rumale-neural_network 0.27.0 → 0.28.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/rumale/neural_network/base_rbf.rb +93 -0
- data/lib/rumale/neural_network/base_rvfl.rb +58 -0
- data/lib/rumale/neural_network/mlp_regressor.rb +1 -1
- data/lib/rumale/neural_network/rbf_classifier.rb +107 -0
- data/lib/rumale/neural_network/rbf_regressor.rb +85 -0
- data/lib/rumale/neural_network/rvfl_classifier.rb +108 -0
- data/lib/rumale/neural_network/rvfl_regressor.rb +86 -0
- data/lib/rumale/neural_network/version.rb +1 -1
- data/lib/rumale/neural_network.rb +6 -0
- metadata +11 -5
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 8c6090291a88fdf2e017af6b56297a109ea668e19432fbb69b9c734aac643269
|
4
|
+
data.tar.gz: 8b88eb8612d9537d298db76bde03e12cfc05251235b70abbf05f302c7e043261
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 4c2d5585cb3b6bac2430c0070d28f30a2d7a5573a7e32e7761dfcfc01dd3b40e6664c325f596c53fc5f01ee7e2d882846d3522984d791f878148a67b9ef92c29
|
7
|
+
data.tar.gz: 6bb8ee5bc957255298794a0463a84373ee19e5a663a0fd28c2b7f0ef6e7c91b028a906e2ca88c52fb2996960806839f552e0194292974c76214a35c3b1962d1a
|
@@ -0,0 +1,93 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/pairwise_metric'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module NeuralNetwork
|
8
|
+
# BaseRBF is an abstract class for implementation of radial basis function (RBF) network estimator.
|
9
|
+
# This class is used internally.
|
10
|
+
#
|
11
|
+
# *Reference*
|
12
|
+
# - Bugmann, G., "Normalized Gaussian Radial Basis Function networks," Neural Computation, vol. 20, pp. 97--110, 1998.
|
13
|
+
# - Que, Q., and Belkin, M., "Back to the Future: Radial Basis Function Networks Revisited," Proc. of AISTATS'16, pp. 1375--1383, 2016.
|
14
|
+
class BaseRBF < ::Rumale::Base::Estimator
|
15
|
+
# Create a radial basis function network estimator.
|
16
|
+
#
|
17
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
18
|
+
# @param gamma [Float] The parameter for the radial basis function, if nil it is 1 / n_features.
|
19
|
+
# @param reg_param [Float] The regularization parameter.
|
20
|
+
# @param normalize [Boolean] The flag indicating whether to normalize the hidden layer output or not.
|
21
|
+
# @param max_iter [Integer] The maximum number of iterations for finding centers.
|
22
|
+
# @param tol [Float] The tolerance of termination criterion for finding centers.
|
23
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
24
|
+
def initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false,
|
25
|
+
max_iter: 50, tol: 1e-4, random_seed: nil)
|
26
|
+
super()
|
27
|
+
@params = {
|
28
|
+
hidden_units: hidden_units,
|
29
|
+
gamma: gamma,
|
30
|
+
reg_param: reg_param,
|
31
|
+
normalize: normalize,
|
32
|
+
max_iter: max_iter,
|
33
|
+
tol: tol,
|
34
|
+
random_seed: random_seed || srand
|
35
|
+
}
|
36
|
+
@rng = Random.new(@params[:random_seed])
|
37
|
+
end
|
38
|
+
|
39
|
+
private
|
40
|
+
|
41
|
+
def partial_fit(x, y)
|
42
|
+
find_centers(x)
|
43
|
+
|
44
|
+
h = hidden_output(x)
|
45
|
+
|
46
|
+
n_samples = h.shape[0]
|
47
|
+
n_features = h.shape[1]
|
48
|
+
reg_term = 1.fdiv(@params[:reg_param])
|
49
|
+
|
50
|
+
@weight_vec = if n_features <= n_samples
|
51
|
+
Numo::Linalg.inv(h.transpose.dot(h) + reg_term * Numo::DFloat.eye(n_features)).dot(h.transpose).dot(y)
|
52
|
+
else
|
53
|
+
h.transpose.dot(Numo::Linalg.inv(h.dot(h.transpose) + reg_term * Numo::DFloat.eye(n_samples))).dot(y)
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
def hidden_output(x)
|
58
|
+
h = ::Rumale::PairwiseMetric.rbf_kernel(x, @centers, @params[:gamma])
|
59
|
+
h /= h.sum(axis: 1).expand_dims(1) if @params[:normalize]
|
60
|
+
h
|
61
|
+
end
|
62
|
+
|
63
|
+
def find_centers(x)
|
64
|
+
# initialize centers randomly
|
65
|
+
n_samples = x.shape[0]
|
66
|
+
sub_rng = @rng.dup
|
67
|
+
rand_id = Array.new(n_centers) { |_v| sub_rng.rand(0...n_samples) }
|
68
|
+
@centers = x[rand_id, true].dup
|
69
|
+
|
70
|
+
# find centers
|
71
|
+
@params[:max_iter].times do |_t|
|
72
|
+
center_ids = assign_centers(x)
|
73
|
+
old_centers = @centers.dup
|
74
|
+
n_centers.times do |n|
|
75
|
+
assigned_bits = center_ids.eq(n)
|
76
|
+
@centers[n, true] = x[assigned_bits.where, true].mean(axis: 0) if assigned_bits.count.positive?
|
77
|
+
end
|
78
|
+
error = Numo::NMath.sqrt(((old_centers - @centers)**2).sum(axis: 1)).mean
|
79
|
+
break if error <= @params[:tol]
|
80
|
+
end
|
81
|
+
end
|
82
|
+
|
83
|
+
def assign_centers(x)
|
84
|
+
distance_matrix = ::Rumale::PairwiseMetric.euclidean_distance(x, @centers)
|
85
|
+
distance_matrix.min_index(axis: 1) - Numo::Int32[*0.step(distance_matrix.size - 1, @centers.shape[0])]
|
86
|
+
end
|
87
|
+
|
88
|
+
def n_centers
|
89
|
+
@params[:hidden_units]
|
90
|
+
end
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
@@ -0,0 +1,58 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/utils'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module NeuralNetwork
|
8
|
+
# BaseRVFL is an abstract class for implementation of random vector functional link (RVFL) network.
|
9
|
+
# This class is used internally.
|
10
|
+
#
|
11
|
+
# *Reference*
|
12
|
+
# - Malik, A. K., Gao, R., Ganaie, M. A., Tanveer, M., and Suganthan, P. N., "Random vector functional link network: recent developments, applications, and future directions," Applied Soft Computing, vol. 143, 2023.
|
13
|
+
# - Zhang, L., and Suganthan, P. N., "A comprehensive evaluation of random vector functional link networks," Information Sciences, vol. 367--368, pp. 1094--1105, 2016.
|
14
|
+
class BaseRVFL < ::Rumale::Base::Estimator
|
15
|
+
# Create a random vector functional link network estimator.
|
16
|
+
#
|
17
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
18
|
+
# @param reg_param [Float] The regularization parameter.
|
19
|
+
# @param scale [Float] The scale parameter for random weight and bias.
|
20
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
21
|
+
def initialize(hidden_units: 128, reg_param: 100.0, scale: 1.0, random_seed: nil)
|
22
|
+
super()
|
23
|
+
@params = {
|
24
|
+
hidden_units: hidden_units,
|
25
|
+
reg_param: reg_param,
|
26
|
+
scale: scale,
|
27
|
+
random_seed: random_seed || srand
|
28
|
+
}
|
29
|
+
@rng = Random.new(@params[:random_seed])
|
30
|
+
end
|
31
|
+
|
32
|
+
private
|
33
|
+
|
34
|
+
def partial_fit(x, y)
|
35
|
+
h = hidden_output(x)
|
36
|
+
|
37
|
+
n_samples = h.shape[0]
|
38
|
+
n_features = h.shape[1]
|
39
|
+
reg_term = 1.fdiv(@params[:reg_param])
|
40
|
+
|
41
|
+
@weight_vec = if n_features <= n_samples
|
42
|
+
Numo::Linalg.inv(h.transpose.dot(h) + reg_term * Numo::DFloat.eye(n_features)).dot(h.transpose).dot(y)
|
43
|
+
else
|
44
|
+
h.transpose.dot(Numo::Linalg.inv(h.dot(h.transpose) + reg_term * Numo::DFloat.eye(n_samples))).dot(y)
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
def hidden_output(x)
|
49
|
+
sub_rng = @rng.dup
|
50
|
+
n_features = x.shape[1]
|
51
|
+
@random_weight_vec = (2.0 * Rumale::Utils.rand_uniform([n_features, @params[:hidden_units]], sub_rng) - 1.0) * @params[:scale] # rubocop:disbale Layout/LineLength
|
52
|
+
@random_bias = Rumale::Utils.rand_uniform(@params[:hidden_units], sub_rng) * @params[:scale]
|
53
|
+
h = 0.5 * (Numo::NMath.tanh(0.5 * (x.dot(@random_weight_vec) + @random_bias)) + 1.0)
|
54
|
+
Numo::DFloat.hstack([x, h])
|
55
|
+
end
|
56
|
+
end
|
57
|
+
end
|
58
|
+
end
|
@@ -14,7 +14,7 @@ module Rumale
|
|
14
14
|
# require 'rumale/neural_network/mlp_regressor'
|
15
15
|
#
|
16
16
|
# estimator = Rumale::NeuralNetwork::MLPRegressor.new(hidden_units: [100, 100], dropout_rate: 0.3)
|
17
|
-
# estimator.fit(training_samples,
|
17
|
+
# estimator.fit(training_samples, traininig_values)
|
18
18
|
# results = estimator.predict(testing_samples)
|
19
19
|
class MLPRegressor < BaseMLP
|
20
20
|
include ::Rumale::Base::Regressor
|
@@ -0,0 +1,107 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/classifier'
|
4
|
+
require 'rumale/utils'
|
5
|
+
require 'rumale/validation'
|
6
|
+
require 'rumale/neural_network/base_rbf'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module NeuralNetwork
|
10
|
+
# RBFClassifier is a class that implements classifier based on (k-means) radial basis function (RBF) networks.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'numo/tiny_linalg'
|
14
|
+
# Numo::Linalg = Numo::TinyLinalg
|
15
|
+
#
|
16
|
+
# require 'rumale/neural_network/rbf_classifier'
|
17
|
+
#
|
18
|
+
# estimator = Rumale::NeuralNetwork::RBFClassifier.new(hidden_units: 128, reg_param: 100.0)
|
19
|
+
# estimator.fit(training_samples, traininig_labels)
|
20
|
+
# results = estimator.predict(testing_samples)
|
21
|
+
#
|
22
|
+
# *Reference*
|
23
|
+
# - Bugmann, G., "Normalized Gaussian Radial Basis Function networks," Neural Computation, vol. 20, pp. 97--110, 1998.
|
24
|
+
# - Que, Q., and Belkin, M., "Back to the Future: Radial Basis Function Networks Revisited," Proc. of AISTATS'16, pp. 1375--1383, 2016.
|
25
|
+
class RBFClassifier < BaseRBF
|
26
|
+
include ::Rumale::Base::Classifier
|
27
|
+
|
28
|
+
# Return the class labels.
|
29
|
+
# @return [Numo::Int32] (size: n_classes)
|
30
|
+
attr_reader :classes
|
31
|
+
|
32
|
+
# Return the centers in the hidden layer of RBF network.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_centers, n_features])
|
34
|
+
attr_reader :centers
|
35
|
+
|
36
|
+
# Return the weight vector.
|
37
|
+
# @return [Numo::DFloat] (shape: [n_centers, n_classes])
|
38
|
+
attr_reader :weight_vec
|
39
|
+
|
40
|
+
# Return the random generator.
|
41
|
+
# @return [Random]
|
42
|
+
attr_reader :rng
|
43
|
+
|
44
|
+
# Create a new classifier with (k-means) RBF networks.
|
45
|
+
#
|
46
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
47
|
+
# @param gamma [Float] The parameter for the radial basis function, if nil it is 1 / n_features.
|
48
|
+
# @param reg_param [Float] The regularization parameter.
|
49
|
+
# @param normalize [Boolean] The flag indicating whether to normalize the hidden layer output or not.
|
50
|
+
# @param max_iter [Integer] The maximum number of iterations for finding centers.
|
51
|
+
# @param tol [Float] The tolerance of termination criterion for finding centers.
|
52
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
53
|
+
def initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false,
|
54
|
+
max_iter: 50, tol: 1e-4, random_seed: nil)
|
55
|
+
super
|
56
|
+
end
|
57
|
+
|
58
|
+
# Fit the model with given training data.
|
59
|
+
#
|
60
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
61
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
62
|
+
# @return [RBFClassifier] The learned classifier itself.
|
63
|
+
def fit(x, y)
|
64
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
65
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
66
|
+
::Rumale::Validation.check_sample_size(x, y)
|
67
|
+
raise 'RBFClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
68
|
+
|
69
|
+
@classes = Numo::NArray[*y.to_a.uniq.sort]
|
70
|
+
|
71
|
+
partial_fit(x, one_hot_encode(y))
|
72
|
+
|
73
|
+
self
|
74
|
+
end
|
75
|
+
|
76
|
+
# Calculate confidence scores for samples.
|
77
|
+
#
|
78
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
79
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
80
|
+
def decision_function(x)
|
81
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
82
|
+
|
83
|
+
h = hidden_output(x)
|
84
|
+
h.dot(@weight_vec)
|
85
|
+
end
|
86
|
+
|
87
|
+
# Predict class labels for samples.
|
88
|
+
#
|
89
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
90
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
91
|
+
def predict(x)
|
92
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
93
|
+
|
94
|
+
scores = decision_function(x)
|
95
|
+
n_samples, n_classes = scores.shape
|
96
|
+
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes
|
97
|
+
@classes[label_ids].dup
|
98
|
+
end
|
99
|
+
|
100
|
+
private
|
101
|
+
|
102
|
+
def one_hot_encode(y)
|
103
|
+
Numo::DFloat.cast(::Rumale::Utils.binarize_labels(y))
|
104
|
+
end
|
105
|
+
end
|
106
|
+
end
|
107
|
+
end
|
@@ -0,0 +1,85 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/regressor'
|
4
|
+
require 'rumale/neural_network/base_rbf'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module NeuralNetwork
|
9
|
+
# RBFRegressor is a class that implements regressor based on (k-means) radial basis function (RBF) networks.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# require 'numo/tiny_linalg'
|
13
|
+
# Numo::Linalg = Numo::TinyLinalg
|
14
|
+
#
|
15
|
+
# require 'rumale/neural_network/rbf_regressor'
|
16
|
+
#
|
17
|
+
# estimator = Rumale::NeuralNetwork::RBFRegressor.new(hidden_units: 128, reg_param: 100.0)
|
18
|
+
# estimator.fit(training_samples, traininig_values)
|
19
|
+
# results = estimator.predict(testing_samples)
|
20
|
+
#
|
21
|
+
# *Reference*
|
22
|
+
# - Bugmann, G., "Normalized Gaussian Radial Basis Function networks," Neural Computation, vol. 20, pp. 97--110, 1998.
|
23
|
+
# - Que, Q., and Belkin, M., "Back to the Future: Radial Basis Function Networks Revisited," Proc. of AISTATS'16, pp. 1375--1383, 2016.
|
24
|
+
class RBFRegressor < BaseRBF
|
25
|
+
include ::Rumale::Base::Regressor
|
26
|
+
|
27
|
+
# Return the centers in the hidden layer of RBF network.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_centers, n_features])
|
29
|
+
attr_reader :centers
|
30
|
+
|
31
|
+
# Return the weight vector.
|
32
|
+
# @return [Numo::DFloat] (shape: [n_centers, n_outputs])
|
33
|
+
attr_reader :weight_vec
|
34
|
+
|
35
|
+
# Return the random generator.
|
36
|
+
# @return [Random]
|
37
|
+
attr_reader :rng
|
38
|
+
|
39
|
+
# Create a new regressor with (k-means) RBF networks.
|
40
|
+
#
|
41
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
42
|
+
# @param gamma [Float] The parameter for the radial basis function, if nil it is 1 / n_features.
|
43
|
+
# @param reg_param [Float] The regularization parameter.
|
44
|
+
# @param normalize [Boolean] The flag indicating whether to normalize the hidden layer output or not.
|
45
|
+
# @param max_iter [Integer] The maximum number of iterations for finding centers.
|
46
|
+
# @param tol [Float] The tolerance of termination criterion for finding centers.
|
47
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
48
|
+
def initialize(hidden_units: 128, gamma: nil, reg_param: 100.0, normalize: false,
|
49
|
+
max_iter: 50, tol: 1e-4, random_seed: nil)
|
50
|
+
super
|
51
|
+
end
|
52
|
+
|
53
|
+
# Fit the model with given training data.
|
54
|
+
#
|
55
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
56
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
57
|
+
# @return [MLPRegressor] The learned regressor itself.
|
58
|
+
def fit(x, y)
|
59
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
60
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
61
|
+
::Rumale::Validation.check_sample_size(x, y)
|
62
|
+
raise 'RBFRegressor#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
63
|
+
|
64
|
+
y = y.expand_dims(1) if y.ndim == 1
|
65
|
+
|
66
|
+
partial_fit(x, y)
|
67
|
+
|
68
|
+
self
|
69
|
+
end
|
70
|
+
|
71
|
+
# Predict values for samples.
|
72
|
+
#
|
73
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
74
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
75
|
+
def predict(x)
|
76
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
77
|
+
|
78
|
+
h = hidden_output(x)
|
79
|
+
out = h.dot(@weight_vec)
|
80
|
+
out = out[true, 0] if out.shape[1] == 1
|
81
|
+
out
|
82
|
+
end
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
@@ -0,0 +1,108 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/classifier'
|
4
|
+
require 'rumale/neural_network/base_rvfl'
|
5
|
+
require 'rumale/utils'
|
6
|
+
require 'rumale/validation'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module NeuralNetwork
|
10
|
+
# RVFLClassifier is a class that implements classifier based on random vector functional link (RVFL) network.
|
11
|
+
# The current implementation uses sigmoid function as activation function.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# require 'numo/tiny_linalg'
|
15
|
+
# Numo::Linalg = Numo::TinyLinalg
|
16
|
+
#
|
17
|
+
# require 'rumale/neural_network/rvfl_classifier'
|
18
|
+
#
|
19
|
+
# estimator = Rumale::NeuralNetwork::RVFLClassifier.new(hidden_units: 128, reg_param: 100.0)
|
20
|
+
# estimator.fit(training_samples, traininig_labels)
|
21
|
+
# results = estimator.predict(testing_samples)
|
22
|
+
#
|
23
|
+
# *Reference*
|
24
|
+
# - Malik, A. K., Gao, R., Ganaie, M. A., Tanveer, M., and Suganthan, P. N., "Random vector functional link network: recent developments, applications, and future directions," Applied Soft Computing, vol. 143, 2023.
|
25
|
+
# - Zhang, L., and Suganthan, P. N., "A comprehensive evaluation of random vector functional link networks," Information Sciences, vol. 367--368, pp. 1094--1105, 2016.
|
26
|
+
class RVFLClassifier < BaseRVFL
|
27
|
+
include ::Rumale::Base::Classifier
|
28
|
+
|
29
|
+
# Return the class labels.
|
30
|
+
# @return [Numo::Int32] (size: n_classes)
|
31
|
+
attr_reader :classes
|
32
|
+
|
33
|
+
# Return the weight vector in the hidden layer of RVFL network.
|
34
|
+
# @return [Numo::DFloat] (shape: [n_hidden_units, n_features])
|
35
|
+
attr_reader :random_weight_vec
|
36
|
+
|
37
|
+
# Return the bias vector in the hidden layer of RVFL network.
|
38
|
+
# @return [Numo::DFloat] (shape: [n_hidden_units])
|
39
|
+
attr_reader :random_bias
|
40
|
+
|
41
|
+
# Return the weight vector.
|
42
|
+
# @return [Numo::DFloat] (shape: [n_features + n_hidden_units, n_classes])
|
43
|
+
attr_reader :weight_vec
|
44
|
+
|
45
|
+
# Return the random generator.
|
46
|
+
# @return [Random]
|
47
|
+
attr_reader :rng
|
48
|
+
|
49
|
+
# Create a new classifier with RVFL network.
|
50
|
+
#
|
51
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
52
|
+
# @param reg_param [Float] The regularization parameter.
|
53
|
+
# @param scale [Float] The scale parameter for random weight and bias.
|
54
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
|
+
def initialize(hidden_units: 128, reg_param: 100.0, scale: 1.0, random_seed: nil)
|
56
|
+
super
|
57
|
+
end
|
58
|
+
|
59
|
+
# Fit the model with given training data.
|
60
|
+
#
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
62
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
63
|
+
# @return [RVFLClassifier] The learned classifier itself.
|
64
|
+
def fit(x, y)
|
65
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
66
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
67
|
+
::Rumale::Validation.check_sample_size(x, y)
|
68
|
+
raise 'RVFLClassifier#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
69
|
+
|
70
|
+
@classes = Numo::NArray[*y.to_a.uniq.sort]
|
71
|
+
|
72
|
+
partial_fit(x, one_hot_encode(y))
|
73
|
+
|
74
|
+
self
|
75
|
+
end
|
76
|
+
|
77
|
+
# Calculate confidence scores for samples.
|
78
|
+
#
|
79
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
80
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
81
|
+
def decision_function(x)
|
82
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
83
|
+
|
84
|
+
h = hidden_output(x)
|
85
|
+
h.dot(@weight_vec)
|
86
|
+
end
|
87
|
+
|
88
|
+
# Predict class labels for samples.
|
89
|
+
#
|
90
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
91
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
92
|
+
def predict(x)
|
93
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
94
|
+
|
95
|
+
scores = decision_function(x)
|
96
|
+
n_samples, n_classes = scores.shape
|
97
|
+
label_ids = scores.max_index(axis: 1) - Numo::Int32.new(n_samples).seq * n_classes
|
98
|
+
@classes[label_ids].dup
|
99
|
+
end
|
100
|
+
|
101
|
+
private
|
102
|
+
|
103
|
+
def one_hot_encode(y)
|
104
|
+
Numo::DFloat.cast(::Rumale::Utils.binarize_labels(y))
|
105
|
+
end
|
106
|
+
end
|
107
|
+
end
|
108
|
+
end
|
@@ -0,0 +1,86 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/regressor'
|
4
|
+
require 'rumale/neural_network/base_rvfl'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module NeuralNetwork
|
9
|
+
# RVFLRegressor is a class that implements regressor based on random vector functional link (RVFL) network.
|
10
|
+
# The current implementation uses sigmoid function as activation function.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'numo/tiny_linalg'
|
14
|
+
# Numo::Linalg = Numo::TinyLinalg
|
15
|
+
#
|
16
|
+
# require 'rumale/neural_network/rvfl_regressor'
|
17
|
+
#
|
18
|
+
# estimator = Rumale::NeuralNetwork::RVFLRegressor.new(hidden_units: 128, reg_param: 100.0)
|
19
|
+
# estimator.fit(training_samples, traininig_values)
|
20
|
+
# results = estimator.predict(testing_samples)
|
21
|
+
#
|
22
|
+
# *Reference*
|
23
|
+
# - Malik, A. K., Gao, R., Ganaie, M. A., Tanveer, M., and Suganthan, P. N., "Random vector functional link network: recent developments, applications, and future directions," Applied Soft Computing, vol. 143, 2023.
|
24
|
+
# - Zhang, L., and Suganthan, P. N., "A comprehensive evaluation of random vector functional link networks," Information Sciences, vol. 367--368, pp. 1094--1105, 2016.
|
25
|
+
class RVFLRegressor < BaseRVFL
|
26
|
+
include ::Rumale::Base::Regressor
|
27
|
+
|
28
|
+
# Return the weight vector in the hidden layer of RVFL network.
|
29
|
+
# @return [Numo::DFloat] (shape: [n_hidden_units, n_features])
|
30
|
+
attr_reader :random_weight_vec
|
31
|
+
|
32
|
+
# Return the bias vector in the hidden layer of RVFL network.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_hidden_units])
|
34
|
+
attr_reader :random_bias
|
35
|
+
|
36
|
+
# Return the weight vector.
|
37
|
+
# @return [Numo::DFloat] (shape: [n_features + n_hidden_units, n_outputs])
|
38
|
+
attr_reader :weight_vec
|
39
|
+
|
40
|
+
# Return the random generator.
|
41
|
+
# @return [Random]
|
42
|
+
attr_reader :rng
|
43
|
+
|
44
|
+
# Create a new regressor with RVFL network.
|
45
|
+
#
|
46
|
+
# @param hidden_units [Array] The number of units in the hidden layer.
|
47
|
+
# @param reg_param [Float] The regularization parameter.
|
48
|
+
# @param scale [Float] The scale parameter for random weight and bias.
|
49
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
50
|
+
def initialize(hidden_units: 128, reg_param: 100.0, scale: 1.0, random_seed: nil)
|
51
|
+
super
|
52
|
+
end
|
53
|
+
|
54
|
+
# Fit the model with given training data.
|
55
|
+
#
|
56
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
57
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
58
|
+
# @return [RVFLRegressor] The learned regressor itself.
|
59
|
+
def fit(x, y)
|
60
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
61
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
62
|
+
::Rumale::Validation.check_sample_size(x, y)
|
63
|
+
raise 'RVFLRegressor#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?(warning: false)
|
64
|
+
|
65
|
+
y = y.expand_dims(1) if y.ndim == 1
|
66
|
+
|
67
|
+
partial_fit(x, y)
|
68
|
+
|
69
|
+
self
|
70
|
+
end
|
71
|
+
|
72
|
+
# Predict values for samples.
|
73
|
+
#
|
74
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
75
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) The predicted values per sample.
|
76
|
+
def predict(x)
|
77
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
78
|
+
|
79
|
+
h = hidden_output(x)
|
80
|
+
out = h.dot(@weight_vec)
|
81
|
+
out = out[true, 0] if out.shape[1] == 1
|
82
|
+
out
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
86
|
+
end
|
@@ -7,3 +7,9 @@ require_relative 'neural_network/version'
|
|
7
7
|
require_relative 'neural_network/base_mlp'
|
8
8
|
require_relative 'neural_network/mlp_classifier'
|
9
9
|
require_relative 'neural_network/mlp_regressor'
|
10
|
+
require_relative 'neural_network/base_rbf'
|
11
|
+
require_relative 'neural_network/rbf_classifier'
|
12
|
+
require_relative 'neural_network/rbf_regressor'
|
13
|
+
require_relative 'neural_network/base_rvfl'
|
14
|
+
require_relative 'neural_network/rvfl_classifier'
|
15
|
+
require_relative 'neural_network/rvfl_regressor'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-neural_network
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.28.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-11-12 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -30,14 +30,14 @@ dependencies:
|
|
30
30
|
requirements:
|
31
31
|
- - "~>"
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version: 0.
|
33
|
+
version: 0.28.0
|
34
34
|
type: :runtime
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version: 0.
|
40
|
+
version: 0.28.0
|
41
41
|
description: |
|
42
42
|
Rumale::NeuralNetwork provides classifier and regression
|
43
43
|
based on multi-layer perceptron with Rumale interface.
|
@@ -51,8 +51,14 @@ files:
|
|
51
51
|
- README.md
|
52
52
|
- lib/rumale/neural_network.rb
|
53
53
|
- lib/rumale/neural_network/base_mlp.rb
|
54
|
+
- lib/rumale/neural_network/base_rbf.rb
|
55
|
+
- lib/rumale/neural_network/base_rvfl.rb
|
54
56
|
- lib/rumale/neural_network/mlp_classifier.rb
|
55
57
|
- lib/rumale/neural_network/mlp_regressor.rb
|
58
|
+
- lib/rumale/neural_network/rbf_classifier.rb
|
59
|
+
- lib/rumale/neural_network/rbf_regressor.rb
|
60
|
+
- lib/rumale/neural_network/rvfl_classifier.rb
|
61
|
+
- lib/rumale/neural_network/rvfl_regressor.rb
|
56
62
|
- lib/rumale/neural_network/version.rb
|
57
63
|
homepage: https://github.com/yoshoku/rumale
|
58
64
|
licenses:
|
@@ -78,7 +84,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
78
84
|
- !ruby/object:Gem::Version
|
79
85
|
version: '0'
|
80
86
|
requirements: []
|
81
|
-
rubygems_version: 3.
|
87
|
+
rubygems_version: 3.4.20
|
82
88
|
signing_key:
|
83
89
|
specification_version: 4
|
84
90
|
summary: Rumale::NeuralNetwork provides classifier and regression based on multi-layer
|