ruby-statistics 2.1.2 → 2.1.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f02b2824672be63fdfac39ad23d7ef4c6c60c9832ac1cdeae665e5e8ccefb5f3
4
- data.tar.gz: 7dd359dc331405961c1b5739a70c19831c8c12908bd09152e8d30ef6f3a42c08
3
+ metadata.gz: 6612502f03d8077d0158d997a42dfbc4d1002f2ab01ce2b7bdb5fbd510187e3e
4
+ data.tar.gz: 14fb04073b5b788dfa9e93aa586daef050dd105c2d2f8bdd17db30ad1fbcf144
5
5
  SHA512:
6
- metadata.gz: 259fc76594f462aa63770351f8851cdd694d3a045e7d31d7a58a7a578c1fd6d805870b8bec8f2a7f1f2df4995537ab7eef2efb76542aa77e0371311e99e81680
7
- data.tar.gz: a06d8899bcfcbc05b8ad1da6c09695d0247c11756ea26087334b229c182f5c11831b3692ccad30c75ef3dc9fc8a2699269ff7aaba22224a2d03d1280363ff1a9
6
+ metadata.gz: '09590f836a59563819a1a847830e5dc2ee3554415cadc81c35b2a0f43ab1af87204f028659e8aa2f30a14b58c69c3e4f65db5e722d0a00ced5d92faa1e7dce82'
7
+ data.tar.gz: 2e66a26c23bf1f05cb9de40e992b302c4f0fef13aa70b4e509de479cb15b9700d4032f5d548aa45110f161ef9dac417f9b1872479a02dca0e729a051be2a4fc8
@@ -0,0 +1,15 @@
1
+ # To get started with Dependabot version updates, you'll need to specify which
2
+ # package ecosystems to update and where the package manifests are located.
3
+ # Please see the documentation for all configuration options:
4
+ # https://help.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
5
+
6
+ version: 2
7
+ updates:
8
+ - package-ecosystem: "bundler" # See documentation for possible values
9
+ directory: "/" # Location of package manifests
10
+ schedule:
11
+ interval: "weekly"
12
+ - package-ecosystem: "github-actions" # See documentation for possible values
13
+ directory: "/" # Location of package manifests
14
+ schedule:
15
+ interval: "weekly"
@@ -8,9 +8,9 @@ jobs:
8
8
  runs-on: ubuntu-latest
9
9
 
10
10
  steps:
11
- - uses: actions/checkout@v1
11
+ - uses: actions/checkout@v2.3.4
12
12
  - name: Set up Ruby 2.6
13
- uses: actions/setup-ruby@v1
13
+ uses: actions/setup-ruby@v1.1.2
14
14
  with:
15
15
  ruby-version: 2.6.x
16
16
  - name: Build and test with Rake
@@ -23,9 +23,9 @@ jobs:
23
23
  runs-on: ubuntu-latest
24
24
 
25
25
  steps:
26
- - uses: actions/checkout@v1
26
+ - uses: actions/checkout@v2.3.4
27
27
  - name: Set up Ruby 2.7
28
- uses: actions/setup-ruby@v1
28
+ uses: actions/setup-ruby@v1.1.2
29
29
  with:
30
30
  ruby-version: 2.7.x
31
31
  - name: Build and test with Rake
data/lib/math.rb CHANGED
@@ -9,11 +9,11 @@ module Math
9
9
  end
10
10
 
11
11
  def self.combination(n, r)
12
- self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).to_f # n!/(r! * [n - r]!)
12
+ self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).to_r # n!/(r! * [n - r]!)
13
13
  end
14
14
 
15
15
  def self.permutation(n, k)
16
- self.factorial(n)/self.factorial(n - k).to_f
16
+ self.factorial(n)/self.factorial(n - k).to_r
17
17
  end
18
18
 
19
19
  # Function adapted from the python implementation that exists in https://en.wikipedia.org/wiki/Simpson%27s_rule#Sample_implementation
@@ -24,7 +24,8 @@ module Math
24
24
  return
25
25
  end
26
26
 
27
- h = (b - a)/n.to_f
27
+ h = (b - a)/n.to_r
28
+
28
29
  resA = yield(a)
29
30
  resB = yield(b)
30
31
 
@@ -45,7 +46,7 @@ module Math
45
46
 
46
47
  def self.lower_incomplete_gamma_function(s, x)
47
48
  # The greater the iterations, the better. That's why we are iterating 10_000 * x times
48
- self.simpson_rule(0, x, (10_000 * x.round).round) do |t|
49
+ self.simpson_rule(0, x.to_r, (10_000 * x.round).round) do |t|
49
50
  (t ** (s - 1)) * Math.exp(-t)
50
51
  end
51
52
  end
@@ -72,7 +73,7 @@ module Math
72
73
  # To avoid overflow problems, the implementation applies the logarithm properties
73
74
  # to calculate in a faster and safer way the values.
74
75
  lbet_ab = (Math.lgamma(alp)[0] + Math.lgamma(bet)[0] - Math.lgamma(alp + bet)[0]).freeze
75
- front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_f).freeze
76
+ front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_r).freeze
76
77
 
77
78
  # This is the non-log version of the left part of the formula (before the continuous fraction)
78
79
  # down_left = alp * self.beta_function(alp, bet)
@@ -24,7 +24,7 @@ module Statistics
24
24
  end
25
25
 
26
26
  def self.skewness(p)
27
- (1.0 - 2.0*p).to_f / Math.sqrt(p * (1.0 - p))
27
+ (1.0 - 2.0*p).to_r / Math.sqrt(p * (1.0 - p))
28
28
  end
29
29
 
30
30
  def self.kurtosis(p)
@@ -4,8 +4,8 @@ module Statistics
4
4
  attr_accessor :alpha, :beta
5
5
 
6
6
  def initialize(alp, bet)
7
- self.alpha = alp.to_f
8
- self.beta = bet.to_f
7
+ self.alpha = alp.to_r
8
+ self.beta = bet.to_r
9
9
  end
10
10
 
11
11
  def cumulative_function(value)
@@ -19,7 +19,7 @@ module Statistics
19
19
  summation
20
20
  end
21
21
 
22
- cumulative_sum / samples.size.to_f
22
+ cumulative_sum / samples.size.to_r
23
23
  end
24
24
  end
25
25
  end
@@ -10,7 +10,7 @@ module Statistics
10
10
 
11
11
  # Formula extracted from http://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm#CDF
12
12
  def cumulative_function(value)
13
- k = d2/(d2 + d1 * value.to_f)
13
+ k = d2/(d2 + d1 * value.to_r)
14
14
 
15
15
  1 - Math.incomplete_beta_function(k, d2/2.0, d1/2.0)
16
16
  end
@@ -18,28 +18,28 @@ module Statistics
18
18
  def density_function(value)
19
19
  return if d1 < 0 || d2 < 0 # F-pdf is well defined for the [0, +infinity) interval.
20
20
 
21
- val = value.to_f
21
+ val = value.to_r
22
22
  upper = ((d1 * val) ** d1) * (d2**d2)
23
23
  lower = (d1 * val + d2) ** (d1 + d2)
24
- up = Math.sqrt(upper/lower.to_f)
24
+ up = Math.sqrt(upper/lower.to_r)
25
25
  down = val * Math.beta_function(d1/2.0, d2/2.0)
26
26
 
27
- up/down.to_f
27
+ up/down.to_r
28
28
  end
29
29
 
30
30
  def mean
31
31
  return if d2 <= 2
32
32
 
33
- d2/(d2 - 2).to_f
33
+ d2/(d2 - 2).to_r
34
34
  end
35
35
 
36
36
  def mode
37
37
  return if d1 <= 2
38
38
 
39
- left = (d1 - 2)/d1.to_f
40
- right = d2/(d2 + 2).to_f
39
+ left = (d1 - 2)/d1.to_r
40
+ right = d2/(d2 + 2).to_r
41
41
 
42
- left * right
42
+ (left * right).to_f
43
43
  end
44
44
  end
45
45
  end
@@ -4,7 +4,7 @@ module Statistics
4
4
  attr_accessor :probability_of_success, :always_success_allowed
5
5
 
6
6
  def initialize(p, always_success: false)
7
- self.probability_of_success = p.to_f
7
+ self.probability_of_success = p.to_r
8
8
  self.always_success_allowed = always_success
9
9
  end
10
10
 
@@ -6,7 +6,7 @@ module Statistics
6
6
  k = k.to_i
7
7
 
8
8
  left = (-1.0 / Math.log(1.0 - p))
9
- right = (p ** k).to_f
9
+ right = (p ** k).to_r
10
10
 
11
11
  left * right / k
12
12
  end
@@ -44,7 +44,7 @@ module Statistics
44
44
  up = p + Math.log(1.0 - p)
45
45
  down = ((1.0 - p) ** 2) * (Math.log(1.0 - p) ** 2)
46
46
 
47
- (-1.0 * p) * (up / down.to_f)
47
+ (-1.0 * p) * (up / down.to_r)
48
48
  end
49
49
  end
50
50
  end
@@ -25,21 +25,21 @@ module Statistics
25
25
  end
26
26
 
27
27
  def mean
28
- (probability_per_trial * number_of_failures)/(1 - probability_per_trial).to_f
28
+ (probability_per_trial * number_of_failures)/(1 - probability_per_trial).to_r
29
29
  end
30
30
 
31
31
  def variance
32
- (probability_per_trial * number_of_failures)/((1 - probability_per_trial) ** 2).to_f
32
+ (probability_per_trial * number_of_failures)/((1 - probability_per_trial) ** 2).to_r
33
33
  end
34
34
 
35
35
  def skewness
36
- (1 + probability_per_trial).to_f / Math.sqrt(probability_per_trial * number_of_failures)
36
+ (1 + probability_per_trial).to_r / Math.sqrt(probability_per_trial * number_of_failures)
37
37
  end
38
38
 
39
39
  def mode
40
40
  if number_of_failures > 1
41
41
  up = probability_per_trial * (number_of_failures - 1)
42
- down = (1 - probability_per_trial).to_f
42
+ down = (1 - probability_per_trial).to_r
43
43
 
44
44
  (up/down).floor
45
45
  elsif number_of_failures <= 1
@@ -5,9 +5,9 @@ module Statistics
5
5
  alias_method :mode, :mean
6
6
 
7
7
  def initialize(avg, std)
8
- self.mean = avg.to_f
9
- self.standard_deviation = std.to_f
10
- self.variance = std.to_f**2
8
+ self.mean = avg.to_r
9
+ self.standard_deviation = std.to_r
10
+ self.variance = std.to_r**2
11
11
  end
12
12
 
13
13
  def cumulative_function(value)
@@ -18,7 +18,7 @@ module Statistics
18
18
  upper = (expected_number_of_occurrences ** k) * Math.exp(-expected_number_of_occurrences)
19
19
  lower = Math.factorial(k)
20
20
 
21
- upper/lower.to_f
21
+ upper/lower.to_r
22
22
  end
23
23
 
24
24
  def cumulative_function(k)
@@ -31,7 +31,7 @@ module Statistics
31
31
 
32
32
  # We need the right tail, i.e.: The upper incomplete gamma function. This can be
33
33
  # achieved by doing a substraction between 1 and the lower incomplete gamma function.
34
- 1 - (upper/lower.to_f)
34
+ 1 - (upper/lower.to_r)
35
35
  end
36
36
  end
37
37
  end
@@ -29,7 +29,7 @@ module Statistics
29
29
  upper = Math.gamma((degrees_of_freedom + 1)/2.0)
30
30
  lower = Math.sqrt(degrees_of_freedom * Math::PI) * Math.gamma(degrees_of_freedom/2.0)
31
31
  left = upper/lower
32
- right = (1 + ((value ** 2)/degrees_of_freedom.to_f)) ** -((degrees_of_freedom + 1)/2.0)
32
+ right = (1 + ((value ** 2)/degrees_of_freedom.to_r)) ** -((degrees_of_freedom + 1)/2.0)
33
33
 
34
34
  left * right
35
35
  end
@@ -64,8 +64,8 @@ module Statistics
64
64
  results << Math.simpson_rule(threshold, y, 10_000) do |t|
65
65
  up = Math.gamma((v+1)/2.0)
66
66
  down = Math.sqrt(Math::PI * v) * Math.gamma(v/2.0)
67
- right = (1 + ((y ** 2)/v.to_f)) ** ((v+1)/2.0)
68
- left = up/down.to_f
67
+ right = (1 + ((y ** 2)/v.to_r)) ** ((v+1)/2.0)
68
+ left = up/down.to_r
69
69
 
70
70
  left * right
71
71
  end
@@ -4,8 +4,8 @@ module Statistics
4
4
  attr_accessor :left, :right
5
5
 
6
6
  def initialize(a, b)
7
- self.left = a.to_f
8
- self.right = b.to_f
7
+ self.left = a.to_r
8
+ self.right = b.to_r
9
9
  end
10
10
 
11
11
  def density_function(value)
@@ -4,8 +4,8 @@ module Statistics
4
4
  attr_accessor :shape, :scale # k and lambda
5
5
 
6
6
  def initialize(k, lamb)
7
- self.shape = k.to_f
8
- self.scale = lamb.to_f
7
+ self.shape = k.to_r
8
+ self.scale = lamb.to_r
9
9
  end
10
10
 
11
11
  def cumulative_function(random_value)
@@ -14,7 +14,7 @@ module Statistics
14
14
  if rankings.fetch(value, false)
15
15
  rankings[value][:rank] += (temporal_ranking + rankings[value][:counter])
16
16
  rankings[value][:counter] += 1
17
- rankings[value][:tie_rank] = rankings[value][:rank] / rankings[value][:counter].to_f
17
+ rankings[value][:tie_rank] = rankings[value][:rank] / rankings[value][:counter].to_r
18
18
  else
19
19
  rankings[value] = { counter: 1, rank: temporal_ranking, tie_rank: temporal_ranking }
20
20
  end
@@ -35,7 +35,7 @@ module Statistics
35
35
  return if set_one.size == 0 && set_two.size == 0
36
36
 
37
37
  set_one_mean, set_two_mean = set_one.mean, set_two.mean
38
- have_tie_ranks = (set_one + set_two).any? { |rank| rank.is_a?(Float) }
38
+ have_tie_ranks = (set_one + set_two).any? { |rank| rank.is_a?(Float) || rank.is_a?(Rational) }
39
39
 
40
40
  if have_tie_ranks
41
41
  numerator = 0
@@ -54,7 +54,7 @@ module Statistics
54
54
 
55
55
  denominator = Math.sqrt(squared_differences_set_one * squared_differences_set_two)
56
56
 
57
- numerator / denominator.to_f # This is rho or spearman's coefficient.
57
+ numerator / denominator.to_r # This is rho or spearman's coefficient.
58
58
  else
59
59
  sum_squared_differences = set_one.each_with_index.reduce(0) do |memo, (rank_one, index)|
60
60
  memo += ((rank_one - set_two[index]) ** 2)
@@ -64,7 +64,7 @@ module Statistics
64
64
  numerator = 6 * sum_squared_differences
65
65
  denominator = ((set_one.size ** 3) - set_one.size)
66
66
 
67
- 1.0 - (numerator / denominator.to_f) # This is rho or spearman's coefficient.
67
+ 1.0 - (numerator / denominator.to_r) # This is rho or spearman's coefficient.
68
68
  end
69
69
  end
70
70
  end
@@ -8,12 +8,12 @@ module Statistics
8
8
  statistic = if expected.is_a? Numeric
9
9
  observed.reduce(0) do |memo, observed_value|
10
10
  up = (observed_value - expected) ** 2
11
- memo += (up/expected.to_f)
11
+ memo += (up/expected.to_r)
12
12
  end
13
13
  else
14
14
  expected.each_with_index.reduce(0) do |memo, (expected_value, index)|
15
15
  up = (observed[index] - expected_value) ** 2
16
- memo += (up/expected_value.to_f)
16
+ memo += (up/expected_value.to_r)
17
17
  end
18
18
  end
19
19
 
@@ -19,7 +19,7 @@ module Statistics
19
19
  if args.size == 2
20
20
  variances = [args[0].variance, args[1].variance]
21
21
 
22
- f_score = variances.max/variances.min.to_f
22
+ f_score = variances.max/variances.min.to_r
23
23
  df1 = 1 # k-1 (k = 2)
24
24
  df2 = args.flatten.size - 2 # N-k (k = 2)
25
25
  elsif args.size > 2
@@ -37,18 +37,18 @@ module Statistics
37
37
  variance_between_groups = iterator.reduce(0) do |summation, (size, index)|
38
38
  inner_calculation = size * ((sample_means[index] - overall_mean) ** 2)
39
39
 
40
- summation += (inner_calculation / (total_groups - 1).to_f)
40
+ summation += (inner_calculation / (total_groups - 1).to_r)
41
41
  end
42
42
 
43
43
  # Variance within groups
44
44
  variance_within_groups = (0...total_groups).reduce(0) do |outer_summation, group_index|
45
45
  outer_summation += args[group_index].reduce(0) do |inner_sumation, observation|
46
46
  inner_calculation = ((observation - sample_means[group_index]) ** 2)
47
- inner_sumation += (inner_calculation / (total_elements - total_groups).to_f)
47
+ inner_sumation += (inner_calculation / (total_elements - total_groups).to_r)
48
48
  end
49
49
  end
50
50
 
51
- f_score = variance_between_groups/variance_within_groups.to_f
51
+ f_score = variance_between_groups/variance_within_groups.to_r
52
52
  df1 = total_groups - 1
53
53
  df2 = total_elements - total_groups
54
54
  end
@@ -17,7 +17,7 @@ module Statistics
17
17
 
18
18
  # TODO: Validate calculation of Common alpha.
19
19
  common_alpha = Math.sqrt((-0.5 * Math.log(alpha)))
20
- radicand = (group_one.size + group_two.size) / (group_one.size * group_two.size).to_f
20
+ radicand = (group_one.size + group_two.size) / (group_one.size * group_two.size).to_r
21
21
 
22
22
  critical_d = common_alpha * Math.sqrt(radicand)
23
23
  # critical_d = self.critical_d(alpha: alpha, n: samples.size)
@@ -23,7 +23,7 @@ module Statistics
23
23
  comparison_mean = args[0]
24
24
  degrees_of_freedom = args[1].size - 1
25
25
 
26
- (data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).to_f).to_f
26
+ (data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).to_r).to_r
27
27
  else
28
28
  sample_left_mean = args[0].mean
29
29
  sample_left_variance = args[0].variance
@@ -31,12 +31,12 @@ module Statistics
31
31
  sample_right_mean = args[1].mean
32
32
  degrees_of_freedom = args.flatten.size - 2
33
33
 
34
- left_root = sample_left_variance/args[0].size.to_f
35
- right_root = sample_right_variance/args[1].size.to_f
34
+ left_root = sample_left_variance/args[0].size.to_r
35
+ right_root = sample_right_variance/args[1].size.to_r
36
36
 
37
37
  standard_error = Math.sqrt(left_root + right_root)
38
38
 
39
- (sample_left_mean - sample_right_mean).abs/standard_error.to_f
39
+ (sample_left_mean - sample_right_mean).abs/standard_error.to_r
40
40
  end
41
41
 
42
42
  t_distribution = Distribution::TStudent.new(degrees_of_freedom)
@@ -72,7 +72,7 @@ module Statistics
72
72
 
73
73
  down = difference_std/Math.sqrt(differences.size)
74
74
 
75
- t_score = (differences.mean - 0)/down.to_f
75
+ t_score = (differences.mean - 0)/down.to_r
76
76
 
77
77
  probability = Distribution::TStudent.new(degrees_of_freedom).cumulative_function(t_score)
78
78
 
@@ -73,7 +73,7 @@ module Statistics
73
73
  memo += ((t[:counter] ** 3) - t[:counter])/12.0
74
74
  end
75
75
 
76
- left = (total_group_one * total_group_two)/(n * (n - 1)).to_f
76
+ left = (total_group_one * total_group_two)/(n * (n - 1)).to_r
77
77
  right = (((n ** 3) - n)/12.0) - rank_sum
78
78
 
79
79
  Math.sqrt(left * right)
@@ -82,7 +82,7 @@ module Statistics
82
82
  private def ranked_sum_for(total, group)
83
83
  # sum rankings per group
84
84
  group.reduce(0) do |memo, element|
85
- rank_of_element = total[element][:rank] / total[element][:counter].to_f
85
+ rank_of_element = total[element][:rank] / total[element][:counter].to_r
86
86
  memo += rank_of_element
87
87
  end
88
88
  end
@@ -1,3 +1,3 @@
1
1
  module Statistics
2
- VERSION = "2.1.2"
2
+ VERSION = "2.1.3"
3
3
  end
@@ -27,8 +27,9 @@ Gem::Specification.new do |spec|
27
27
  spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
28
28
  spec.require_paths = ["lib"]
29
29
 
30
- spec.add_development_dependency "rake", '~> 12.0', '>= 12.0.0'
30
+ spec.add_development_dependency "rake", '>= 12.0.0', '~> 13.0'
31
31
  spec.add_development_dependency "rspec", '>= 3.6.0'
32
32
  spec.add_development_dependency "grb", '~> 0.4.1', '>= 0.4.1'
33
33
  spec.add_development_dependency 'byebug', '>= 9.1.0'
34
+ spec.add_development_dependency 'pry'
34
35
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby-statistics
3
3
  version: !ruby/object:Gem::Version
4
- version: 2.1.2
4
+ version: 2.1.3
5
5
  platform: ruby
6
6
  authors:
7
7
  - esteban zapata
8
- autorequire:
8
+ autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2020-03-01 00:00:00.000000000 Z
11
+ date: 2021-02-04 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: 12.0.0
20
20
  - - "~>"
21
21
  - !ruby/object:Gem::Version
22
- version: '12.0'
22
+ version: '13.0'
23
23
  type: :development
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: 12.0.0
30
30
  - - "~>"
31
31
  - !ruby/object:Gem::Version
32
- version: '12.0'
32
+ version: '13.0'
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: rspec
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -48,20 +48,20 @@ dependencies:
48
48
  name: grb
49
49
  requirement: !ruby/object:Gem::Requirement
50
50
  requirements:
51
- - - ">="
51
+ - - "~>"
52
52
  - !ruby/object:Gem::Version
53
53
  version: 0.4.1
54
- - - "~>"
54
+ - - ">="
55
55
  - !ruby/object:Gem::Version
56
56
  version: 0.4.1
57
57
  type: :development
58
58
  prerelease: false
59
59
  version_requirements: !ruby/object:Gem::Requirement
60
60
  requirements:
61
- - - ">="
61
+ - - "~>"
62
62
  - !ruby/object:Gem::Version
63
63
  version: 0.4.1
64
- - - "~>"
64
+ - - ">="
65
65
  - !ruby/object:Gem::Version
66
66
  version: 0.4.1
67
67
  - !ruby/object:Gem::Dependency
@@ -78,6 +78,20 @@ dependencies:
78
78
  - - ">="
79
79
  - !ruby/object:Gem::Version
80
80
  version: 9.1.0
81
+ - !ruby/object:Gem::Dependency
82
+ name: pry
83
+ requirement: !ruby/object:Gem::Requirement
84
+ requirements:
85
+ - - ">="
86
+ - !ruby/object:Gem::Version
87
+ version: '0'
88
+ type: :development
89
+ prerelease: false
90
+ version_requirements: !ruby/object:Gem::Requirement
91
+ requirements:
92
+ - - ">="
93
+ - !ruby/object:Gem::Version
94
+ version: '0'
81
95
  description: |-
82
96
  This gem is intended to accomplish the same purpose as jStat js library:
83
97
  to provide ruby with statistical capabilities without the need
@@ -90,6 +104,7 @@ executables: []
90
104
  extensions: []
91
105
  extra_rdoc_files: []
92
106
  files:
107
+ - ".github/dependabot.yml"
93
108
  - ".github/workflows/ruby.yml"
94
109
  - ".gitignore"
95
110
  - ".rspec"
@@ -134,7 +149,7 @@ homepage: https://github.com/estebanz01/ruby-statistics
134
149
  licenses:
135
150
  - MIT
136
151
  metadata: {}
137
- post_install_message:
152
+ post_install_message:
138
153
  rdoc_options: []
139
154
  require_paths:
140
155
  - lib
@@ -149,8 +164,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
149
164
  - !ruby/object:Gem::Version
150
165
  version: '0'
151
166
  requirements: []
152
- rubygems_version: 3.0.8
153
- signing_key:
167
+ rubygems_version: 3.1.4
168
+ signing_key:
154
169
  specification_version: 4
155
170
  summary: A ruby gem for som specific statistics. Inspired by the jStat js library.
156
171
  test_files: []