rumale-linear_model 1.0.0 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9d4ad1aadabae191696ad9948c39df5303d166494d4a0dabc1c50919e99ea860
4
- data.tar.gz: 5f4a8d92611462cda359e7b4f456ff1f05641678071255d668239d7e602a3de9
3
+ metadata.gz: d94e100047d62ff2e77327ad220d2eade27698c7d4e844cef67e90e5662441c9
4
+ data.tar.gz: 4227244698e1d342b24caf5d05fdb3078673dff51b35f4d5c7ba84b797a9edb1
5
5
  SHA512:
6
- metadata.gz: 6212826060eb90dab89ea5cbf0a05377d5e4e7323fc5072a4fa7c880d86506b9db8bac3c7e6e1805d8bcabdfdeedd90f9352cff8c97cf935a4daae06752c6ac6
7
- data.tar.gz: 79d6fc2235545b52fcbcdd99fb7cd2ff39a9e3f622bdd57e8672681aef7f0fef3b69d1a8a8cc7b088a18e35aba2bc0ed8d6baef9414c52ca44ab27c03d2e99e4
6
+ metadata.gz: d2ebdfe5f5b781901f781c8cb76079673bef6319390cb96278918e7847be26325f30d5dbcd2a629607be7afbc98a42271a7b6fd844505daa9b65ad63481506c4
7
+ data.tar.gz: b61a81ed75ff2063cd269bbaa664b661e02ded313983edb4871277db75ff889397eae0b7fa50082890bb590442648918a23831a2a78ac6b884d64e526b64109e
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/base/estimator'
6
6
  require 'rumale/base/regressor'
@@ -116,9 +116,9 @@ module Rumale
116
116
  n_outputs = single_target?(base_y) ? 1 : base_y.shape[1]
117
117
  w_init = Numo::DFloat.zeros(n_outputs * n_features)
118
118
 
119
- res = Lbfgsb.minimize(
119
+ res = Numo::Optimize.minimize(
120
120
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, base_y],
121
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
121
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
122
122
  verbose: @params[:verbose] ? 1 : -1
123
123
  )
124
124
 
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/utils'
6
6
  require 'rumale/validation'
@@ -44,7 +44,7 @@ module Rumale
44
44
  # If zero or less is given, it becomes equal to the number of processors.
45
45
  # This parameter is ignored if the Parallel gem is not loaded.
46
46
  # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
47
- # 'iterate.dat' file is generated by lbfgsb.rb.
47
+ # 'iterate.dat' file is generated by numo-optimize.
48
48
  def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, n_jobs: nil, verbose: false)
49
49
  super()
50
50
  @params = {
@@ -144,9 +144,9 @@ module Rumale
144
144
  n_features = base_x.shape[1]
145
145
  w_init = Numo::DFloat.zeros(n_classes * n_features)
146
146
 
147
- res = Lbfgsb.minimize(
147
+ res = Numo::Optimize.minimize(
148
148
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, onehot_y, @params[:reg_param]],
149
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
149
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
150
150
  verbose: @params[:verbose] ? 1 : -1
151
151
  )
152
152
 
@@ -165,9 +165,9 @@ module Rumale
165
165
  n_features = base_x.shape[1]
166
166
  w_init = Numo::DFloat.zeros(n_features)
167
167
 
168
- res = Lbfgsb.minimize(
168
+ res = Numo::Optimize.minimize(
169
169
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
170
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
170
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
171
171
  verbose: @params[:verbose] ? 1 : -1
172
172
  )
173
173
 
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/base/regressor'
6
6
  require 'rumale/validation'
@@ -67,9 +67,10 @@ module Rumale
67
67
  bounds = Numo::DFloat.zeros(n_outputs * n_features, 2)
68
68
  bounds.shape[0].times { |n| bounds[n, 1] = Float::INFINITY }
69
69
 
70
- res = Lbfgsb.minimize(
70
+ res = Numo::Optimize.minimize(
71
71
  fnc: method(:nnls_fnc), jcb: true, x_init: w_init, args: [x, y, @params[:reg_param]], bounds: bounds,
72
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1
72
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
73
+ verbose: @params[:verbose] ? 1 : -1
73
74
  )
74
75
 
75
76
  @n_iter = res[:n_iter]
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/base/regressor'
6
6
  require 'rumale/validation'
@@ -119,9 +119,9 @@ module Rumale
119
119
  n_outputs = single_target?(base_y) ? 1 : base_y.shape[1]
120
120
  w_init = Numo::DFloat.zeros(n_outputs * n_features)
121
121
 
122
- res = Lbfgsb.minimize(
122
+ res = Numo::Optimize.minimize(
123
123
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, base_y, @params[:reg_param]],
124
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
124
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
125
125
  verbose: @params[:verbose] ? 1 : -1
126
126
  )
127
127
 
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/base/classifier'
6
6
  require 'rumale/probabilistic_output'
@@ -46,7 +46,7 @@ module Rumale
46
46
  # If zero or less is given, it becomes equal to the number of processors.
47
47
  # This parameter is ignored if the Parallel gem is not loaded.
48
48
  # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
49
- # 'iterate.dat' file is generated by lbfgsb.rb.
49
+ # 'iterate.dat' file is generated by numo-optimize.
50
50
  def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, probability: false,
51
51
  n_jobs: nil, verbose: false)
52
52
  super()
@@ -176,9 +176,9 @@ module Rumale
176
176
  n_features = base_x.shape[1]
177
177
  w_init = Numo::DFloat.zeros(n_features)
178
178
 
179
- res = Lbfgsb.minimize(
179
+ res = Numo::Optimize.minimize(
180
180
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
181
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
181
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
182
182
  verbose: @params[:verbose] ? 1 : -1
183
183
  )
184
184
 
@@ -1,6 +1,6 @@
1
1
  # frozen_string_literal: true
2
2
 
3
- require 'lbfgsb'
3
+ require 'numo/optimize'
4
4
 
5
5
  require 'rumale/base/regressor'
6
6
  require 'rumale/validation'
@@ -115,9 +115,9 @@ module Rumale
115
115
  n_features = base_x.shape[1]
116
116
  w_init = Numo::DFloat.zeros(n_features)
117
117
 
118
- res = Lbfgsb.minimize(
118
+ res = Numo::Optimize.minimize(
119
119
  fnc: fnc, jcb: true, x_init: w_init, args: [base_x, single_y, @params[:epsilon], @params[:reg_param]],
120
- maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
120
+ maxiter: @params[:max_iter], factr: @params[:tol] / Numo::Optimize::Lbfgsb::DBL_EPSILON,
121
121
  verbose: @params[:verbose] ? 1 : -1
122
122
  )
123
123
 
@@ -5,6 +5,6 @@ module Rumale
5
5
  # This module consists of the classes that implement generalized linear models.
6
6
  module LinearModel
7
7
  # @!visibility private
8
- VERSION = '1.0.0'
8
+ VERSION = '2.0.0'
9
9
  end
10
10
  end
metadata CHANGED
@@ -1,56 +1,56 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: rumale-linear_model
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.0.0
4
+ version: 2.0.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  bindir: exe
9
9
  cert_chain: []
10
- date: 2025-01-02 00:00:00.000000000 Z
10
+ date: 1980-01-02 00:00:00.000000000 Z
11
11
  dependencies:
12
12
  - !ruby/object:Gem::Dependency
13
- name: lbfgsb
13
+ name: numo-narray-alt
14
14
  requirement: !ruby/object:Gem::Requirement
15
15
  requirements:
16
- - - ">="
16
+ - - "~>"
17
17
  - !ruby/object:Gem::Version
18
- version: 0.3.0
18
+ version: 0.9.4
19
19
  type: :runtime
20
20
  prerelease: false
21
21
  version_requirements: !ruby/object:Gem::Requirement
22
22
  requirements:
23
- - - ">="
23
+ - - "~>"
24
24
  - !ruby/object:Gem::Version
25
- version: 0.3.0
25
+ version: 0.9.4
26
26
  - !ruby/object:Gem::Dependency
27
- name: numo-narray
27
+ name: numo-optimize
28
28
  requirement: !ruby/object:Gem::Requirement
29
29
  requirements:
30
- - - ">="
30
+ - - "~>"
31
31
  - !ruby/object:Gem::Version
32
- version: 0.9.1
32
+ version: '0.2'
33
33
  type: :runtime
34
34
  prerelease: false
35
35
  version_requirements: !ruby/object:Gem::Requirement
36
36
  requirements:
37
- - - ">="
37
+ - - "~>"
38
38
  - !ruby/object:Gem::Version
39
- version: 0.9.1
39
+ version: '0.2'
40
40
  - !ruby/object:Gem::Dependency
41
41
  name: rumale-core
42
42
  requirement: !ruby/object:Gem::Requirement
43
43
  requirements:
44
44
  - - "~>"
45
45
  - !ruby/object:Gem::Version
46
- version: 1.0.0
46
+ version: 2.0.0
47
47
  type: :runtime
48
48
  prerelease: false
49
49
  version_requirements: !ruby/object:Gem::Requirement
50
50
  requirements:
51
51
  - - "~>"
52
52
  - !ruby/object:Gem::Version
53
- version: 1.0.0
53
+ version: 2.0.0
54
54
  description: |
55
55
  Rumale::LinearModel provides linear model algorithms,
56
56
  such as Logistic Regression, Support Vector Machine, Lasso, and Ridge Regression
@@ -100,7 +100,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
100
100
  - !ruby/object:Gem::Version
101
101
  version: '0'
102
102
  requirements: []
103
- rubygems_version: 3.6.2
103
+ rubygems_version: 3.6.9
104
104
  specification_version: 4
105
105
  summary: Rumale::LinearModel provides linear model algorithms with Rumale interface.
106
106
  test_files: []