rubysl-complex 1.0.0 → 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -1
- data/.travis.yml +5 -6
- data/README.md +2 -2
- data/Rakefile +0 -1
- data/lib/rubysl/complex/complex.rb +13 -646
- data/lib/rubysl/complex/version.rb +1 -1
- data/rubysl-complex.gemspec +0 -1
- metadata +2 -16
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: aca75bb45dbacdfb1773319666687dfb53252f3c
|
4
|
+
data.tar.gz: 4db1732c477a4e4720e6344edf4b8794968ed8ff
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 20a2d7e3abf8debd0f525e380496a807496525d6ca35ed440a0586fbf3cbcd01bb915e9681d0f12c62709d189de5e0ebb78aa24cd46c0a9d1450c548b45e14ad
|
7
|
+
data.tar.gz: 8956900eadf0fdc5c35df9faa616826b22f2cee82b98a30a9eb5a9779206f160f233475b1f4f2efb21eaba54f33229f5f1a75bd241700300de34c5659b778c22
|
data/.gitignore
CHANGED
data/.travis.yml
CHANGED
data/README.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
#
|
1
|
+
# Rubysl::Complex
|
2
2
|
|
3
3
|
TODO: Write a gem description
|
4
4
|
|
@@ -24,6 +24,6 @@ TODO: Write usage instructions here
|
|
24
24
|
|
25
25
|
1. Fork it
|
26
26
|
2. Create your feature branch (`git checkout -b my-new-feature`)
|
27
|
-
3. Commit your changes (`git commit -am '
|
27
|
+
3. Commit your changes (`git commit -am 'Add some feature'`)
|
28
28
|
4. Push to the branch (`git push origin my-new-feature`)
|
29
29
|
5. Create new Pull Request
|
data/Rakefile
CHANGED
@@ -1,659 +1,26 @@
|
|
1
|
-
#
|
2
|
-
# complex.rb -
|
3
|
-
# $Release Version: 0.5 $
|
4
|
-
# $Revision: 1.3 $
|
5
|
-
# $Date: 1998/07/08 10:05:28 $
|
6
|
-
# by Keiju ISHITSUKA(SHL Japan Inc.)
|
7
|
-
#
|
8
|
-
# ----
|
9
|
-
#
|
10
|
-
# complex.rb implements the Complex class for complex numbers. Additionally,
|
11
|
-
# some methods in other Numeric classes are redefined or added to allow greater
|
12
|
-
# interoperability with Complex numbers.
|
13
|
-
#
|
14
|
-
# Complex numbers can be created in the following manner:
|
15
|
-
# - <tt>Complex(a, b)</tt>
|
16
|
-
# - <tt>Complex.polar(radius, theta)</tt>
|
17
|
-
#
|
18
|
-
# Additionally, note the following:
|
19
|
-
# - <tt>Complex::I</tt> (the mathematical constant <i>i</i>)
|
20
|
-
# - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>)
|
21
|
-
#
|
22
|
-
# The following +Math+ module methods are redefined to handle Complex arguments.
|
23
|
-
# They will work as normal with non-Complex arguments.
|
24
|
-
# sqrt exp cos sin tan log log10
|
25
|
-
# cosh sinh tanh acos asin atan atan2 acosh asinh atanh
|
26
|
-
#
|
1
|
+
# :enddoc:
|
27
2
|
|
3
|
+
require 'cmath'
|
28
4
|
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
# as Complex numbers.
|
33
|
-
#
|
34
|
-
class Numeric
|
35
|
-
#
|
36
|
-
# Returns a Complex number <tt>(0,<i>self</i>)</tt>.
|
37
|
-
#
|
38
|
-
def im
|
39
|
-
Complex(0, self)
|
40
|
-
end
|
41
|
-
|
42
|
-
#
|
43
|
-
# The real part of a complex number, i.e. <i>self</i>.
|
44
|
-
#
|
45
|
-
def real
|
46
|
-
self
|
47
|
-
end
|
48
|
-
|
49
|
-
#
|
50
|
-
# The imaginary part of a complex number, i.e. 0.
|
51
|
-
#
|
52
|
-
def image
|
53
|
-
0
|
54
|
-
end
|
55
|
-
alias imag image
|
56
|
-
|
57
|
-
#
|
58
|
-
# See Complex#arg.
|
59
|
-
#
|
60
|
-
def arg
|
61
|
-
Math.atan2!(0, self)
|
62
|
-
end
|
63
|
-
alias angle arg
|
64
|
-
|
65
|
-
#
|
66
|
-
# See Complex#polar.
|
67
|
-
#
|
68
|
-
def polar
|
69
|
-
return abs, arg
|
70
|
-
end
|
71
|
-
|
72
|
-
#
|
73
|
-
# See Complex#conjugate (short answer: returns <i>self</i>).
|
74
|
-
#
|
75
|
-
def conjugate
|
76
|
-
self
|
77
|
-
end
|
78
|
-
alias conj conjugate
|
79
|
-
end
|
80
|
-
|
81
|
-
|
82
|
-
#
|
83
|
-
# Creates a Complex number. +a+ and +b+ should be Numeric. The result will be
|
84
|
-
# <tt>a+bi</tt>.
|
85
|
-
#
|
86
|
-
def Complex(a, b = 0)
|
87
|
-
if b == 0 and (a.kind_of?(Complex) or defined? Complex::Unify)
|
88
|
-
a
|
89
|
-
else
|
90
|
-
Complex.new( a.real-b.imag, a.imag+b.real )
|
91
|
-
end
|
5
|
+
unless defined?(Math.exp!)
|
6
|
+
Object.instance_eval{remove_const :Math}
|
7
|
+
Math = CMath
|
92
8
|
end
|
93
9
|
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
@RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-'
|
99
|
-
|
100
|
-
undef step
|
101
|
-
undef div, divmod
|
102
|
-
undef floor, truncate, ceil, round
|
103
|
-
|
104
|
-
def Complex.generic?(other) # :nodoc:
|
105
|
-
other.kind_of?(Integer) or
|
106
|
-
other.kind_of?(Float) or
|
107
|
-
(defined?(Rational) and other.kind_of?(Rational))
|
108
|
-
end
|
109
|
-
|
110
|
-
#
|
111
|
-
# Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle).
|
112
|
-
#
|
113
|
-
def Complex.polar(r, theta)
|
114
|
-
Complex(r*Math.cos(theta), r*Math.sin(theta))
|
115
|
-
end
|
116
|
-
|
117
|
-
#
|
118
|
-
# Creates a +Complex+ number <tt>a</tt>+<tt>b</tt><i>i</i>.
|
119
|
-
#
|
120
|
-
def Complex.new!(a, b=0)
|
121
|
-
new(a,b)
|
122
|
-
end
|
123
|
-
|
124
|
-
def initialize(a, b)
|
125
|
-
raise TypeError, "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric
|
126
|
-
raise TypeError, "`#{a.inspect}' for 1st arg" if a.kind_of? Complex
|
127
|
-
raise TypeError, "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric
|
128
|
-
raise TypeError, "`#{b.inspect}' for 2nd arg" if b.kind_of? Complex
|
129
|
-
@real = a
|
130
|
-
@image = b
|
131
|
-
end
|
132
|
-
|
133
|
-
#
|
134
|
-
# Addition with real or complex number.
|
135
|
-
#
|
136
|
-
def + (other)
|
137
|
-
if other.kind_of?(Complex)
|
138
|
-
re = @real + other.real
|
139
|
-
im = @image + other.image
|
140
|
-
Complex(re, im)
|
141
|
-
elsif Complex.generic?(other)
|
142
|
-
Complex(@real + other, @image)
|
143
|
-
else
|
144
|
-
x , y = other.coerce(self)
|
145
|
-
x + y
|
146
|
-
end
|
147
|
-
end
|
148
|
-
|
149
|
-
#
|
150
|
-
# Subtraction with real or complex number.
|
151
|
-
#
|
152
|
-
def - (other)
|
153
|
-
if other.kind_of?(Complex)
|
154
|
-
re = @real - other.real
|
155
|
-
im = @image - other.image
|
156
|
-
Complex(re, im)
|
157
|
-
elsif Complex.generic?(other)
|
158
|
-
Complex(@real - other, @image)
|
159
|
-
else
|
160
|
-
x , y = other.coerce(self)
|
161
|
-
x - y
|
162
|
-
end
|
163
|
-
end
|
164
|
-
|
165
|
-
#
|
166
|
-
# Multiplication with real or complex number.
|
167
|
-
#
|
168
|
-
def * (other)
|
169
|
-
if other.kind_of?(Complex)
|
170
|
-
re = @real*other.real - @image*other.image
|
171
|
-
im = @real*other.image + @image*other.real
|
172
|
-
Complex(re, im)
|
173
|
-
elsif Complex.generic?(other)
|
174
|
-
Complex(@real * other, @image * other)
|
175
|
-
else
|
176
|
-
x , y = other.coerce(self)
|
177
|
-
x * y
|
178
|
-
end
|
179
|
-
end
|
180
|
-
|
181
|
-
#
|
182
|
-
# Division by real or complex number.
|
183
|
-
#
|
184
|
-
def / (other)
|
185
|
-
if other.kind_of?(Complex)
|
186
|
-
self*other.conjugate/other.abs2
|
187
|
-
elsif Complex.generic?(other)
|
188
|
-
Complex(@real/other, @image/other)
|
189
|
-
else
|
190
|
-
x, y = other.coerce(self)
|
191
|
-
x/y
|
192
|
-
end
|
193
|
-
end
|
194
|
-
|
195
|
-
def quo(other)
|
196
|
-
Complex(@real.quo(1), @image.quo(1)) / other
|
197
|
-
end
|
198
|
-
|
199
|
-
#
|
200
|
-
# Raise this complex number to the given (real or complex) power.
|
201
|
-
#
|
202
|
-
def ** (other)
|
203
|
-
if other == 0
|
204
|
-
return Complex(1)
|
205
|
-
end
|
206
|
-
if other.kind_of?(Complex)
|
207
|
-
r, theta = polar
|
208
|
-
ore = other.real
|
209
|
-
oim = other.image
|
210
|
-
nr = Math.exp!(ore*Math.log!(r) - oim * theta)
|
211
|
-
ntheta = theta*ore + oim*Math.log!(r)
|
212
|
-
Complex.polar(nr, ntheta)
|
213
|
-
elsif other.kind_of?(Integer)
|
214
|
-
if other > 0
|
215
|
-
x = self
|
216
|
-
z = x
|
217
|
-
n = other - 1
|
218
|
-
while n != 0
|
219
|
-
while (div, mod = n.divmod(2)
|
220
|
-
mod == 0)
|
221
|
-
x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image)
|
222
|
-
n = div
|
223
|
-
end
|
224
|
-
z *= x
|
225
|
-
n -= 1
|
226
|
-
end
|
227
|
-
z
|
228
|
-
else
|
229
|
-
if defined? Rational
|
230
|
-
(Rational(1) / self) ** -other
|
231
|
-
else
|
232
|
-
self ** Float(other)
|
233
|
-
end
|
234
|
-
end
|
235
|
-
elsif Complex.generic?(other)
|
236
|
-
r, theta = polar
|
237
|
-
Complex.polar(r**other, theta*other)
|
238
|
-
else
|
239
|
-
x, y = other.coerce(self)
|
240
|
-
x**y
|
241
|
-
end
|
242
|
-
end
|
243
|
-
|
244
|
-
#
|
245
|
-
# Remainder after division by a real or complex number.
|
246
|
-
#
|
247
|
-
def % (other)
|
248
|
-
if other.kind_of?(Complex)
|
249
|
-
Complex(@real % other.real, @image % other.image)
|
250
|
-
elsif Complex.generic?(other)
|
251
|
-
Complex(@real % other, @image % other)
|
252
|
-
else
|
253
|
-
x , y = other.coerce(self)
|
254
|
-
x % y
|
255
|
-
end
|
256
|
-
end
|
257
|
-
|
258
|
-
#--
|
259
|
-
# def divmod(other)
|
260
|
-
# if other.kind_of?(Complex)
|
261
|
-
# rdiv, rmod = @real.divmod(other.real)
|
262
|
-
# idiv, imod = @image.divmod(other.image)
|
263
|
-
# return Complex(rdiv, idiv), Complex(rmod, rmod)
|
264
|
-
# elsif Complex.generic?(other)
|
265
|
-
# Complex(@real.divmod(other), @image.divmod(other))
|
266
|
-
# else
|
267
|
-
# x , y = other.coerce(self)
|
268
|
-
# x.divmod(y)
|
269
|
-
# end
|
270
|
-
# end
|
271
|
-
#++
|
272
|
-
|
273
|
-
#
|
274
|
-
# Absolute value (aka modulus): distance from the zero point on the complex
|
275
|
-
# plane.
|
276
|
-
#
|
277
|
-
def abs
|
278
|
-
Math.hypot(@real, @image)
|
279
|
-
end
|
280
|
-
|
281
|
-
#
|
282
|
-
# Square of the absolute value.
|
283
|
-
#
|
284
|
-
def abs2
|
285
|
-
@real*@real + @image*@image
|
286
|
-
end
|
287
|
-
|
288
|
-
#
|
289
|
-
# Argument (angle from (1,0) on the complex plane).
|
290
|
-
#
|
291
|
-
def arg
|
292
|
-
Math.atan2!(@image, @real)
|
293
|
-
end
|
294
|
-
alias angle arg
|
295
|
-
|
296
|
-
#
|
297
|
-
# Returns the absolute value _and_ the argument.
|
298
|
-
#
|
299
|
-
def polar
|
300
|
-
return abs, arg
|
301
|
-
end
|
302
|
-
|
303
|
-
#
|
304
|
-
# Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>).
|
305
|
-
#
|
306
|
-
def conjugate
|
307
|
-
Complex(@real, -@image)
|
308
|
-
end
|
309
|
-
alias conj conjugate
|
310
|
-
|
311
|
-
#
|
312
|
-
# Compares the absolute values of the two numbers.
|
313
|
-
#
|
314
|
-
def <=> (other)
|
315
|
-
self.abs <=> other.abs
|
316
|
-
end
|
317
|
-
|
318
|
-
#
|
319
|
-
# Test for numerical equality (<tt>a == a + 0<i>i</i></tt>).
|
320
|
-
#
|
321
|
-
def == (other)
|
322
|
-
if other.kind_of?(Complex)
|
323
|
-
@real == other.real and @image == other.image
|
324
|
-
elsif Complex.generic?(other)
|
325
|
-
@real == other and @image == 0
|
326
|
-
else
|
327
|
-
other == self
|
328
|
-
end
|
329
|
-
end
|
330
|
-
|
331
|
-
#
|
332
|
-
# Attempts to coerce +other+ to a Complex number.
|
333
|
-
#
|
334
|
-
def coerce(other)
|
335
|
-
if Complex.generic?(other)
|
336
|
-
return Complex.new!(other), self
|
337
|
-
else
|
338
|
-
super
|
339
|
-
end
|
340
|
-
end
|
341
|
-
|
342
|
-
#
|
343
|
-
# FIXME
|
344
|
-
#
|
345
|
-
def denominator
|
346
|
-
@real.denominator.lcm(@image.denominator)
|
347
|
-
end
|
348
|
-
|
349
|
-
#
|
350
|
-
# FIXME
|
351
|
-
#
|
352
|
-
def numerator
|
353
|
-
cd = denominator
|
354
|
-
Complex(@real.numerator*(cd/@real.denominator),
|
355
|
-
@image.numerator*(cd/@image.denominator))
|
356
|
-
end
|
357
|
-
|
358
|
-
#
|
359
|
-
# Standard string representation of the complex number.
|
360
|
-
#
|
361
|
-
def to_s
|
362
|
-
if @real != 0
|
363
|
-
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
|
364
|
-
if @image >= 0
|
365
|
-
@real.to_s+"+("+@image.to_s+")i"
|
366
|
-
else
|
367
|
-
@real.to_s+"-("+(-@image).to_s+")i"
|
368
|
-
end
|
369
|
-
else
|
370
|
-
if @image >= 0
|
371
|
-
@real.to_s+"+"+@image.to_s+"i"
|
372
|
-
else
|
373
|
-
@real.to_s+"-"+(-@image).to_s+"i"
|
374
|
-
end
|
375
|
-
end
|
376
|
-
else
|
377
|
-
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
|
378
|
-
"("+@image.to_s+")i"
|
379
|
-
else
|
380
|
-
@image.to_s+"i"
|
381
|
-
end
|
382
|
-
end
|
383
|
-
end
|
384
|
-
|
385
|
-
#
|
386
|
-
# Returns a hash code for the complex number.
|
387
|
-
#
|
388
|
-
def hash
|
389
|
-
@real.hash ^ @image.hash
|
390
|
-
end
|
391
|
-
|
392
|
-
#
|
393
|
-
# Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>".
|
394
|
-
#
|
395
|
-
def inspect
|
396
|
-
sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
|
397
|
-
end
|
398
|
-
|
399
|
-
|
400
|
-
#
|
401
|
-
# +I+ is the imaginary number. It exists at point (0,1) on the complex plane.
|
402
|
-
#
|
403
|
-
I = Complex(0,1)
|
404
|
-
|
405
|
-
# The real part of a complex number.
|
406
|
-
attr :real
|
407
|
-
|
408
|
-
# The imaginary part of a complex number.
|
409
|
-
attr :image
|
410
|
-
alias imag image
|
411
|
-
|
10
|
+
def Complex.generic? (other)
|
11
|
+
other.kind_of?(Integer) ||
|
12
|
+
other.kind_of?(Float) ||
|
13
|
+
other.kind_of?(Rational)
|
412
14
|
end
|
413
15
|
|
414
|
-
class
|
16
|
+
class Complex
|
415
17
|
|
416
|
-
|
417
|
-
def numerator() self end
|
418
|
-
def denominator() 1 end
|
419
|
-
|
420
|
-
def gcd(other)
|
421
|
-
min = self.abs
|
422
|
-
max = other.abs
|
423
|
-
while min > 0
|
424
|
-
tmp = min
|
425
|
-
min = max % min
|
426
|
-
max = tmp
|
427
|
-
end
|
428
|
-
max
|
429
|
-
end
|
430
|
-
|
431
|
-
def lcm(other)
|
432
|
-
if self.zero? or other.zero?
|
433
|
-
0
|
434
|
-
else
|
435
|
-
(self.div(self.gcd(other)) * other).abs
|
436
|
-
end
|
437
|
-
end
|
438
|
-
|
439
|
-
end
|
18
|
+
alias image imag
|
440
19
|
|
441
20
|
end
|
442
21
|
|
443
|
-
|
444
|
-
alias sqrt! sqrt
|
445
|
-
alias exp! exp
|
446
|
-
alias log! log
|
447
|
-
alias log10! log10
|
448
|
-
alias cos! cos
|
449
|
-
alias sin! sin
|
450
|
-
alias tan! tan
|
451
|
-
alias cosh! cosh
|
452
|
-
alias sinh! sinh
|
453
|
-
alias tanh! tanh
|
454
|
-
alias acos! acos
|
455
|
-
alias asin! asin
|
456
|
-
alias atan! atan
|
457
|
-
alias atan2! atan2
|
458
|
-
alias acosh! acosh
|
459
|
-
alias asinh! asinh
|
460
|
-
alias atanh! atanh
|
461
|
-
|
462
|
-
# Redefined to handle a Complex argument.
|
463
|
-
def sqrt(z)
|
464
|
-
if Complex.generic?(z)
|
465
|
-
if z >= 0
|
466
|
-
sqrt!(z)
|
467
|
-
else
|
468
|
-
Complex(0,sqrt!(-z))
|
469
|
-
end
|
470
|
-
else
|
471
|
-
if z.image < 0
|
472
|
-
sqrt(z.conjugate).conjugate
|
473
|
-
else
|
474
|
-
r = z.abs
|
475
|
-
x = z.real
|
476
|
-
Complex( sqrt!((r+x)/2), sqrt!((r-x)/2) )
|
477
|
-
end
|
478
|
-
end
|
479
|
-
end
|
480
|
-
|
481
|
-
# Redefined to handle a Complex argument.
|
482
|
-
def exp(z)
|
483
|
-
if Complex.generic?(z)
|
484
|
-
exp!(z)
|
485
|
-
else
|
486
|
-
Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
|
487
|
-
end
|
488
|
-
end
|
489
|
-
|
490
|
-
# Redefined to handle a Complex argument.
|
491
|
-
def cos(z)
|
492
|
-
if Complex.generic?(z)
|
493
|
-
cos!(z)
|
494
|
-
else
|
495
|
-
Complex(cos!(z.real)*cosh!(z.image),
|
496
|
-
-sin!(z.real)*sinh!(z.image))
|
497
|
-
end
|
498
|
-
end
|
499
|
-
|
500
|
-
# Redefined to handle a Complex argument.
|
501
|
-
def sin(z)
|
502
|
-
if Complex.generic?(z)
|
503
|
-
sin!(z)
|
504
|
-
else
|
505
|
-
Complex(sin!(z.real)*cosh!(z.image),
|
506
|
-
cos!(z.real)*sinh!(z.image))
|
507
|
-
end
|
508
|
-
end
|
509
|
-
|
510
|
-
# Redefined to handle a Complex argument.
|
511
|
-
def tan(z)
|
512
|
-
if Complex.generic?(z)
|
513
|
-
tan!(z)
|
514
|
-
else
|
515
|
-
sin(z)/cos(z)
|
516
|
-
end
|
517
|
-
end
|
518
|
-
|
519
|
-
def sinh(z)
|
520
|
-
if Complex.generic?(z)
|
521
|
-
sinh!(z)
|
522
|
-
else
|
523
|
-
Complex( sinh!(z.real)*cos!(z.image), cosh!(z.real)*sin!(z.image) )
|
524
|
-
end
|
525
|
-
end
|
526
|
-
|
527
|
-
def cosh(z)
|
528
|
-
if Complex.generic?(z)
|
529
|
-
cosh!(z)
|
530
|
-
else
|
531
|
-
Complex( cosh!(z.real)*cos!(z.image), sinh!(z.real)*sin!(z.image) )
|
532
|
-
end
|
533
|
-
end
|
534
|
-
|
535
|
-
def tanh(z)
|
536
|
-
if Complex.generic?(z)
|
537
|
-
tanh!(z)
|
538
|
-
else
|
539
|
-
sinh(z)/cosh(z)
|
540
|
-
end
|
541
|
-
end
|
542
|
-
|
543
|
-
# Redefined to handle a Complex argument.
|
544
|
-
def log(z)
|
545
|
-
if Complex.generic?(z) and z >= 0
|
546
|
-
log!(z)
|
547
|
-
else
|
548
|
-
r, theta = z.polar
|
549
|
-
Complex(log!(r.abs), theta)
|
550
|
-
end
|
551
|
-
end
|
552
|
-
|
553
|
-
# Redefined to handle a Complex argument.
|
554
|
-
def log10(z)
|
555
|
-
if Complex.generic?(z)
|
556
|
-
log10!(z)
|
557
|
-
else
|
558
|
-
log(z)/log!(10)
|
559
|
-
end
|
560
|
-
end
|
561
|
-
|
562
|
-
def acos(z)
|
563
|
-
if Complex.generic?(z) and z >= -1 and z <= 1
|
564
|
-
acos!(z)
|
565
|
-
else
|
566
|
-
-1.0.im * log( z + 1.0.im * sqrt(1.0-z*z) )
|
567
|
-
end
|
568
|
-
end
|
569
|
-
|
570
|
-
def asin(z)
|
571
|
-
if Complex.generic?(z) and z >= -1 and z <= 1
|
572
|
-
asin!(z)
|
573
|
-
else
|
574
|
-
-1.0.im * log( 1.0.im * z + sqrt(1.0-z*z) )
|
575
|
-
end
|
576
|
-
end
|
577
|
-
|
578
|
-
def atan(z)
|
579
|
-
if Complex.generic?(z)
|
580
|
-
atan!(z)
|
581
|
-
else
|
582
|
-
1.0.im * log( (1.0.im+z) / (1.0.im-z) ) / 2.0
|
583
|
-
end
|
584
|
-
end
|
585
|
-
|
586
|
-
def atan2(y,x)
|
587
|
-
if Complex.generic?(y) and Complex.generic?(x)
|
588
|
-
atan2!(y,x)
|
589
|
-
else
|
590
|
-
-1.0.im * log( (x+1.0.im*y) / sqrt(x*x+y*y) )
|
591
|
-
end
|
592
|
-
end
|
593
|
-
|
594
|
-
def acosh(z)
|
595
|
-
if Complex.generic?(z) and z >= 1
|
596
|
-
acosh!(z)
|
597
|
-
else
|
598
|
-
log( z + sqrt(z*z-1.0) )
|
599
|
-
end
|
600
|
-
end
|
601
|
-
|
602
|
-
def asinh(z)
|
603
|
-
if Complex.generic?(z)
|
604
|
-
asinh!(z)
|
605
|
-
else
|
606
|
-
log( z + sqrt(1.0+z*z) )
|
607
|
-
end
|
608
|
-
end
|
22
|
+
class Numeric
|
609
23
|
|
610
|
-
def
|
611
|
-
if Complex.generic?(z) and z >= -1 and z <= 1
|
612
|
-
atanh!(z)
|
613
|
-
else
|
614
|
-
log( (1.0+z) / (1.0-z) ) / 2.0
|
615
|
-
end
|
616
|
-
end
|
24
|
+
def im() Complex(0, self) end
|
617
25
|
|
618
|
-
module_function :sqrt!
|
619
|
-
module_function :sqrt
|
620
|
-
module_function :exp!
|
621
|
-
module_function :exp
|
622
|
-
module_function :log!
|
623
|
-
module_function :log
|
624
|
-
module_function :log10!
|
625
|
-
module_function :log10
|
626
|
-
module_function :cosh!
|
627
|
-
module_function :cosh
|
628
|
-
module_function :cos!
|
629
|
-
module_function :cos
|
630
|
-
module_function :sinh!
|
631
|
-
module_function :sinh
|
632
|
-
module_function :sin!
|
633
|
-
module_function :sin
|
634
|
-
module_function :tan!
|
635
|
-
module_function :tan
|
636
|
-
module_function :tanh!
|
637
|
-
module_function :tanh
|
638
|
-
module_function :acos!
|
639
|
-
module_function :acos
|
640
|
-
module_function :asin!
|
641
|
-
module_function :asin
|
642
|
-
module_function :atan!
|
643
|
-
module_function :atan
|
644
|
-
module_function :atan2!
|
645
|
-
module_function :atan2
|
646
|
-
module_function :acosh!
|
647
|
-
module_function :acosh
|
648
|
-
module_function :asinh!
|
649
|
-
module_function :asinh
|
650
|
-
module_function :atanh!
|
651
|
-
module_function :atanh
|
652
|
-
|
653
26
|
end
|
654
|
-
|
655
|
-
# Documentation comments:
|
656
|
-
# - source: original (researched from pickaxe)
|
657
|
-
# - a couple of fixme's
|
658
|
-
# - RDoc output for Bignum etc. is a bit short, with nothing but an
|
659
|
-
# (undocumented) alias. No big deal.
|
data/rubysl-complex.gemspec
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rubysl-complex
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 2.0.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Brian Shirai
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2013-
|
11
|
+
date: 2013-09-04 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -52,20 +52,6 @@ dependencies:
|
|
52
52
|
- - ~>
|
53
53
|
- !ruby/object:Gem::Version
|
54
54
|
version: '1.5'
|
55
|
-
- !ruby/object:Gem::Dependency
|
56
|
-
name: rubysl-prettyprint
|
57
|
-
requirement: !ruby/object:Gem::Requirement
|
58
|
-
requirements:
|
59
|
-
- - ~>
|
60
|
-
- !ruby/object:Gem::Version
|
61
|
-
version: '1.0'
|
62
|
-
type: :development
|
63
|
-
prerelease: false
|
64
|
-
version_requirements: !ruby/object:Gem::Requirement
|
65
|
-
requirements:
|
66
|
-
- - ~>
|
67
|
-
- !ruby/object:Gem::Version
|
68
|
-
version: '1.0'
|
69
55
|
description: Ruby standard library complex.
|
70
56
|
email:
|
71
57
|
- brixen@gmail.com
|