rumale-ensemble 0.29.0 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/rumale/ensemble/version.rb +1 -1
- data/lib/rumale/ensemble/vr_trees_classifier.rb +139 -0
- data/lib/rumale/ensemble/vr_trees_regressor.rb +124 -0
- data/lib/rumale/ensemble.rb +2 -0
- metadata +15 -16
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 52f48f439afecd4e75af580c46392ae4c2975b808c91a49f3781c78d48e8a43c
|
4
|
+
data.tar.gz: b5deb1e9736674d6db4ee733679e90a5b71cc45ffcb9d4e13b2d5956d66a82e7
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e21818a828be87993169c1eefded133a355a49b29c3a6d39ce6ce1c5e7d3b54af36f70650d8502fa2eb716436f44fa904f6c653fd46069ca4af5c7edb750d890
|
7
|
+
data.tar.gz: 5cd5ee453ef7f86a71b097c4f755a7e4faf90ef89787ad0e15b727e745d9e0d4c2eeebcfdd23616b189a65ee4a569c3eb16be39b4ccae956a9616e396a5531a1
|
@@ -0,0 +1,139 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/tree/vr_tree_classifier'
|
5
|
+
require 'rumale/ensemble/random_forest_classifier'
|
6
|
+
require 'rumale/ensemble/value'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# VRTreesClassifier is a class that implements variable-random (VR) trees for classification.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# require 'rumale/ensemble/vr_trees_classifier'
|
14
|
+
#
|
15
|
+
# estimator =
|
16
|
+
# Rumale::Ensemble::VRTreesClassifier.new(
|
17
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
18
|
+
# estimator.fit(training_samples, traininig_labels)
|
19
|
+
# results = estimator.predict(testing_samples)
|
20
|
+
#
|
21
|
+
# *Reference*
|
22
|
+
# - Liu, F. T., Ting, K. M., Yu, Y., and Zhou, Z. H., "Spectrum of Variable-Random Trees," Journal of Artificial Intelligence Research, vol. 32, pp. 355--384, 2008.
|
23
|
+
class VRTreesClassifier < RandomForestClassifier
|
24
|
+
# Return the set of estimators.
|
25
|
+
# @return [Array<VRTreeClassifier>]
|
26
|
+
attr_reader :estimators
|
27
|
+
|
28
|
+
# Return the class labels.
|
29
|
+
# @return [Numo::Int32] (size: n_classes)
|
30
|
+
attr_reader :classes
|
31
|
+
|
32
|
+
# Return the importance for each feature.
|
33
|
+
# @return [Numo::DFloat] (size: n_features)
|
34
|
+
attr_reader :feature_importances
|
35
|
+
|
36
|
+
# Return the random generator for random selection of feature index.
|
37
|
+
# @return [Random]
|
38
|
+
attr_reader :rng
|
39
|
+
|
40
|
+
# Create a new classifier with variable-random trees.
|
41
|
+
#
|
42
|
+
# @param n_estimators [Integer] The numeber of trees for contructing variable-random trees.
|
43
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
44
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
45
|
+
# If nil is given, variable-random tree grows without concern for depth.
|
46
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on variable-random tree.
|
47
|
+
# If nil is given, number of leaves is not limited.
|
48
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
49
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
50
|
+
# If nil is given, split process considers 'n_features' features.
|
51
|
+
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
52
|
+
# If nil is given, the method does not execute in parallel.
|
53
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
54
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
55
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
56
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
57
|
+
def initialize(n_estimators: 10,
|
58
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
59
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
60
|
+
super
|
61
|
+
end
|
62
|
+
|
63
|
+
# Fit the model with given training data.
|
64
|
+
#
|
65
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
66
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
67
|
+
# @return [VRTreesClassifier] The learned classifier itself.
|
68
|
+
def fit(x, y)
|
69
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
70
|
+
y = ::Rumale::Validation.check_convert_label_array(y)
|
71
|
+
::Rumale::Validation.check_sample_size(x, y)
|
72
|
+
|
73
|
+
# Initialize some variables.
|
74
|
+
n_features = x.shape[1]
|
75
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
76
|
+
@params[:max_features] = @params[:max_features].clamp(1, n_features)
|
77
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
78
|
+
sub_rng = @rng.dup
|
79
|
+
# Construct trees.
|
80
|
+
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
81
|
+
alpha_ratio = 0.5 / @params[:n_estimators]
|
82
|
+
alphas = Array.new(@params[:n_estimators]) { |v| v * alpha_ratio }
|
83
|
+
@estimators = if enable_parallel?
|
84
|
+
parallel_map(@params[:n_estimators]) { |n| plant_tree(alphas[n], rng_seeds[n]).fit(x, y) }
|
85
|
+
else
|
86
|
+
Array.new(@params[:n_estimators]) { |n| plant_tree(alphas[n], rng_seeds[n]).fit(x, y) }
|
87
|
+
end
|
88
|
+
@feature_importances =
|
89
|
+
if enable_parallel?
|
90
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
91
|
+
else
|
92
|
+
@estimators.sum(&:feature_importances)
|
93
|
+
end
|
94
|
+
@feature_importances /= @feature_importances.sum
|
95
|
+
self
|
96
|
+
end
|
97
|
+
|
98
|
+
# Predict class labels for samples.
|
99
|
+
#
|
100
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
101
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
102
|
+
def predict(x)
|
103
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
104
|
+
|
105
|
+
super
|
106
|
+
end
|
107
|
+
|
108
|
+
# Predict probability for samples.
|
109
|
+
#
|
110
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
111
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
112
|
+
def predict_proba(x)
|
113
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
114
|
+
|
115
|
+
super
|
116
|
+
end
|
117
|
+
|
118
|
+
# Return the index of the leaf that each sample reached.
|
119
|
+
#
|
120
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
121
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
122
|
+
def apply(x)
|
123
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
124
|
+
|
125
|
+
super
|
126
|
+
end
|
127
|
+
|
128
|
+
private
|
129
|
+
|
130
|
+
def plant_tree(alpha, rnd_seed)
|
131
|
+
::Rumale::Tree::VRTreeClassifier.new(
|
132
|
+
criterion: @params[:criterion], alpha: alpha, max_depth: @params[:max_depth],
|
133
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
134
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
135
|
+
)
|
136
|
+
end
|
137
|
+
end
|
138
|
+
end
|
139
|
+
end
|
@@ -0,0 +1,124 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/tree/vr_tree_regressor'
|
5
|
+
require 'rumale/ensemble/random_forest_regressor'
|
6
|
+
require 'rumale/ensemble/value'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# VRTreesRegressor is a class that implements variable-random (VR) trees for regression
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# @require 'rumale/ensemble/vr_trees_regressor'
|
14
|
+
#
|
15
|
+
# estimator =
|
16
|
+
# Rumale::Ensemble::VRTreesRegressor.new(
|
17
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
18
|
+
# estimator.fit(training_samples, traininig_values)
|
19
|
+
# results = estimator.predict(testing_samples)
|
20
|
+
#
|
21
|
+
# *Reference*
|
22
|
+
# - Liu, F. T., Ting, K. M., Yu, Y., and Zhou, Z. H., "Spectrum of Variable-Random Trees," Journal of Artificial Intelligence Research, vol. 32, pp. 355--384, 2008.
|
23
|
+
class VRTreesRegressor < RandomForestRegressor
|
24
|
+
# Return the set of estimators.
|
25
|
+
# @return [Array<VRTreeRegressor>]
|
26
|
+
attr_reader :estimators
|
27
|
+
|
28
|
+
# Return the importance for each feature.
|
29
|
+
# @return [Numo::DFloat] (size: n_features)
|
30
|
+
attr_reader :feature_importances
|
31
|
+
|
32
|
+
# Return the random generator for random selection of feature index.
|
33
|
+
# @return [Random]
|
34
|
+
attr_reader :rng
|
35
|
+
|
36
|
+
# Create a new regressor with variable-random trees.
|
37
|
+
#
|
38
|
+
# @param n_estimators [Integer] The numeber of trees for contructing variable-random trees.
|
39
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
40
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
41
|
+
# If nil is given, variable-random tree grows without concern for depth.
|
42
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on variable-random tree.
|
43
|
+
# If nil is given, number of leaves is not limited.
|
44
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
45
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
46
|
+
# If nil is given, split process considers 'n_features' features.
|
47
|
+
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
48
|
+
# If nil is given, the methods do not execute in parallel.
|
49
|
+
# If zero or less is given, it becomes equal to the number of processors.
|
50
|
+
# This parameter is ignored if the Parallel gem is not loaded.
|
51
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
52
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
53
|
+
def initialize(n_estimators: 10,
|
54
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
55
|
+
max_features: nil, n_jobs: nil, random_seed: nil)
|
56
|
+
super
|
57
|
+
end
|
58
|
+
|
59
|
+
# Fit the model with given training data.
|
60
|
+
#
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
62
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
63
|
+
# @return [VRTreesRegressor] The learned regressor itself.
|
64
|
+
def fit(x, y)
|
65
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
66
|
+
y = ::Rumale::Validation.check_convert_target_value_array(y)
|
67
|
+
::Rumale::Validation.check_sample_size(x, y)
|
68
|
+
|
69
|
+
# Initialize some variables.
|
70
|
+
n_features = x.shape[1]
|
71
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
72
|
+
@params[:max_features] = @params[:max_features].clamp(1, n_features)
|
73
|
+
sub_rng = @rng.dup
|
74
|
+
# Construct forest.
|
75
|
+
rng_seeds = Array.new(@params[:n_estimators]) { sub_rng.rand(::Rumale::Ensemble::Value::SEED_BASE) }
|
76
|
+
alpha_ratio = 0.5 / @params[:n_estimators]
|
77
|
+
alphas = Array.new(@params[:n_estimators]) { |v| v * alpha_ratio }
|
78
|
+
@estimators = if enable_parallel?
|
79
|
+
parallel_map(@params[:n_estimators]) { |n| plant_tree(alphas[n], rng_seeds[n]).fit(x, y) }
|
80
|
+
else
|
81
|
+
Array.new(@params[:n_estimators]) { |n| plant_tree(alphas[n], rng_seeds[n]).fit(x, y) }
|
82
|
+
end
|
83
|
+
@feature_importances =
|
84
|
+
if enable_parallel?
|
85
|
+
parallel_map(@params[:n_estimators]) { |n| @estimators[n].feature_importances }.sum
|
86
|
+
else
|
87
|
+
@estimators.sum(&:feature_importances)
|
88
|
+
end
|
89
|
+
@feature_importances /= @feature_importances.sum
|
90
|
+
self
|
91
|
+
end
|
92
|
+
|
93
|
+
# Predict values for samples.
|
94
|
+
#
|
95
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
96
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
97
|
+
def predict(x)
|
98
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
99
|
+
|
100
|
+
super
|
101
|
+
end
|
102
|
+
|
103
|
+
# Return the index of the leaf that each sample reached.
|
104
|
+
#
|
105
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to assign each leaf.
|
106
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
107
|
+
def apply(x)
|
108
|
+
x = ::Rumale::Validation.check_convert_sample_array(x)
|
109
|
+
|
110
|
+
super
|
111
|
+
end
|
112
|
+
|
113
|
+
private
|
114
|
+
|
115
|
+
def plant_tree(alpha, rnd_seed)
|
116
|
+
::Rumale::Tree::VRTreeRegressor.new(
|
117
|
+
criterion: @params[:criterion], alpha: alpha, max_depth: @params[:max_depth],
|
118
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
119
|
+
max_features: @params[:max_features], random_seed: rnd_seed
|
120
|
+
)
|
121
|
+
end
|
122
|
+
end
|
123
|
+
end
|
124
|
+
end
|
data/lib/rumale/ensemble.rb
CHANGED
@@ -18,3 +18,5 @@ require_relative 'ensemble/stacking_classifier'
|
|
18
18
|
require_relative 'ensemble/stacking_regressor'
|
19
19
|
require_relative 'ensemble/voting_classifier'
|
20
20
|
require_relative 'ensemble/voting_regressor'
|
21
|
+
require_relative 'ensemble/vr_trees_classifier'
|
22
|
+
require_relative 'ensemble/vr_trees_regressor'
|
metadata
CHANGED
@@ -1,14 +1,13 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale-ensemble
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 1.0.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
|
-
autorequire:
|
9
8
|
bindir: exe
|
10
9
|
cert_chain: []
|
11
|
-
date:
|
10
|
+
date: 2025-01-02 00:00:00.000000000 Z
|
12
11
|
dependencies:
|
13
12
|
- !ruby/object:Gem::Dependency
|
14
13
|
name: numo-narray
|
@@ -30,70 +29,70 @@ dependencies:
|
|
30
29
|
requirements:
|
31
30
|
- - "~>"
|
32
31
|
- !ruby/object:Gem::Version
|
33
|
-
version: 0.
|
32
|
+
version: 1.0.0
|
34
33
|
type: :runtime
|
35
34
|
prerelease: false
|
36
35
|
version_requirements: !ruby/object:Gem::Requirement
|
37
36
|
requirements:
|
38
37
|
- - "~>"
|
39
38
|
- !ruby/object:Gem::Version
|
40
|
-
version: 0.
|
39
|
+
version: 1.0.0
|
41
40
|
- !ruby/object:Gem::Dependency
|
42
41
|
name: rumale-linear_model
|
43
42
|
requirement: !ruby/object:Gem::Requirement
|
44
43
|
requirements:
|
45
44
|
- - "~>"
|
46
45
|
- !ruby/object:Gem::Version
|
47
|
-
version: 0.
|
46
|
+
version: 1.0.0
|
48
47
|
type: :runtime
|
49
48
|
prerelease: false
|
50
49
|
version_requirements: !ruby/object:Gem::Requirement
|
51
50
|
requirements:
|
52
51
|
- - "~>"
|
53
52
|
- !ruby/object:Gem::Version
|
54
|
-
version: 0.
|
53
|
+
version: 1.0.0
|
55
54
|
- !ruby/object:Gem::Dependency
|
56
55
|
name: rumale-model_selection
|
57
56
|
requirement: !ruby/object:Gem::Requirement
|
58
57
|
requirements:
|
59
58
|
- - "~>"
|
60
59
|
- !ruby/object:Gem::Version
|
61
|
-
version: 0.
|
60
|
+
version: 1.0.0
|
62
61
|
type: :runtime
|
63
62
|
prerelease: false
|
64
63
|
version_requirements: !ruby/object:Gem::Requirement
|
65
64
|
requirements:
|
66
65
|
- - "~>"
|
67
66
|
- !ruby/object:Gem::Version
|
68
|
-
version: 0.
|
67
|
+
version: 1.0.0
|
69
68
|
- !ruby/object:Gem::Dependency
|
70
69
|
name: rumale-preprocessing
|
71
70
|
requirement: !ruby/object:Gem::Requirement
|
72
71
|
requirements:
|
73
72
|
- - "~>"
|
74
73
|
- !ruby/object:Gem::Version
|
75
|
-
version: 0.
|
74
|
+
version: 1.0.0
|
76
75
|
type: :runtime
|
77
76
|
prerelease: false
|
78
77
|
version_requirements: !ruby/object:Gem::Requirement
|
79
78
|
requirements:
|
80
79
|
- - "~>"
|
81
80
|
- !ruby/object:Gem::Version
|
82
|
-
version: 0.
|
81
|
+
version: 1.0.0
|
83
82
|
- !ruby/object:Gem::Dependency
|
84
83
|
name: rumale-tree
|
85
84
|
requirement: !ruby/object:Gem::Requirement
|
86
85
|
requirements:
|
87
86
|
- - "~>"
|
88
87
|
- !ruby/object:Gem::Version
|
89
|
-
version: 0.
|
88
|
+
version: 1.0.0
|
90
89
|
type: :runtime
|
91
90
|
prerelease: false
|
92
91
|
version_requirements: !ruby/object:Gem::Requirement
|
93
92
|
requirements:
|
94
93
|
- - "~>"
|
95
94
|
- !ruby/object:Gem::Version
|
96
|
-
version: 0.
|
95
|
+
version: 1.0.0
|
97
96
|
description: |
|
98
97
|
Rumale::Ensemble provides ensemble learning algorithms,
|
99
98
|
such as AdaBoost, Gradient Tree Boosting, and Random Forest,
|
@@ -121,6 +120,8 @@ files:
|
|
121
120
|
- lib/rumale/ensemble/version.rb
|
122
121
|
- lib/rumale/ensemble/voting_classifier.rb
|
123
122
|
- lib/rumale/ensemble/voting_regressor.rb
|
123
|
+
- lib/rumale/ensemble/vr_trees_classifier.rb
|
124
|
+
- lib/rumale/ensemble/vr_trees_regressor.rb
|
124
125
|
homepage: https://github.com/yoshoku/rumale
|
125
126
|
licenses:
|
126
127
|
- BSD-3-Clause
|
@@ -130,7 +131,6 @@ metadata:
|
|
130
131
|
changelog_uri: https://github.com/yoshoku/rumale/blob/main/CHANGELOG.md
|
131
132
|
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
132
133
|
rubygems_mfa_required: 'true'
|
133
|
-
post_install_message:
|
134
134
|
rdoc_options: []
|
135
135
|
require_paths:
|
136
136
|
- lib
|
@@ -145,8 +145,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
145
145
|
- !ruby/object:Gem::Version
|
146
146
|
version: '0'
|
147
147
|
requirements: []
|
148
|
-
rubygems_version: 3.
|
149
|
-
signing_key:
|
148
|
+
rubygems_version: 3.6.2
|
150
149
|
specification_version: 4
|
151
150
|
summary: Rumale::Ensemble provides ensemble learning algorithms with Rumale interface.
|
152
151
|
test_files: []
|