rumale-naive_bayes 0.24.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE.txt +27 -0
- data/README.md +34 -0
- data/lib/rumale/naive_bayes/base_naive_bayes.rb +53 -0
- data/lib/rumale/naive_bayes/bernoulli_nb.rb +86 -0
- data/lib/rumale/naive_bayes/complement_nb.rb +88 -0
- data/lib/rumale/naive_bayes/gaussian_nb.rb +74 -0
- data/lib/rumale/naive_bayes/multinomial_nb.rb +76 -0
- data/lib/rumale/naive_bayes/negation_nb.rb +73 -0
- data/lib/rumale/naive_bayes/version.rb +10 -0
- data/lib/rumale/naive_bayes.rb +11 -0
- metadata +89 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 6099259a89800806a4c1cb97f2c6fd76d9a3ee3c06bfafbd26ff585ce029bc8d
|
4
|
+
data.tar.gz: bd77f90edab0d920bb9bda3c9c2e21b3fd7fde646c56d7700d131c2eba2005c0
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 878ef0a8d13a8df2cb0b27c8f87db50572c7ba7b81ab4ad5840bf6c263a2cc607e3dd12273c630f869df754be9edd69339364f927b33817ec3d17749fc76f74f
|
7
|
+
data.tar.gz: fcf815a1f21e9db918f898ee9d917948c1737ab2b66f1dd043c2f3b49d1b340fd40b933c0a1c31ec466a5fd3cbd94bf9dc821bb31f8a1a137bb573327b195799
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Copyright (c) 2022 Atsushi Tatsuma
|
2
|
+
All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
|
10
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
|
14
|
+
* Neither the name of the copyright holder nor the names of its
|
15
|
+
contributors may be used to endorse or promote products derived from
|
16
|
+
this software without specific prior written permission.
|
17
|
+
|
18
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
21
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
22
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
24
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
25
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
26
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
# Rumale::NaiveBayes
|
2
|
+
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/rumale-naive_bayes.svg)](https://badge.fury.io/rb/rumale-naive_bayes)
|
4
|
+
[![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/rumale/blob/main/rumale-naive_bayes/LICENSE.txt)
|
5
|
+
[![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes.html)
|
6
|
+
|
7
|
+
Rumale is a machine learning library in Ruby.
|
8
|
+
Rumale::NaiveBayes provides naive bayes models,
|
9
|
+
such as Gaussian Naive Bayes, Multinomial Naive Bayes, and Bernoulli Naive Bayes,
|
10
|
+
with Rumale interface.
|
11
|
+
|
12
|
+
## Installation
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
```ruby
|
17
|
+
gem 'rumale-naive_bayes'
|
18
|
+
```
|
19
|
+
|
20
|
+
And then execute:
|
21
|
+
|
22
|
+
$ bundle install
|
23
|
+
|
24
|
+
Or install it yourself as:
|
25
|
+
|
26
|
+
$ gem install rumale-naive_bayes
|
27
|
+
|
28
|
+
## Documentation
|
29
|
+
|
30
|
+
- [Rumale API Documentation - NaiveBayes](https://yoshoku.github.io/rumale/doc/Rumale/NaiveBayes.html)
|
31
|
+
|
32
|
+
## License
|
33
|
+
|
34
|
+
The gem is available as open source under the terms of the [BSD-3-Clause License](https://opensource.org/licenses/BSD-3-Clause).
|
@@ -0,0 +1,53 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/validation'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module NaiveBayes
|
9
|
+
# BaseNaiveBayes is a class that has methods for common processes of naive bayes classifier.
|
10
|
+
# This class is used internally.
|
11
|
+
class BaseNaiveBayes < ::Rumale::Base::Estimator
|
12
|
+
include ::Rumale::Base::Classifier
|
13
|
+
|
14
|
+
def initialize # rubocop:disable Lint/UselessMethodDefinition
|
15
|
+
super()
|
16
|
+
end
|
17
|
+
|
18
|
+
# Predict class labels for samples.
|
19
|
+
#
|
20
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
21
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
22
|
+
def predict(x)
|
23
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
24
|
+
|
25
|
+
n_samples = x.shape.first
|
26
|
+
decision_values = decision_function(x)
|
27
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
28
|
+
end
|
29
|
+
|
30
|
+
# Predict log-probability for samples.
|
31
|
+
#
|
32
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
34
|
+
def predict_log_proba(x)
|
35
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
36
|
+
|
37
|
+
n_samples, = x.shape
|
38
|
+
log_likelihoods = decision_function(x)
|
39
|
+
log_likelihoods - Numo::NMath.log(Numo::NMath.exp(log_likelihoods).sum(axis: 1)).reshape(n_samples, 1)
|
40
|
+
end
|
41
|
+
|
42
|
+
# Predict probability for samples.
|
43
|
+
#
|
44
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
45
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
46
|
+
def predict_proba(x)
|
47
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
48
|
+
|
49
|
+
Numo::NMath.exp(predict_log_proba(x)).abs
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|
@@ -0,0 +1,86 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module NaiveBayes
|
7
|
+
# BernoulliNB is a class that implements Bernoulli Naive Bayes classifier.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/naive_bayes/bernoulli_nb'
|
11
|
+
#
|
12
|
+
# estimator = Rumale::NaiveBayes::BernoulliNB.new(smoothing_param: 1.0, bin_threshold: 0.0)
|
13
|
+
# estimator.fit(training_samples, training_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
#
|
16
|
+
# *Reference*
|
17
|
+
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
18
|
+
class BernoulliNB < BaseNaiveBayes
|
19
|
+
# Return the class labels.
|
20
|
+
# @return [Numo::Int32] (size: n_classes)
|
21
|
+
attr_reader :classes
|
22
|
+
|
23
|
+
# Return the prior probabilities of the classes.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
25
|
+
attr_reader :class_priors
|
26
|
+
|
27
|
+
# Return the conditional probabilities for features of each class.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
29
|
+
attr_reader :feature_probs
|
30
|
+
|
31
|
+
# Create a new classifier with Bernoulli Naive Bayes.
|
32
|
+
#
|
33
|
+
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
34
|
+
# @param bin_threshold [Float] The threshold for binarizing of features.
|
35
|
+
def initialize(smoothing_param: 1.0, bin_threshold: 0.0)
|
36
|
+
super()
|
37
|
+
@params = {
|
38
|
+
smoothing_param: smoothing_param,
|
39
|
+
bin_threshold: bin_threshold
|
40
|
+
}
|
41
|
+
end
|
42
|
+
|
43
|
+
# Fit the model with given training data.
|
44
|
+
#
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
46
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
47
|
+
# to be used for fitting the model.
|
48
|
+
# @return [BernoulliNB] The learned classifier itself.
|
49
|
+
def fit(x, y)
|
50
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
51
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
52
|
+
::Rumale::Validation.check_sample_size(x, y)
|
53
|
+
|
54
|
+
n_samples, = x.shape
|
55
|
+
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
56
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
57
|
+
n_samples_each_class = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.to_f }]
|
58
|
+
@class_priors = n_samples_each_class / n_samples
|
59
|
+
count_features = Numo::DFloat[*@classes.to_a.map { |l| bin_x[y.eq(l).where, true].sum(axis: 0) }]
|
60
|
+
count_features += @params[:smoothing_param]
|
61
|
+
n_samples_each_class += 2.0 * @params[:smoothing_param]
|
62
|
+
n_classes = @classes.size
|
63
|
+
@feature_probs = count_features / n_samples_each_class.reshape(n_classes, 1)
|
64
|
+
self
|
65
|
+
end
|
66
|
+
|
67
|
+
# Calculate confidence scores for samples.
|
68
|
+
#
|
69
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
70
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
71
|
+
def decision_function(x)
|
72
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
73
|
+
|
74
|
+
n_classes = @classes.size
|
75
|
+
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
76
|
+
not_bin_x = Numo::DFloat[*x.le(@params[:bin_threshold])]
|
77
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
78
|
+
Math.log(@class_priors[l]) + (
|
79
|
+
(Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(axis: 1)
|
80
|
+
(Numo::DFloat[*not_bin_x] * Numo::NMath.log(1.0 - @feature_probs[l, true])).sum(axis: 1))
|
81
|
+
end
|
82
|
+
Numo::DFloat[*log_likelihoods].transpose.dup
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
86
|
+
end
|
@@ -0,0 +1,88 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module NaiveBayes
|
7
|
+
# ComplementNB is a class that implements Complement Naive Bayes classifier.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/naive_bayes/complement_nb'
|
11
|
+
#
|
12
|
+
# estimator = Rumale::NaiveBayes::ComplementNB.new(smoothing_param: 1.0)
|
13
|
+
# estimator.fit(training_samples, training_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
#
|
16
|
+
# *Reference*
|
17
|
+
# - Rennie, J. D. M., Shih, L., Teevan, J., and Karger, D. R., "Tackling the Poor Assumptions of Naive Bayes Text Classifiers," ICML' 03, pp. 616--623, 2013.
|
18
|
+
class ComplementNB < BaseNaiveBayes
|
19
|
+
# Return the class labels.
|
20
|
+
# @return [Numo::Int32] (size: n_classes)
|
21
|
+
attr_reader :classes
|
22
|
+
|
23
|
+
# Return the prior probabilities of the classes.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
25
|
+
attr_reader :class_priors
|
26
|
+
|
27
|
+
# Return the conditional probabilities for features of each class.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
29
|
+
attr_reader :feature_probs
|
30
|
+
|
31
|
+
# Create a new classifier with Complement Naive Bayes.
|
32
|
+
#
|
33
|
+
# @param smoothing_param [Float] The smoothing parameter.
|
34
|
+
# @param norm [Boolean] The flag indicating whether to normlize the weight vectors.
|
35
|
+
def initialize(smoothing_param: 1.0, norm: false)
|
36
|
+
super()
|
37
|
+
@params = {
|
38
|
+
smoothing_param: smoothing_param,
|
39
|
+
norm: norm
|
40
|
+
}
|
41
|
+
end
|
42
|
+
|
43
|
+
# Fit the model with given training data.
|
44
|
+
#
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
46
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
47
|
+
# to be used for fitting the model.
|
48
|
+
# @return [ComplementNB] The learned classifier itself.
|
49
|
+
def fit(x, y)
|
50
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
51
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
52
|
+
::Rumale::Validation.check_sample_size(x, y)
|
53
|
+
|
54
|
+
n_samples, = x.shape
|
55
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
56
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.fdiv(n_samples) }]
|
57
|
+
@class_log_probs = Numo::NMath.log(@class_priors)
|
58
|
+
compl_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.ne(l).where, true].sum(axis: 0) }]
|
59
|
+
compl_features += @params[:smoothing_param]
|
60
|
+
n_classes = @classes.size
|
61
|
+
@feature_probs = compl_features / compl_features.sum(axis: 1).reshape(n_classes, 1)
|
62
|
+
feature_log_probs = Numo::NMath.log(@feature_probs)
|
63
|
+
@weights = if normalize?
|
64
|
+
feature_log_probs / feature_log_probs.sum(axis: 1).reshape(n_classes, 1)
|
65
|
+
else
|
66
|
+
-feature_log_probs
|
67
|
+
end
|
68
|
+
self
|
69
|
+
end
|
70
|
+
|
71
|
+
# Calculate confidence scores for samples.
|
72
|
+
#
|
73
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
74
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
75
|
+
def decision_function(x)
|
76
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
77
|
+
|
78
|
+
@class_log_probs + x.dot(@weights.transpose)
|
79
|
+
end
|
80
|
+
|
81
|
+
private
|
82
|
+
|
83
|
+
def normalize?
|
84
|
+
@params[:norm] == true
|
85
|
+
end
|
86
|
+
end
|
87
|
+
end
|
88
|
+
end
|
@@ -0,0 +1,74 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module NaiveBayes
|
7
|
+
# GaussianNB is a class that implements Gaussian Naive Bayes classifier.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/naive_bayes/gaussian_nb'
|
11
|
+
#
|
12
|
+
# estimator = Rumale::NaiveBayes::GaussianNB.new
|
13
|
+
# estimator.fit(training_samples, training_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
class GaussianNB < BaseNaiveBayes
|
16
|
+
# Return the class labels.
|
17
|
+
# @return [Numo::Int32] (size: n_classes)
|
18
|
+
attr_reader :classes
|
19
|
+
|
20
|
+
# Return the prior probabilities of the classes.
|
21
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
22
|
+
attr_reader :class_priors
|
23
|
+
|
24
|
+
# Return the mean vectors of the classes.
|
25
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
26
|
+
attr_reader :means
|
27
|
+
|
28
|
+
# Return the variance vectors of the classes.
|
29
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
30
|
+
attr_reader :variances
|
31
|
+
|
32
|
+
# Create a new classifier with Gaussian Naive Bayes.
|
33
|
+
def initialize
|
34
|
+
super()
|
35
|
+
@params = {}
|
36
|
+
end
|
37
|
+
|
38
|
+
# Fit the model with given training data.
|
39
|
+
#
|
40
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
41
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
42
|
+
# to be used for fitting the model.
|
43
|
+
# @return [GaussianNB] The learned classifier itself.
|
44
|
+
def fit(x, y)
|
45
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
46
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
47
|
+
::Rumale::Validation.check_sample_size(x, y)
|
48
|
+
|
49
|
+
n_samples, = x.shape
|
50
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
51
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
52
|
+
@means = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].mean(0) }]
|
53
|
+
@variances = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].var(0) }]
|
54
|
+
self
|
55
|
+
end
|
56
|
+
|
57
|
+
# Calculate confidence scores for samples.
|
58
|
+
#
|
59
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
60
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
61
|
+
def decision_function(x)
|
62
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
63
|
+
|
64
|
+
n_classes = @classes.size
|
65
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
66
|
+
Math.log(@class_priors[l]) - 0.5 * (
|
67
|
+
Numo::NMath.log(2.0 * Math::PI * @variances[l, true]) +
|
68
|
+
((x - @means[l, true])**2 / @variances[l, true])).sum(axis: 1)
|
69
|
+
end
|
70
|
+
Numo::DFloat[*log_likelihoods].transpose.dup
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
74
|
+
end
|
@@ -0,0 +1,76 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module NaiveBayes
|
7
|
+
# MultinomialNB is a class that implements Multinomial Naive Bayes classifier.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/naive_bayes/multinomial_nb'
|
11
|
+
#
|
12
|
+
# estimator = Rumale::NaiveBayes::MultinomialNB.new(smoothing_param: 1.0)
|
13
|
+
# estimator.fit(training_samples, training_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
#
|
16
|
+
# *Reference*
|
17
|
+
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
18
|
+
class MultinomialNB < BaseNaiveBayes
|
19
|
+
# Return the class labels.
|
20
|
+
# @return [Numo::Int32] (size: n_classes)
|
21
|
+
attr_reader :classes
|
22
|
+
|
23
|
+
# Return the prior probabilities of the classes.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
25
|
+
attr_reader :class_priors
|
26
|
+
|
27
|
+
# Return the conditional probabilities for features of each class.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
29
|
+
attr_reader :feature_probs
|
30
|
+
|
31
|
+
# Create a new classifier with Multinomial Naive Bayes.
|
32
|
+
#
|
33
|
+
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
34
|
+
def initialize(smoothing_param: 1.0)
|
35
|
+
super()
|
36
|
+
@params = { smoothing_param: smoothing_param }
|
37
|
+
end
|
38
|
+
|
39
|
+
# Fit the model with given training data.
|
40
|
+
#
|
41
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
42
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
43
|
+
# to be used for fitting the model.
|
44
|
+
# @return [MultinomialNB] The learned classifier itself.
|
45
|
+
def fit(x, y)
|
46
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
47
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
48
|
+
::Rumale::Validation.check_sample_size(x, y)
|
49
|
+
|
50
|
+
n_samples, = x.shape
|
51
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
52
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
53
|
+
count_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].sum(axis: 0) }]
|
54
|
+
count_features += @params[:smoothing_param]
|
55
|
+
n_classes = @classes.size
|
56
|
+
@feature_probs = count_features / count_features.sum(axis: 1).reshape(n_classes, 1)
|
57
|
+
self
|
58
|
+
end
|
59
|
+
|
60
|
+
# Calculate confidence scores for samples.
|
61
|
+
#
|
62
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
63
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
64
|
+
def decision_function(x)
|
65
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
66
|
+
|
67
|
+
n_classes = @classes.size
|
68
|
+
bin_x = x.gt(0)
|
69
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
70
|
+
Math.log(@class_priors[l]) + (Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(axis: 1)
|
71
|
+
end
|
72
|
+
Numo::DFloat[*log_likelihoods].transpose.dup
|
73
|
+
end
|
74
|
+
end
|
75
|
+
end
|
76
|
+
end
|
@@ -0,0 +1,73 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/naive_bayes/base_naive_bayes'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module NaiveBayes
|
7
|
+
# NegationNB is a class that implements Negation Naive Bayes classifier.
|
8
|
+
#
|
9
|
+
# @example
|
10
|
+
# require 'rumale/naive_bayes/negation_nb'
|
11
|
+
#
|
12
|
+
# estimator = Rumale::NaiveBayes::NegationNB.new(smoothing_param: 1.0)
|
13
|
+
# estimator.fit(training_samples, training_labels)
|
14
|
+
# results = estimator.predict(testing_samples)
|
15
|
+
#
|
16
|
+
# *Reference*
|
17
|
+
# - Komiya, K., Sato, N., Fujimoto, K., and Kotani, Y., "Negation Naive Bayes for Categorization of Product Pages on the Web," RANLP' 11, pp. 586--592, 2011.
|
18
|
+
class NegationNB < BaseNaiveBayes
|
19
|
+
# Return the class labels.
|
20
|
+
# @return [Numo::Int32] (size: n_classes)
|
21
|
+
attr_reader :classes
|
22
|
+
|
23
|
+
# Return the prior probabilities of the classes.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
25
|
+
attr_reader :class_priors
|
26
|
+
|
27
|
+
# Return the conditional probabilities for features of each class.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
29
|
+
attr_reader :feature_probs
|
30
|
+
|
31
|
+
# Create a new classifier with Complement Naive Bayes.
|
32
|
+
#
|
33
|
+
# @param smoothing_param [Float] The smoothing parameter.
|
34
|
+
def initialize(smoothing_param: 1.0)
|
35
|
+
super()
|
36
|
+
@params = { smoothing_param: smoothing_param }
|
37
|
+
end
|
38
|
+
|
39
|
+
# Fit the model with given training data.
|
40
|
+
#
|
41
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
42
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
43
|
+
# to be used for fitting the model.
|
44
|
+
# @return [ComplementNB] The learned classifier itself.
|
45
|
+
def fit(x, y)
|
46
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
47
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
48
|
+
::Rumale::Validation.check_sample_size(x, y)
|
49
|
+
|
50
|
+
n_samples, = x.shape
|
51
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
52
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.fdiv(n_samples) }]
|
53
|
+
@class_log_probs = Numo::NMath.log(1 / (1 - @class_priors))
|
54
|
+
compl_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.ne(l).where, true].sum(axis: 0) }]
|
55
|
+
compl_features += @params[:smoothing_param]
|
56
|
+
n_classes = @classes.size
|
57
|
+
@feature_probs = compl_features / compl_features.sum(axis: 1).reshape(n_classes, 1)
|
58
|
+
@weights = Numo::NMath.log(@feature_probs)
|
59
|
+
self
|
60
|
+
end
|
61
|
+
|
62
|
+
# Calculate confidence scores for samples.
|
63
|
+
#
|
64
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
65
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
66
|
+
def decision_function(x)
|
67
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
68
|
+
|
69
|
+
@class_log_probs - x.dot(@weights.transpose)
|
70
|
+
end
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
@@ -0,0 +1,11 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'numo/narray'
|
4
|
+
|
5
|
+
require_relative 'naive_bayes/base_naive_bayes'
|
6
|
+
require_relative 'naive_bayes/bernoulli_nb'
|
7
|
+
require_relative 'naive_bayes/complement_nb'
|
8
|
+
require_relative 'naive_bayes/gaussian_nb'
|
9
|
+
require_relative 'naive_bayes/multinomial_nb'
|
10
|
+
require_relative 'naive_bayes/negation_nb'
|
11
|
+
require_relative 'naive_bayes/version'
|
metadata
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale-naive_bayes
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.24.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2022-12-31 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.1
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.1
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rumale-core
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: 0.24.0
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: 0.24.0
|
41
|
+
description: |
|
42
|
+
Rumale::NaiveBayes provides naive bayes models,
|
43
|
+
such as Gaussian Naive Bayes, Multinomial Naive Bayes, and Bernoulli Naive Bayes,
|
44
|
+
with Rumale interface.
|
45
|
+
email:
|
46
|
+
- yoshoku@outlook.com
|
47
|
+
executables: []
|
48
|
+
extensions: []
|
49
|
+
extra_rdoc_files: []
|
50
|
+
files:
|
51
|
+
- LICENSE.txt
|
52
|
+
- README.md
|
53
|
+
- lib/rumale/naive_bayes.rb
|
54
|
+
- lib/rumale/naive_bayes/base_naive_bayes.rb
|
55
|
+
- lib/rumale/naive_bayes/bernoulli_nb.rb
|
56
|
+
- lib/rumale/naive_bayes/complement_nb.rb
|
57
|
+
- lib/rumale/naive_bayes/gaussian_nb.rb
|
58
|
+
- lib/rumale/naive_bayes/multinomial_nb.rb
|
59
|
+
- lib/rumale/naive_bayes/negation_nb.rb
|
60
|
+
- lib/rumale/naive_bayes/version.rb
|
61
|
+
homepage: https://github.com/yoshoku/rumale
|
62
|
+
licenses:
|
63
|
+
- BSD-3-Clause
|
64
|
+
metadata:
|
65
|
+
homepage_uri: https://github.com/yoshoku/rumale
|
66
|
+
source_code_uri: https://github.com/yoshoku/rumale/tree/main/rumale-naive_bayes
|
67
|
+
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
68
|
+
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
69
|
+
rubygems_mfa_required: 'true'
|
70
|
+
post_install_message:
|
71
|
+
rdoc_options: []
|
72
|
+
require_paths:
|
73
|
+
- lib
|
74
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
75
|
+
requirements:
|
76
|
+
- - ">="
|
77
|
+
- !ruby/object:Gem::Version
|
78
|
+
version: '0'
|
79
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
80
|
+
requirements:
|
81
|
+
- - ">="
|
82
|
+
- !ruby/object:Gem::Version
|
83
|
+
version: '0'
|
84
|
+
requirements: []
|
85
|
+
rubygems_version: 3.3.26
|
86
|
+
signing_key:
|
87
|
+
specification_version: 4
|
88
|
+
summary: Rumale::NaiveBayes provides naive bayes models with Rumale interface.
|
89
|
+
test_files: []
|