
|
# @param n_factors [Integer] The maximum number of iterations.
|
44
44
|
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
45
45
|
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
46
|
-
# @param max_iter [Integer] The maximum number of
|
46
|
+
# @param max_iter [Integer] The maximum number of epochs that indicates
|
47
|
+
# how many times the whole data is given to the training process.
|
47
48
|
# @param batch_size [Integer] The size of the mini batches.
|
48
49
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
49
50
|
# If nil is given, Nadam is used.
|
@@ -53,7 +54,7 @@ module Rumale
|
|
53
54
|
# This parameter is ignored if the Parallel gem is not loaded.
|
54
55
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
56
|
def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
56
|
-
max_iter:
|
57
|
+
max_iter: 200, batch_size: 50, optimizer: nil, n_jobs: nil, random_seed: nil)
|
57
58
|
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
58
59
|
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
|
59
60
|
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.17.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-01-
|
11
|
+
date: 2020-01-18 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|