ruby-statistics 2.1.2 → 2.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/dependabot.yml +15 -0
- data/.github/workflows/ruby.yml +4 -4
- data/lib/math.rb +6 -5
- data/lib/statistics/distribution/bernoulli.rb +1 -1
- data/lib/statistics/distribution/beta.rb +2 -2
- data/lib/statistics/distribution/empirical.rb +1 -1
- data/lib/statistics/distribution/f.rb +8 -8
- data/lib/statistics/distribution/geometric.rb +1 -1
- data/lib/statistics/distribution/logseries.rb +2 -2
- data/lib/statistics/distribution/negative_binomial.rb +4 -4
- data/lib/statistics/distribution/normal.rb +3 -3
- data/lib/statistics/distribution/poisson.rb +2 -2
- data/lib/statistics/distribution/t_student.rb +3 -3
- data/lib/statistics/distribution/uniform.rb +2 -2
- data/lib/statistics/distribution/weibull.rb +2 -2
- data/lib/statistics/spearman_rank_coefficient.rb +4 -4
- data/lib/statistics/statistical_test/chi_squared_test.rb +2 -2
- data/lib/statistics/statistical_test/f_test.rb +4 -4
- data/lib/statistics/statistical_test/kolmogorov_smirnov_test.rb +1 -1
- data/lib/statistics/statistical_test/t_test.rb +5 -5
- data/lib/statistics/statistical_test/wilcoxon_rank_sum_test.rb +2 -2
- data/lib/statistics/version.rb +1 -1
- data/ruby-statistics.gemspec +2 -1
- metadata +27 -12
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 6612502f03d8077d0158d997a42dfbc4d1002f2ab01ce2b7bdb5fbd510187e3e
|
4
|
+
data.tar.gz: 14fb04073b5b788dfa9e93aa586daef050dd105c2d2f8bdd17db30ad1fbcf144
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: '09590f836a59563819a1a847830e5dc2ee3554415cadc81c35b2a0f43ab1af87204f028659e8aa2f30a14b58c69c3e4f65db5e722d0a00ced5d92faa1e7dce82'
|
7
|
+
data.tar.gz: 2e66a26c23bf1f05cb9de40e992b302c4f0fef13aa70b4e509de479cb15b9700d4032f5d548aa45110f161ef9dac417f9b1872479a02dca0e729a051be2a4fc8
|
@@ -0,0 +1,15 @@
|
|
1
|
+
# To get started with Dependabot version updates, you'll need to specify which
|
2
|
+
# package ecosystems to update and where the package manifests are located.
|
3
|
+
# Please see the documentation for all configuration options:
|
4
|
+
# https://help.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
5
|
+
|
6
|
+
version: 2
|
7
|
+
updates:
|
8
|
+
- package-ecosystem: "bundler" # See documentation for possible values
|
9
|
+
directory: "/" # Location of package manifests
|
10
|
+
schedule:
|
11
|
+
interval: "weekly"
|
12
|
+
- package-ecosystem: "github-actions" # See documentation for possible values
|
13
|
+
directory: "/" # Location of package manifests
|
14
|
+
schedule:
|
15
|
+
interval: "weekly"
|
data/.github/workflows/ruby.yml
CHANGED
@@ -8,9 +8,9 @@ jobs:
|
|
8
8
|
runs-on: ubuntu-latest
|
9
9
|
|
10
10
|
steps:
|
11
|
-
- uses: actions/checkout@
|
11
|
+
- uses: actions/checkout@v2.3.4
|
12
12
|
- name: Set up Ruby 2.6
|
13
|
-
uses: actions/setup-ruby@v1
|
13
|
+
uses: actions/setup-ruby@v1.1.2
|
14
14
|
with:
|
15
15
|
ruby-version: 2.6.x
|
16
16
|
- name: Build and test with Rake
|
@@ -23,9 +23,9 @@ jobs:
|
|
23
23
|
runs-on: ubuntu-latest
|
24
24
|
|
25
25
|
steps:
|
26
|
-
- uses: actions/checkout@
|
26
|
+
- uses: actions/checkout@v2.3.4
|
27
27
|
- name: Set up Ruby 2.7
|
28
|
-
uses: actions/setup-ruby@v1
|
28
|
+
uses: actions/setup-ruby@v1.1.2
|
29
29
|
with:
|
30
30
|
ruby-version: 2.7.x
|
31
31
|
- name: Build and test with Rake
|
data/lib/math.rb
CHANGED
@@ -9,11 +9,11 @@ module Math
|
|
9
9
|
end
|
10
10
|
|
11
11
|
def self.combination(n, r)
|
12
|
-
self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).
|
12
|
+
self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).to_r # n!/(r! * [n - r]!)
|
13
13
|
end
|
14
14
|
|
15
15
|
def self.permutation(n, k)
|
16
|
-
self.factorial(n)/self.factorial(n - k).
|
16
|
+
self.factorial(n)/self.factorial(n - k).to_r
|
17
17
|
end
|
18
18
|
|
19
19
|
# Function adapted from the python implementation that exists in https://en.wikipedia.org/wiki/Simpson%27s_rule#Sample_implementation
|
@@ -24,7 +24,8 @@ module Math
|
|
24
24
|
return
|
25
25
|
end
|
26
26
|
|
27
|
-
h = (b - a)/n.
|
27
|
+
h = (b - a)/n.to_r
|
28
|
+
|
28
29
|
resA = yield(a)
|
29
30
|
resB = yield(b)
|
30
31
|
|
@@ -45,7 +46,7 @@ module Math
|
|
45
46
|
|
46
47
|
def self.lower_incomplete_gamma_function(s, x)
|
47
48
|
# The greater the iterations, the better. That's why we are iterating 10_000 * x times
|
48
|
-
self.simpson_rule(0, x, (10_000 * x.round).round) do |t|
|
49
|
+
self.simpson_rule(0, x.to_r, (10_000 * x.round).round) do |t|
|
49
50
|
(t ** (s - 1)) * Math.exp(-t)
|
50
51
|
end
|
51
52
|
end
|
@@ -72,7 +73,7 @@ module Math
|
|
72
73
|
# To avoid overflow problems, the implementation applies the logarithm properties
|
73
74
|
# to calculate in a faster and safer way the values.
|
74
75
|
lbet_ab = (Math.lgamma(alp)[0] + Math.lgamma(bet)[0] - Math.lgamma(alp + bet)[0]).freeze
|
75
|
-
front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.
|
76
|
+
front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_r).freeze
|
76
77
|
|
77
78
|
# This is the non-log version of the left part of the formula (before the continuous fraction)
|
78
79
|
# down_left = alp * self.beta_function(alp, bet)
|
@@ -10,7 +10,7 @@ module Statistics
|
|
10
10
|
|
11
11
|
# Formula extracted from http://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm#CDF
|
12
12
|
def cumulative_function(value)
|
13
|
-
k = d2/(d2 + d1 * value.
|
13
|
+
k = d2/(d2 + d1 * value.to_r)
|
14
14
|
|
15
15
|
1 - Math.incomplete_beta_function(k, d2/2.0, d1/2.0)
|
16
16
|
end
|
@@ -18,28 +18,28 @@ module Statistics
|
|
18
18
|
def density_function(value)
|
19
19
|
return if d1 < 0 || d2 < 0 # F-pdf is well defined for the [0, +infinity) interval.
|
20
20
|
|
21
|
-
val = value.
|
21
|
+
val = value.to_r
|
22
22
|
upper = ((d1 * val) ** d1) * (d2**d2)
|
23
23
|
lower = (d1 * val + d2) ** (d1 + d2)
|
24
|
-
up = Math.sqrt(upper/lower.
|
24
|
+
up = Math.sqrt(upper/lower.to_r)
|
25
25
|
down = val * Math.beta_function(d1/2.0, d2/2.0)
|
26
26
|
|
27
|
-
up/down.
|
27
|
+
up/down.to_r
|
28
28
|
end
|
29
29
|
|
30
30
|
def mean
|
31
31
|
return if d2 <= 2
|
32
32
|
|
33
|
-
d2/(d2 - 2).
|
33
|
+
d2/(d2 - 2).to_r
|
34
34
|
end
|
35
35
|
|
36
36
|
def mode
|
37
37
|
return if d1 <= 2
|
38
38
|
|
39
|
-
left = (d1 - 2)/d1.
|
40
|
-
right = d2/(d2 + 2).
|
39
|
+
left = (d1 - 2)/d1.to_r
|
40
|
+
right = d2/(d2 + 2).to_r
|
41
41
|
|
42
|
-
left * right
|
42
|
+
(left * right).to_f
|
43
43
|
end
|
44
44
|
end
|
45
45
|
end
|
@@ -6,7 +6,7 @@ module Statistics
|
|
6
6
|
k = k.to_i
|
7
7
|
|
8
8
|
left = (-1.0 / Math.log(1.0 - p))
|
9
|
-
right = (p ** k).
|
9
|
+
right = (p ** k).to_r
|
10
10
|
|
11
11
|
left * right / k
|
12
12
|
end
|
@@ -44,7 +44,7 @@ module Statistics
|
|
44
44
|
up = p + Math.log(1.0 - p)
|
45
45
|
down = ((1.0 - p) ** 2) * (Math.log(1.0 - p) ** 2)
|
46
46
|
|
47
|
-
(-1.0 * p) * (up / down.
|
47
|
+
(-1.0 * p) * (up / down.to_r)
|
48
48
|
end
|
49
49
|
end
|
50
50
|
end
|
@@ -25,21 +25,21 @@ module Statistics
|
|
25
25
|
end
|
26
26
|
|
27
27
|
def mean
|
28
|
-
(probability_per_trial * number_of_failures)/(1 - probability_per_trial).
|
28
|
+
(probability_per_trial * number_of_failures)/(1 - probability_per_trial).to_r
|
29
29
|
end
|
30
30
|
|
31
31
|
def variance
|
32
|
-
(probability_per_trial * number_of_failures)/((1 - probability_per_trial) ** 2).
|
32
|
+
(probability_per_trial * number_of_failures)/((1 - probability_per_trial) ** 2).to_r
|
33
33
|
end
|
34
34
|
|
35
35
|
def skewness
|
36
|
-
(1 + probability_per_trial).
|
36
|
+
(1 + probability_per_trial).to_r / Math.sqrt(probability_per_trial * number_of_failures)
|
37
37
|
end
|
38
38
|
|
39
39
|
def mode
|
40
40
|
if number_of_failures > 1
|
41
41
|
up = probability_per_trial * (number_of_failures - 1)
|
42
|
-
down = (1 - probability_per_trial).
|
42
|
+
down = (1 - probability_per_trial).to_r
|
43
43
|
|
44
44
|
(up/down).floor
|
45
45
|
elsif number_of_failures <= 1
|
@@ -5,9 +5,9 @@ module Statistics
|
|
5
5
|
alias_method :mode, :mean
|
6
6
|
|
7
7
|
def initialize(avg, std)
|
8
|
-
self.mean = avg.
|
9
|
-
self.standard_deviation = std.
|
10
|
-
self.variance = std.
|
8
|
+
self.mean = avg.to_r
|
9
|
+
self.standard_deviation = std.to_r
|
10
|
+
self.variance = std.to_r**2
|
11
11
|
end
|
12
12
|
|
13
13
|
def cumulative_function(value)
|
@@ -18,7 +18,7 @@ module Statistics
|
|
18
18
|
upper = (expected_number_of_occurrences ** k) * Math.exp(-expected_number_of_occurrences)
|
19
19
|
lower = Math.factorial(k)
|
20
20
|
|
21
|
-
upper/lower.
|
21
|
+
upper/lower.to_r
|
22
22
|
end
|
23
23
|
|
24
24
|
def cumulative_function(k)
|
@@ -31,7 +31,7 @@ module Statistics
|
|
31
31
|
|
32
32
|
# We need the right tail, i.e.: The upper incomplete gamma function. This can be
|
33
33
|
# achieved by doing a substraction between 1 and the lower incomplete gamma function.
|
34
|
-
1 - (upper/lower.
|
34
|
+
1 - (upper/lower.to_r)
|
35
35
|
end
|
36
36
|
end
|
37
37
|
end
|
@@ -29,7 +29,7 @@ module Statistics
|
|
29
29
|
upper = Math.gamma((degrees_of_freedom + 1)/2.0)
|
30
30
|
lower = Math.sqrt(degrees_of_freedom * Math::PI) * Math.gamma(degrees_of_freedom/2.0)
|
31
31
|
left = upper/lower
|
32
|
-
right = (1 + ((value ** 2)/degrees_of_freedom.
|
32
|
+
right = (1 + ((value ** 2)/degrees_of_freedom.to_r)) ** -((degrees_of_freedom + 1)/2.0)
|
33
33
|
|
34
34
|
left * right
|
35
35
|
end
|
@@ -64,8 +64,8 @@ module Statistics
|
|
64
64
|
results << Math.simpson_rule(threshold, y, 10_000) do |t|
|
65
65
|
up = Math.gamma((v+1)/2.0)
|
66
66
|
down = Math.sqrt(Math::PI * v) * Math.gamma(v/2.0)
|
67
|
-
right = (1 + ((y ** 2)/v.
|
68
|
-
left = up/down.
|
67
|
+
right = (1 + ((y ** 2)/v.to_r)) ** ((v+1)/2.0)
|
68
|
+
left = up/down.to_r
|
69
69
|
|
70
70
|
left * right
|
71
71
|
end
|
@@ -14,7 +14,7 @@ module Statistics
|
|
14
14
|
if rankings.fetch(value, false)
|
15
15
|
rankings[value][:rank] += (temporal_ranking + rankings[value][:counter])
|
16
16
|
rankings[value][:counter] += 1
|
17
|
-
rankings[value][:tie_rank] = rankings[value][:rank] / rankings[value][:counter].
|
17
|
+
rankings[value][:tie_rank] = rankings[value][:rank] / rankings[value][:counter].to_r
|
18
18
|
else
|
19
19
|
rankings[value] = { counter: 1, rank: temporal_ranking, tie_rank: temporal_ranking }
|
20
20
|
end
|
@@ -35,7 +35,7 @@ module Statistics
|
|
35
35
|
return if set_one.size == 0 && set_two.size == 0
|
36
36
|
|
37
37
|
set_one_mean, set_two_mean = set_one.mean, set_two.mean
|
38
|
-
have_tie_ranks = (set_one + set_two).any? { |rank| rank.is_a?(Float) }
|
38
|
+
have_tie_ranks = (set_one + set_two).any? { |rank| rank.is_a?(Float) || rank.is_a?(Rational) }
|
39
39
|
|
40
40
|
if have_tie_ranks
|
41
41
|
numerator = 0
|
@@ -54,7 +54,7 @@ module Statistics
|
|
54
54
|
|
55
55
|
denominator = Math.sqrt(squared_differences_set_one * squared_differences_set_two)
|
56
56
|
|
57
|
-
numerator / denominator.
|
57
|
+
numerator / denominator.to_r # This is rho or spearman's coefficient.
|
58
58
|
else
|
59
59
|
sum_squared_differences = set_one.each_with_index.reduce(0) do |memo, (rank_one, index)|
|
60
60
|
memo += ((rank_one - set_two[index]) ** 2)
|
@@ -64,7 +64,7 @@ module Statistics
|
|
64
64
|
numerator = 6 * sum_squared_differences
|
65
65
|
denominator = ((set_one.size ** 3) - set_one.size)
|
66
66
|
|
67
|
-
1.0 - (numerator / denominator.
|
67
|
+
1.0 - (numerator / denominator.to_r) # This is rho or spearman's coefficient.
|
68
68
|
end
|
69
69
|
end
|
70
70
|
end
|
@@ -8,12 +8,12 @@ module Statistics
|
|
8
8
|
statistic = if expected.is_a? Numeric
|
9
9
|
observed.reduce(0) do |memo, observed_value|
|
10
10
|
up = (observed_value - expected) ** 2
|
11
|
-
memo += (up/expected.
|
11
|
+
memo += (up/expected.to_r)
|
12
12
|
end
|
13
13
|
else
|
14
14
|
expected.each_with_index.reduce(0) do |memo, (expected_value, index)|
|
15
15
|
up = (observed[index] - expected_value) ** 2
|
16
|
-
memo += (up/expected_value.
|
16
|
+
memo += (up/expected_value.to_r)
|
17
17
|
end
|
18
18
|
end
|
19
19
|
|
@@ -19,7 +19,7 @@ module Statistics
|
|
19
19
|
if args.size == 2
|
20
20
|
variances = [args[0].variance, args[1].variance]
|
21
21
|
|
22
|
-
f_score = variances.max/variances.min.
|
22
|
+
f_score = variances.max/variances.min.to_r
|
23
23
|
df1 = 1 # k-1 (k = 2)
|
24
24
|
df2 = args.flatten.size - 2 # N-k (k = 2)
|
25
25
|
elsif args.size > 2
|
@@ -37,18 +37,18 @@ module Statistics
|
|
37
37
|
variance_between_groups = iterator.reduce(0) do |summation, (size, index)|
|
38
38
|
inner_calculation = size * ((sample_means[index] - overall_mean) ** 2)
|
39
39
|
|
40
|
-
summation += (inner_calculation / (total_groups - 1).
|
40
|
+
summation += (inner_calculation / (total_groups - 1).to_r)
|
41
41
|
end
|
42
42
|
|
43
43
|
# Variance within groups
|
44
44
|
variance_within_groups = (0...total_groups).reduce(0) do |outer_summation, group_index|
|
45
45
|
outer_summation += args[group_index].reduce(0) do |inner_sumation, observation|
|
46
46
|
inner_calculation = ((observation - sample_means[group_index]) ** 2)
|
47
|
-
inner_sumation += (inner_calculation / (total_elements - total_groups).
|
47
|
+
inner_sumation += (inner_calculation / (total_elements - total_groups).to_r)
|
48
48
|
end
|
49
49
|
end
|
50
50
|
|
51
|
-
f_score = variance_between_groups/variance_within_groups.
|
51
|
+
f_score = variance_between_groups/variance_within_groups.to_r
|
52
52
|
df1 = total_groups - 1
|
53
53
|
df2 = total_elements - total_groups
|
54
54
|
end
|
@@ -17,7 +17,7 @@ module Statistics
|
|
17
17
|
|
18
18
|
# TODO: Validate calculation of Common alpha.
|
19
19
|
common_alpha = Math.sqrt((-0.5 * Math.log(alpha)))
|
20
|
-
radicand = (group_one.size + group_two.size) / (group_one.size * group_two.size).
|
20
|
+
radicand = (group_one.size + group_two.size) / (group_one.size * group_two.size).to_r
|
21
21
|
|
22
22
|
critical_d = common_alpha * Math.sqrt(radicand)
|
23
23
|
# critical_d = self.critical_d(alpha: alpha, n: samples.size)
|
@@ -23,7 +23,7 @@ module Statistics
|
|
23
23
|
comparison_mean = args[0]
|
24
24
|
degrees_of_freedom = args[1].size - 1
|
25
25
|
|
26
|
-
(data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).
|
26
|
+
(data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).to_r).to_r
|
27
27
|
else
|
28
28
|
sample_left_mean = args[0].mean
|
29
29
|
sample_left_variance = args[0].variance
|
@@ -31,12 +31,12 @@ module Statistics
|
|
31
31
|
sample_right_mean = args[1].mean
|
32
32
|
degrees_of_freedom = args.flatten.size - 2
|
33
33
|
|
34
|
-
left_root = sample_left_variance/args[0].size.
|
35
|
-
right_root = sample_right_variance/args[1].size.
|
34
|
+
left_root = sample_left_variance/args[0].size.to_r
|
35
|
+
right_root = sample_right_variance/args[1].size.to_r
|
36
36
|
|
37
37
|
standard_error = Math.sqrt(left_root + right_root)
|
38
38
|
|
39
|
-
(sample_left_mean - sample_right_mean).abs/standard_error.
|
39
|
+
(sample_left_mean - sample_right_mean).abs/standard_error.to_r
|
40
40
|
end
|
41
41
|
|
42
42
|
t_distribution = Distribution::TStudent.new(degrees_of_freedom)
|
@@ -72,7 +72,7 @@ module Statistics
|
|
72
72
|
|
73
73
|
down = difference_std/Math.sqrt(differences.size)
|
74
74
|
|
75
|
-
t_score = (differences.mean - 0)/down.
|
75
|
+
t_score = (differences.mean - 0)/down.to_r
|
76
76
|
|
77
77
|
probability = Distribution::TStudent.new(degrees_of_freedom).cumulative_function(t_score)
|
78
78
|
|
@@ -73,7 +73,7 @@ module Statistics
|
|
73
73
|
memo += ((t[:counter] ** 3) - t[:counter])/12.0
|
74
74
|
end
|
75
75
|
|
76
|
-
left = (total_group_one * total_group_two)/(n * (n - 1)).
|
76
|
+
left = (total_group_one * total_group_two)/(n * (n - 1)).to_r
|
77
77
|
right = (((n ** 3) - n)/12.0) - rank_sum
|
78
78
|
|
79
79
|
Math.sqrt(left * right)
|
@@ -82,7 +82,7 @@ module Statistics
|
|
82
82
|
private def ranked_sum_for(total, group)
|
83
83
|
# sum rankings per group
|
84
84
|
group.reduce(0) do |memo, element|
|
85
|
-
rank_of_element = total[element][:rank] / total[element][:counter].
|
85
|
+
rank_of_element = total[element][:rank] / total[element][:counter].to_r
|
86
86
|
memo += rank_of_element
|
87
87
|
end
|
88
88
|
end
|
data/lib/statistics/version.rb
CHANGED
data/ruby-statistics.gemspec
CHANGED
@@ -27,8 +27,9 @@ Gem::Specification.new do |spec|
|
|
27
27
|
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
28
28
|
spec.require_paths = ["lib"]
|
29
29
|
|
30
|
-
spec.add_development_dependency "rake", '
|
30
|
+
spec.add_development_dependency "rake", '>= 12.0.0', '~> 13.0'
|
31
31
|
spec.add_development_dependency "rspec", '>= 3.6.0'
|
32
32
|
spec.add_development_dependency "grb", '~> 0.4.1', '>= 0.4.1'
|
33
33
|
spec.add_development_dependency 'byebug', '>= 9.1.0'
|
34
|
+
spec.add_development_dependency 'pry'
|
34
35
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-statistics
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 2.1.
|
4
|
+
version: 2.1.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- esteban zapata
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2021-02-04 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: 12.0.0
|
20
20
|
- - "~>"
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: '
|
22
|
+
version: '13.0'
|
23
23
|
type: :development
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: 12.0.0
|
30
30
|
- - "~>"
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: '
|
32
|
+
version: '13.0'
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: rspec
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|
@@ -48,20 +48,20 @@ dependencies:
|
|
48
48
|
name: grb
|
49
49
|
requirement: !ruby/object:Gem::Requirement
|
50
50
|
requirements:
|
51
|
-
- - "
|
51
|
+
- - "~>"
|
52
52
|
- !ruby/object:Gem::Version
|
53
53
|
version: 0.4.1
|
54
|
-
- - "
|
54
|
+
- - ">="
|
55
55
|
- !ruby/object:Gem::Version
|
56
56
|
version: 0.4.1
|
57
57
|
type: :development
|
58
58
|
prerelease: false
|
59
59
|
version_requirements: !ruby/object:Gem::Requirement
|
60
60
|
requirements:
|
61
|
-
- - "
|
61
|
+
- - "~>"
|
62
62
|
- !ruby/object:Gem::Version
|
63
63
|
version: 0.4.1
|
64
|
-
- - "
|
64
|
+
- - ">="
|
65
65
|
- !ruby/object:Gem::Version
|
66
66
|
version: 0.4.1
|
67
67
|
- !ruby/object:Gem::Dependency
|
@@ -78,6 +78,20 @@ dependencies:
|
|
78
78
|
- - ">="
|
79
79
|
- !ruby/object:Gem::Version
|
80
80
|
version: 9.1.0
|
81
|
+
- !ruby/object:Gem::Dependency
|
82
|
+
name: pry
|
83
|
+
requirement: !ruby/object:Gem::Requirement
|
84
|
+
requirements:
|
85
|
+
- - ">="
|
86
|
+
- !ruby/object:Gem::Version
|
87
|
+
version: '0'
|
88
|
+
type: :development
|
89
|
+
prerelease: false
|
90
|
+
version_requirements: !ruby/object:Gem::Requirement
|
91
|
+
requirements:
|
92
|
+
- - ">="
|
93
|
+
- !ruby/object:Gem::Version
|
94
|
+
version: '0'
|
81
95
|
description: |-
|
82
96
|
This gem is intended to accomplish the same purpose as jStat js library:
|
83
97
|
to provide ruby with statistical capabilities without the need
|
@@ -90,6 +104,7 @@ executables: []
|
|
90
104
|
extensions: []
|
91
105
|
extra_rdoc_files: []
|
92
106
|
files:
|
107
|
+
- ".github/dependabot.yml"
|
93
108
|
- ".github/workflows/ruby.yml"
|
94
109
|
- ".gitignore"
|
95
110
|
- ".rspec"
|
@@ -134,7 +149,7 @@ homepage: https://github.com/estebanz01/ruby-statistics
|
|
134
149
|
licenses:
|
135
150
|
- MIT
|
136
151
|
metadata: {}
|
137
|
-
post_install_message:
|
152
|
+
post_install_message:
|
138
153
|
rdoc_options: []
|
139
154
|
require_paths:
|
140
155
|
- lib
|
@@ -149,8 +164,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
149
164
|
- !ruby/object:Gem::Version
|
150
165
|
version: '0'
|
151
166
|
requirements: []
|
152
|
-
rubygems_version: 3.
|
153
|
-
signing_key:
|
167
|
+
rubygems_version: 3.1.4
|
168
|
+
signing_key:
|
154
169
|
specification_version: 4
|
155
170
|
summary: A ruby gem for som specific statistics. Inspired by the jStat js library.
|
156
171
|
test_files: []
|