ruby-numtheory 0.0.3-x86-mingw32 → 0.0.4-x86-mingw32
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/ext/numtheory/numtheory.c +1726 -0
 - data/lib/numtheory.so +0 -0
 - metadata +6 -5
 
| 
         @@ -0,0 +1,1726 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            #include <ruby.h>
         
     | 
| 
      
 2 
     | 
    
         
            +
            #include <stdio.h>
         
     | 
| 
      
 3 
     | 
    
         
            +
            #include <math.h>
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            #include "primes.h"
         
     | 
| 
      
 6 
     | 
    
         
            +
            #include "queue.h"
         
     | 
| 
      
 7 
     | 
    
         
            +
            #include "numtheory_macros.c"
         
     | 
| 
      
 8 
     | 
    
         
            +
            #include "constants.h"
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            static VALUE numtheory_powermod(int argc, VALUE *argv);
         
     | 
| 
      
 11 
     | 
    
         
            +
            static VALUE numtheory_int_powermod(VALUE b, VALUE p, VALUE m);
         
     | 
| 
      
 12 
     | 
    
         
            +
            static VALUE numtheory_miller_rabin_pseudoprime_p(VALUE n);
         
     | 
| 
      
 13 
     | 
    
         
            +
            static VALUE numtheory_nextprime(VALUE n);
         
     | 
| 
      
 14 
     | 
    
         
            +
            static VALUE numtheory_precompute_primes_upto(VALUE obj, VALUE n);
         
     | 
| 
      
 15 
     | 
    
         
            +
            static VALUE numtheory_prime(VALUE obj, VALUE i);
         
     | 
| 
      
 16 
     | 
    
         
            +
            static VALUE numtheory_prime_p(VALUE n);
         
     | 
| 
      
 17 
     | 
    
         
            +
            static VALUE numtheory_primepi(VALUE obj, VALUE n);
         
     | 
| 
      
 18 
     | 
    
         
            +
            static VALUE numtheory_fibonacci(int argc, VALUE *argv);
         
     | 
| 
      
 19 
     | 
    
         
            +
            static VALUE numtheory_sigma(int argc, VALUE *argv);
         
     | 
| 
      
 20 
     | 
    
         
            +
            static VALUE numtheory_eulerphi(VALUE obj, VALUE n);
         
     | 
| 
      
 21 
     | 
    
         
            +
            static VALUE numtheory_moebius(VALUE obj, VALUE n);
         
     | 
| 
      
 22 
     | 
    
         
            +
            static VALUE numtheory_prime_division(VALUE n);
         
     | 
| 
      
 23 
     | 
    
         
            +
            static VALUE numtheory_product(VALUE obj, VALUE arr);
         
     | 
| 
      
 24 
     | 
    
         
            +
            static VALUE numtheory_primes_upto(VALUE min, VALUE max);
         
     | 
| 
      
 25 
     | 
    
         
            +
            static VALUE numtheory_factorial_primeswing(VALUE n);
         
     | 
| 
      
 26 
     | 
    
         
            +
            static VALUE numtheory_extended_gcd(VALUE x, VALUE y);
         
     | 
| 
      
 27 
     | 
    
         
            +
            static VALUE numtheory_modular_inverse(VALUE x, VALUE y);
         
     | 
| 
      
 28 
     | 
    
         
            +
            static VALUE numtheory_multiplicative_order(VALUE a, VALUE m);
         
     | 
| 
      
 29 
     | 
    
         
            +
            static VALUE numtheory_pythagorean_triples(VALUE obj, VALUE max_l);
         
     | 
| 
      
 30 
     | 
    
         
            +
            static VALUE numtheory_popcount(VALUE n);
         
     | 
| 
      
 31 
     | 
    
         
            +
            static VALUE numtheory_bitlength(VALUE n);
         
     | 
| 
      
 32 
     | 
    
         
            +
            static VALUE numtheory_jacobi(VALUE a, VALUE n);
         
     | 
| 
      
 33 
     | 
    
         
            +
            static VALUE numtheory_sqrtmod(VALUE a, VALUE p);
         
     | 
| 
      
 34 
     | 
    
         
            +
            static VALUE numtheory_isqrt(VALUE n);
         
     | 
| 
      
 35 
     | 
    
         
            +
            static VALUE numtheory_perfect_square_p(VALUE n);
         
     | 
| 
      
 36 
     | 
    
         
            +
            static VALUE numtheory_bpsw_pseudoprime_p(VALUE n);
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
            static VALUE mNumTheory;
         
     | 
| 
      
 39 
     | 
    
         
            +
            static ID primality_tests_ID;
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
            static ID id_rand, id_mod, id_divmod, 
         
     | 
| 
      
 42 
     | 
    
         
            +
                      id_gcd, id_lcm, id_pow, id_mul;
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
            static unsigned long PRIMES_UPPER_LIMIT = 3141592;
         
     | 
| 
      
 45 
     | 
    
         
            +
            static unsigned long NUM_OF_PRIMES;
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
            static const VALUE zero = INT2FIX(0);
         
     | 
| 
      
 48 
     | 
    
         
            +
            static const VALUE one = INT2FIX(1);
         
     | 
| 
      
 49 
     | 
    
         
            +
            static const VALUE two = INT2FIX(2);
         
     | 
| 
      
 50 
     | 
    
         
            +
            static const VALUE three = INT2FIX(3);
         
     | 
| 
      
 51 
     | 
    
         
            +
            static const VALUE four = INT2FIX(4);
         
     | 
| 
      
 52 
     | 
    
         
            +
            static const VALUE five = INT2FIX(5);
         
     | 
| 
      
 53 
     | 
    
         
            +
            static const VALUE six = INT2FIX(6);
         
     | 
| 
      
 54 
     | 
    
         
            +
            static const VALUE seven = INT2FIX(7);
         
     | 
| 
      
 55 
     | 
    
         
            +
            static const VALUE eight = INT2FIX(8);
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
            /*
         
     | 
| 
      
 58 
     | 
    
         
            +
             *  The <code>NumTheory</code> module contains basic number-theoretical
         
     | 
| 
      
 59 
     | 
    
         
            +
             *  functions. 
         
     | 
| 
      
 60 
     | 
    
         
            +
             */
         
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
            void 
         
     | 
| 
      
 63 
     | 
    
         
            +
            Init_numtheory()
         
     | 
| 
      
 64 
     | 
    
         
            +
            {
         
     | 
| 
      
 65 
     | 
    
         
            +
            #if 0
         
     | 
| 
      
 66 
     | 
    
         
            +
                VALUE rb_cInteger = rb_define_class("Integer", rb_cObject);
         
     | 
| 
      
 67 
     | 
    
         
            +
                VALUE rb_cFixnum = rb_define_class("Fixnum", rb_cObject);
         
     | 
| 
      
 68 
     | 
    
         
            +
            #endif
         
     | 
| 
      
 69 
     | 
    
         
            +
                VALUE rb_mNumTheory = rb_define_module("NumTheory");
         
     | 
| 
      
 70 
     | 
    
         
            +
                mNumTheory = rb_mNumTheory;
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                id_rand = rb_intern("rand");
         
     | 
| 
      
 73 
     | 
    
         
            +
                id_mod = rb_intern("modulo");
         
     | 
| 
      
 74 
     | 
    
         
            +
                id_divmod = rb_intern("divmod");
         
     | 
| 
      
 75 
     | 
    
         
            +
                id_gcd = rb_intern("gcd");
         
     | 
| 
      
 76 
     | 
    
         
            +
                id_lcm = rb_intern("lcm");
         
     | 
| 
      
 77 
     | 
    
         
            +
                id_pow = rb_intern("**");
         
     | 
| 
      
 78 
     | 
    
         
            +
                id_mul = rb_intern("*");
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                primality_tests_ID = rb_intern("PrimalityTests");
         
     | 
| 
      
 81 
     | 
    
         
            +
                /* PrimalityTests: the number of rounds in Miller-Rabin test for primality. */
         
     | 
| 
      
 82 
     | 
    
         
            +
                rb_define_const(rb_mNumTheory, "PrimalityTests", INT2FIX(20));
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "powermod", 
         
     | 
| 
      
 85 
     | 
    
         
            +
                        numtheory_powermod, -1);
         
     | 
| 
      
 86 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "fibonacci",
         
     | 
| 
      
 87 
     | 
    
         
            +
                        numtheory_fibonacci, -1);
         
     | 
| 
      
 88 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "precompute_primes_upto",
         
     | 
| 
      
 89 
     | 
    
         
            +
                        numtheory_precompute_primes_upto, 1);
         
     | 
| 
      
 90 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "prime",
         
     | 
| 
      
 91 
     | 
    
         
            +
                        numtheory_prime, 1);
         
     | 
| 
      
 92 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "primepi",
         
     | 
| 
      
 93 
     | 
    
         
            +
                        numtheory_primepi, 1);
         
     | 
| 
      
 94 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "sigma",
         
     | 
| 
      
 95 
     | 
    
         
            +
                        numtheory_sigma, -1);
         
     | 
| 
      
 96 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "eulerphi",
         
     | 
| 
      
 97 
     | 
    
         
            +
                        numtheory_eulerphi, 1);
         
     | 
| 
      
 98 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "moebius",
         
     | 
| 
      
 99 
     | 
    
         
            +
                        numtheory_moebius, 1);
         
     | 
| 
      
 100 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "product",
         
     | 
| 
      
 101 
     | 
    
         
            +
                        numtheory_product, 1);
         
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
                rb_define_module_function(rb_mNumTheory, "triples",
         
     | 
| 
      
 104 
     | 
    
         
            +
                        numtheory_pythagorean_triples, 1);
         
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "powermod",
         
     | 
| 
      
 107 
     | 
    
         
            +
                        numtheory_int_powermod, 2);
         
     | 
| 
      
 108 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "prime?",
         
     | 
| 
      
 109 
     | 
    
         
            +
                        numtheory_prime_p, 0);
         
     | 
| 
      
 110 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "MR_pseudoprime?",
         
     | 
| 
      
 111 
     | 
    
         
            +
                        numtheory_miller_rabin_pseudoprime_p, 0);
         
     | 
| 
      
 112 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "BPSW_pseudoprime?",
         
     | 
| 
      
 113 
     | 
    
         
            +
                        numtheory_bpsw_pseudoprime_p, 0);
         
     | 
| 
      
 114 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "nextprime",
         
     | 
| 
      
 115 
     | 
    
         
            +
                        numtheory_nextprime, 0);
         
     | 
| 
      
 116 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "prime_division",
         
     | 
| 
      
 117 
     | 
    
         
            +
                        numtheory_prime_division, 0);
         
     | 
| 
      
 118 
     | 
    
         
            +
                rb_define_method(rb_cFixnum, "factorial",
         
     | 
| 
      
 119 
     | 
    
         
            +
                        numtheory_factorial_primeswing, 0);
         
     | 
| 
      
 120 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "primes_upto",
         
     | 
| 
      
 121 
     | 
    
         
            +
                        numtheory_primes_upto, 1);
         
     | 
| 
      
 122 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "extended_gcd",
         
     | 
| 
      
 123 
     | 
    
         
            +
                        numtheory_extended_gcd, 1);
         
     | 
| 
      
 124 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "inverse",
         
     | 
| 
      
 125 
     | 
    
         
            +
                        numtheory_modular_inverse, 1);
         
     | 
| 
      
 126 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "znorder",
         
     | 
| 
      
 127 
     | 
    
         
            +
                        numtheory_multiplicative_order, 1);
         
     | 
| 
      
 128 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "popcount",
         
     | 
| 
      
 129 
     | 
    
         
            +
                        numtheory_popcount, 0);
         
     | 
| 
      
 130 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "bitlength",
         
     | 
| 
      
 131 
     | 
    
         
            +
                        numtheory_bitlength, 0);
         
     | 
| 
      
 132 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "jacobi",
         
     | 
| 
      
 133 
     | 
    
         
            +
                        numtheory_jacobi, 1);
         
     | 
| 
      
 134 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "sqrt_mod",
         
     | 
| 
      
 135 
     | 
    
         
            +
                        numtheory_sqrtmod, 1);
         
     | 
| 
      
 136 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "isqrt",
         
     | 
| 
      
 137 
     | 
    
         
            +
                        numtheory_isqrt, 0);
         
     | 
| 
      
 138 
     | 
    
         
            +
                rb_define_method(rb_cInteger, "square?",
         
     | 
| 
      
 139 
     | 
    
         
            +
                        numtheory_perfect_square_p, 0);
         
     | 
| 
      
 140 
     | 
    
         
            +
             
     | 
| 
      
 141 
     | 
    
         
            +
                NUM_OF_PRIMES = init_sieve(PRIMES_UPPER_LIMIT);
         
     | 
| 
      
 142 
     | 
    
         
            +
                /* PRECOMPUTED_PRIMES: the number of precomputed primes. */
         
     | 
| 
      
 143 
     | 
    
         
            +
                rb_define_const(rb_mNumTheory, "PRECOMPUTED_PRIMES", 
         
     | 
| 
      
 144 
     | 
    
         
            +
                        INT2NUM(NUM_OF_PRIMES));
         
     | 
| 
      
 145 
     | 
    
         
            +
                
         
     | 
| 
      
 146 
     | 
    
         
            +
            }
         
     | 
| 
      
 147 
     | 
    
         
            +
             
     | 
| 
      
 148 
     | 
    
         
            +
            /*
         
     | 
| 
      
 149 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 150 
     | 
    
         
            +
             *    NumTheory.precompute_primes_upto(n)
         
     | 
| 
      
 151 
     | 
    
         
            +
             *
         
     | 
| 
      
 152 
     | 
    
         
            +
             *  Precomputes primes up to the <i>n</i> via Eratosthenes' sieve method.
         
     | 
| 
      
 153 
     | 
    
         
            +
             *
         
     | 
| 
      
 154 
     | 
    
         
            +
             *    NumTheory.precompute_primes_upto(20000000)
         
     | 
| 
      
 155 
     | 
    
         
            +
             */
         
     | 
| 
      
 156 
     | 
    
         
            +
            static VALUE 
         
     | 
| 
      
 157 
     | 
    
         
            +
            numtheory_precompute_primes_upto(VALUE obj, VALUE n)
         
     | 
| 
      
 158 
     | 
    
         
            +
            {
         
     | 
| 
      
 159 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 160 
     | 
    
         
            +
                {
         
     | 
| 
      
 161 
     | 
    
         
            +
                    unsigned long t = FIX2LONG(n);
         
     | 
| 
      
 162 
     | 
    
         
            +
                    if (t < PRIMES_UPPER_LIMIT || FIX2LONG(n) < 0)
         
     | 
| 
      
 163 
     | 
    
         
            +
                    {
         
     | 
| 
      
 164 
     | 
    
         
            +
                        rb_warn("new size should be more than old one; prime table is unchanged");
         
     | 
| 
      
 165 
     | 
    
         
            +
                        return Qnil;
         
     | 
| 
      
 166 
     | 
    
         
            +
                    }
         
     | 
| 
      
 167 
     | 
    
         
            +
                    PRIMES_UPPER_LIMIT = FIX2LONG(n);
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                    free(numtheory_is_prime);
         
     | 
| 
      
 170 
     | 
    
         
            +
                    free(numtheory_primes);
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
                    NUM_OF_PRIMES = init_sieve(PRIMES_UPPER_LIMIT);
         
     | 
| 
      
 173 
     | 
    
         
            +
                    rb_const_set(mNumTheory, rb_intern("PRECOMPUTED_PRIMES"),
         
     | 
| 
      
 174 
     | 
    
         
            +
                            INT2NUM(NUM_OF_PRIMES));
         
     | 
| 
      
 175 
     | 
    
         
            +
                }
         
     | 
| 
      
 176 
     | 
    
         
            +
                else
         
     | 
| 
      
 177 
     | 
    
         
            +
                {
         
     | 
| 
      
 178 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "The number is too big!");
         
     | 
| 
      
 179 
     | 
    
         
            +
                }
         
     | 
| 
      
 180 
     | 
    
         
            +
                return Qnil;
         
     | 
| 
      
 181 
     | 
    
         
            +
            }
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
             
     | 
| 
      
 184 
     | 
    
         
            +
            inline static VALUE TO_BIGNUM(VALUE x) {
         
     | 
| 
      
 185 
     | 
    
         
            +
                return FIXNUM_P(x) ? rb_int2big(FIX2LONG(x)) : x;
         
     | 
| 
      
 186 
     | 
    
         
            +
            }
         
     | 
| 
      
 187 
     | 
    
         
            +
             
     | 
| 
      
 188 
     | 
    
         
            +
            inline static unsigned long TO_ULONG(VALUE x) {
         
     | 
| 
      
 189 
     | 
    
         
            +
                if (!FIXNUM_P(x))
         
     | 
| 
      
 190 
     | 
    
         
            +
                { 
         
     | 
| 
      
 191 
     | 
    
         
            +
                  if (rb_big_cmp(x, ULONG2NUM(ULONG_MAX)) != one) 
         
     | 
| 
      
 192 
     | 
    
         
            +
                    return rb_big2ulong(x);
         
     | 
| 
      
 193 
     | 
    
         
            +
                  else 
         
     | 
| 
      
 194 
     | 
    
         
            +
                    rb_raise(rb_eNotImpError, "Not implemented for numbers >= 2**32");
         
     | 
| 
      
 195 
     | 
    
         
            +
                } 
         
     | 
| 
      
 196 
     | 
    
         
            +
                return FIX2ULONG(x);
         
     | 
| 
      
 197 
     | 
    
         
            +
            }
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
            inline static int EVEN_P(VALUE x) {
         
     | 
| 
      
 200 
     | 
    
         
            +
                return FIXNUM_P(x) ? !(FIX2ULONG(x)&1) : !(RBIGNUM_DIGITS(x)[0]&1);
         
     | 
| 
      
 201 
     | 
    
         
            +
            }
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
            inline static int ZERO_P(VALUE x) {
         
     | 
| 
      
 204 
     | 
    
         
            +
                return FIXNUM_P(x) ? FIX2LONG(x) == 0 : rb_bigzero_p(x); 
         
     | 
| 
      
 205 
     | 
    
         
            +
            }
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
            inline static VALUE ADD(VALUE x, VALUE y) {
         
     | 
| 
      
 208 
     | 
    
         
            +
                return FIXNUM_P(x) ? FIXNUM_P(y) ? 
         
     | 
| 
      
 209 
     | 
    
         
            +
                               LONG2NUM(FIX2LONG(x) + FIX2LONG(y)) : 
         
     | 
| 
      
 210 
     | 
    
         
            +
                               rb_big_plus(y, x) : 
         
     | 
| 
      
 211 
     | 
    
         
            +
                       rb_big_plus(x, y);
         
     | 
| 
      
 212 
     | 
    
         
            +
            }
         
     | 
| 
      
 213 
     | 
    
         
            +
             
     | 
| 
      
 214 
     | 
    
         
            +
            inline static VALUE SUB(VALUE x, VALUE y) {
         
     | 
| 
      
 215 
     | 
    
         
            +
                return (FIXNUM_P(x) && FIXNUM_P(y)) ? 
         
     | 
| 
      
 216 
     | 
    
         
            +
                               LONG2NUM(FIX2LONG(x) - FIX2LONG(y)) : 
         
     | 
| 
      
 217 
     | 
    
         
            +
                       rb_big_minus(TO_BIGNUM(x), y);
         
     | 
| 
      
 218 
     | 
    
         
            +
            }
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
            inline static VALUE MUL(VALUE x, VALUE y) { 
         
     | 
| 
      
 221 
     | 
    
         
            +
                return rb_funcall(x, id_mul, 1, y);
         
     | 
| 
      
 222 
     | 
    
         
            +
            }
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
            inline static VALUE POW(VALUE b, VALUE p) {
         
     | 
| 
      
 225 
     | 
    
         
            +
                return rb_funcall(b, id_pow, 1, p);
         
     | 
| 
      
 226 
     | 
    
         
            +
            }
         
     | 
| 
      
 227 
     | 
    
         
            +
             
     | 
| 
      
 228 
     | 
    
         
            +
            inline static VALUE DIV(VALUE x, VALUE y) {
         
     | 
| 
      
 229 
     | 
    
         
            +
                if (ZERO_P(y))
         
     | 
| 
      
 230 
     | 
    
         
            +
                {
         
     | 
| 
      
 231 
     | 
    
         
            +
                    rb_raise(rb_eZeroDivError, "divided by 0");
         
     | 
| 
      
 232 
     | 
    
         
            +
                }
         
     | 
| 
      
 233 
     | 
    
         
            +
                return FIXNUM_P(x) ? FIXNUM_P(y) ?
         
     | 
| 
      
 234 
     | 
    
         
            +
                                INT2FIX( FIX2LONG(x) / FIX2LONG(y)) :
         
     | 
| 
      
 235 
     | 
    
         
            +
                                zero :
         
     | 
| 
      
 236 
     | 
    
         
            +
                            rb_big_div(x, y);
         
     | 
| 
      
 237 
     | 
    
         
            +
            }
         
     | 
| 
      
 238 
     | 
    
         
            +
             
     | 
| 
      
 239 
     | 
    
         
            +
            inline static VALUE DIVMOD(VALUE x, VALUE y) {
         
     | 
| 
      
 240 
     | 
    
         
            +
                return rb_funcall(x, id_divmod, 1, y);
         
     | 
| 
      
 241 
     | 
    
         
            +
            }
         
     | 
| 
      
 242 
     | 
    
         
            +
             
     | 
| 
      
 243 
     | 
    
         
            +
            inline static VALUE MOD(VALUE x, VALUE y) {
         
     | 
| 
      
 244 
     | 
    
         
            +
                return rb_funcall(x, id_mod, 1, y);
         
     | 
| 
      
 245 
     | 
    
         
            +
            }
         
     | 
| 
      
 246 
     | 
    
         
            +
                                
         
     | 
| 
      
 247 
     | 
    
         
            +
            inline static int EQL(VALUE x, VALUE y) {
         
     | 
| 
      
 248 
     | 
    
         
            +
                return (FIXNUM_P(x) && FIXNUM_P(y)) ? 
         
     | 
| 
      
 249 
     | 
    
         
            +
                               x == y : 
         
     | 
| 
      
 250 
     | 
    
         
            +
                       rb_big_eq(TO_BIGNUM(x), y) == Qtrue;
         
     | 
| 
      
 251 
     | 
    
         
            +
            }
         
     | 
| 
      
 252 
     | 
    
         
            +
             
     | 
| 
      
 253 
     | 
    
         
            +
            inline static int MORE(VALUE x, VALUE y) {
         
     | 
| 
      
 254 
     | 
    
         
            +
                return (FIXNUM_P(x) && FIXNUM_P(y)) ?
         
     | 
| 
      
 255 
     | 
    
         
            +
                               FIX2LONG(x) > FIX2LONG(y) :
         
     | 
| 
      
 256 
     | 
    
         
            +
                       rb_big_cmp(TO_BIGNUM(x), y) == one;
         
     | 
| 
      
 257 
     | 
    
         
            +
            }
         
     | 
| 
      
 258 
     | 
    
         
            +
             
     | 
| 
      
 259 
     | 
    
         
            +
            inline static int LESS(VALUE x, VALUE y) {
         
     | 
| 
      
 260 
     | 
    
         
            +
                return (FIXNUM_P(x) && FIXNUM_P(y)) ?
         
     | 
| 
      
 261 
     | 
    
         
            +
                               FIX2LONG(x) < FIX2LONG(y) :
         
     | 
| 
      
 262 
     | 
    
         
            +
                       rb_big_cmp(TO_BIGNUM(x), y) == INT2FIX(-1);
         
     | 
| 
      
 263 
     | 
    
         
            +
            }
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
            inline static int MORE_EQL(VALUE x, VALUE y) {
         
     | 
| 
      
 266 
     | 
    
         
            +
                return (FIXNUM_P(x) && FIXNUM_P(y)) ?
         
     | 
| 
      
 267 
     | 
    
         
            +
                               FIX2LONG(x) >= FIX2LONG(y) :
         
     | 
| 
      
 268 
     | 
    
         
            +
                       rb_big_cmp(TO_BIGNUM(x), y) != INT2FIX(-1);
         
     | 
| 
      
 269 
     | 
    
         
            +
            }
         
     | 
| 
      
 270 
     | 
    
         
            +
             
     | 
| 
      
 271 
     | 
    
         
            +
            inline static VALUE ABS(VALUE x) {
         
     | 
| 
      
 272 
     | 
    
         
            +
                if (FIXNUM_P(x))
         
     | 
| 
      
 273 
     | 
    
         
            +
                    return INT2FIX(abs(FIX2LONG(x)));
         
     | 
| 
      
 274 
     | 
    
         
            +
                VALUE v = rb_big_clone(x);
         
     | 
| 
      
 275 
     | 
    
         
            +
                RBIGNUM_SET_SIGN(v, 1);
         
     | 
| 
      
 276 
     | 
    
         
            +
                return v;
         
     | 
| 
      
 277 
     | 
    
         
            +
            }
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
            inline static int NEGATIVE_P(VALUE x) {
         
     | 
| 
      
 280 
     | 
    
         
            +
                return FIXNUM_P(x) ? FIX2LONG(x) < 0 : RBIGNUM_NEGATIVE_P(x);
         
     | 
| 
      
 281 
     | 
    
         
            +
            }
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
            inline static VALUE CLONE(VALUE x) {
         
     | 
| 
      
 284 
     | 
    
         
            +
                return FIXNUM_P(x) ? x : rb_big_clone(x);
         
     | 
| 
      
 285 
     | 
    
         
            +
            }
         
     | 
| 
      
 286 
     | 
    
         
            +
             
     | 
| 
      
 287 
     | 
    
         
            +
            inline static int INTEGER_P(VALUE x) {
         
     | 
| 
      
 288 
     | 
    
         
            +
                return (TYPE(x) == T_FIXNUM) || (TYPE(x) == T_BIGNUM);
         
     | 
| 
      
 289 
     | 
    
         
            +
            }
         
     | 
| 
      
 290 
     | 
    
         
            +
             
     | 
| 
      
 291 
     | 
    
         
            +
            inline static VALUE DOUBLED(VALUE x) {
         
     | 
| 
      
 292 
     | 
    
         
            +
                return FIXNUM_P(x) ? LONG2NUM(FIX2LONG(x) << 1) :
         
     | 
| 
      
 293 
     | 
    
         
            +
                        rb_big_lshift(x, one);
         
     | 
| 
      
 294 
     | 
    
         
            +
            }
         
     | 
| 
      
 295 
     | 
    
         
            +
             
     | 
| 
      
 296 
     | 
    
         
            +
            inline static VALUE HALF(VALUE x) {
         
     | 
| 
      
 297 
     | 
    
         
            +
                return FIXNUM_P(x) ? INT2FIX(FIX2LONG(x) >> 1) :
         
     | 
| 
      
 298 
     | 
    
         
            +
                        rb_big_rshift(x, one);
         
     | 
| 
      
 299 
     | 
    
         
            +
            }
         
     | 
| 
      
 300 
     | 
    
         
            +
             
     | 
| 
      
 301 
     | 
    
         
            +
            inline static VALUE RIGHT_SHIFT(VALUE x, int s) {
         
     | 
| 
      
 302 
     | 
    
         
            +
                return FIXNUM_P(x) ? INT2FIX(FIX2LONG(x) >> s) :
         
     | 
| 
      
 303 
     | 
    
         
            +
                        rb_big_rshift(x, INT2FIX(s));
         
     | 
| 
      
 304 
     | 
    
         
            +
            }
         
     | 
| 
      
 305 
     | 
    
         
            +
             
     | 
| 
      
 306 
     | 
    
         
            +
            #ifdef min
         
     | 
| 
      
 307 
     | 
    
         
            +
            #undef min
         
     | 
| 
      
 308 
     | 
    
         
            +
            #endif
         
     | 
| 
      
 309 
     | 
    
         
            +
            inline static int min(int a, int b) { return a < b ? a : b; }
         
     | 
| 
      
 310 
     | 
    
         
            +
             
     | 
| 
      
 311 
     | 
    
         
            +
            /*
         
     | 
| 
      
 312 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 313 
     | 
    
         
            +
             *    NumTheory.powermod(base, power, [modulo, one]) -> obj
         
     | 
| 
      
 314 
     | 
    
         
            +
             *
         
     | 
| 
      
 315 
     | 
    
         
            +
             *  Returns (<code>base ** power) % modulo</code> if modulo is not nil.
         
     | 
| 
      
 316 
     | 
    
         
            +
             *  Otherwise returns <code>base ** power</code>. Parameter <i>one</i> 
         
     | 
| 
      
 317 
     | 
    
         
            +
             *  can be used to provide the identity of the multiplicative group containing 
         
     | 
| 
      
 318 
     | 
    
         
            +
             *  <i>base</i>. 
         
     | 
| 
      
 319 
     | 
    
         
            +
             * 
         
     | 
| 
      
 320 
     | 
    
         
            +
             *    NumTheory.powermod(2, 20)                             #=> 1048576
         
     | 
| 
      
 321 
     | 
    
         
            +
             *    NumTheory.powermod(2, 20, 1000)                       #=> 576
         
     | 
| 
      
 322 
     | 
    
         
            +
             *    
         
     | 
| 
      
 323 
     | 
    
         
            +
             *    require 'matrix'
         
     | 
| 
      
 324 
     | 
    
         
            +
             *    NumTheory.powermod(Matrix[[1,1],[1,0]], 20, nil, 
         
     | 
| 
      
 325 
     | 
    
         
            +
             *                       Matrix.identity(2))                
         
     | 
| 
      
 326 
     | 
    
         
            +
             *                              #=> Matrix[[10946, 6765], [6765, 4181]]
         
     | 
| 
      
 327 
     | 
    
         
            +
             */
         
     | 
| 
      
 328 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 329 
     | 
    
         
            +
            numtheory_powermod(int argc, VALUE *argv)
         
     | 
| 
      
 330 
     | 
    
         
            +
            {
         
     | 
| 
      
 331 
     | 
    
         
            +
                VALUE base, pow, modulo, one;
         
     | 
| 
      
 332 
     | 
    
         
            +
                rb_scan_args(argc, argv, "22", &base, &pow, &modulo, &one);
         
     | 
| 
      
 333 
     | 
    
         
            +
             
     | 
| 
      
 334 
     | 
    
         
            +
                ID id_mul = rb_intern("*");
         
     | 
| 
      
 335 
     | 
    
         
            +
                ID id_mod = rb_intern("%");
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
                VALUE result = NIL_P(one) ? rb_uint2big(1) : one;
         
     | 
| 
      
 338 
     | 
    
         
            +
                FOR_BITS(pow, result = rb_funcall(result, id_mul, 1, result),
         
     | 
| 
      
 339 
     | 
    
         
            +
                              {},
         
     | 
| 
      
 340 
     | 
    
         
            +
                              result = rb_funcall(result, id_mul, 1, base),
         
     | 
| 
      
 341 
     | 
    
         
            +
                              if (!NIL_P(modulo))
         
     | 
| 
      
 342 
     | 
    
         
            +
                              {
         
     | 
| 
      
 343 
     | 
    
         
            +
                                  result = rb_funcall(result, id_mod, 1, modulo);
         
     | 
| 
      
 344 
     | 
    
         
            +
                              });
         
     | 
| 
      
 345 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 346 
     | 
    
         
            +
            }
         
     | 
| 
      
 347 
     | 
    
         
            +
             
     | 
| 
      
 348 
     | 
    
         
            +
            /*
         
     | 
| 
      
 349 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 350 
     | 
    
         
            +
             *    integer.powermod(power, modulo)         -> integer
         
     | 
| 
      
 351 
     | 
    
         
            +
             *
         
     | 
| 
      
 352 
     | 
    
         
            +
             *  Returns (+self+ ** <i>power</i>) % <i>modulo</i>.
         
     | 
| 
      
 353 
     | 
    
         
            +
             *  Both <i>power</i> and <i>modulo</i> must be integer.
         
     | 
| 
      
 354 
     | 
    
         
            +
             *
         
     | 
| 
      
 355 
     | 
    
         
            +
             *    172.powermod(238, 239) #=> 1
         
     | 
| 
      
 356 
     | 
    
         
            +
             */
         
     | 
| 
      
 357 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 358 
     | 
    
         
            +
            numtheory_int_powermod(VALUE b, VALUE p, VALUE m){
         
     | 
| 
      
 359 
     | 
    
         
            +
                VALUE result = one;
         
     | 
| 
      
 360 
     | 
    
         
            +
                if (!INTEGER_P(p))
         
     | 
| 
      
 361 
     | 
    
         
            +
                {
         
     | 
| 
      
 362 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "power must be integer");
         
     | 
| 
      
 363 
     | 
    
         
            +
                }
         
     | 
| 
      
 364 
     | 
    
         
            +
                if (!INTEGER_P(m))
         
     | 
| 
      
 365 
     | 
    
         
            +
                {
         
     | 
| 
      
 366 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "modulo must be integer");
         
     | 
| 
      
 367 
     | 
    
         
            +
                }
         
     | 
| 
      
 368 
     | 
    
         
            +
                if (NEGATIVE_P(p))
         
     | 
| 
      
 369 
     | 
    
         
            +
                {
         
     | 
| 
      
 370 
     | 
    
         
            +
                    b = numtheory_modular_inverse(b, m);
         
     | 
| 
      
 371 
     | 
    
         
            +
                    p = ABS(p);
         
     | 
| 
      
 372 
     | 
    
         
            +
                }
         
     | 
| 
      
 373 
     | 
    
         
            +
                FOR_BITS(p, result = MUL(result, result),
         
     | 
| 
      
 374 
     | 
    
         
            +
                            {},
         
     | 
| 
      
 375 
     | 
    
         
            +
                            result = MUL(result, b),
         
     | 
| 
      
 376 
     | 
    
         
            +
                            result = MOD(result, m));
         
     | 
| 
      
 377 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 378 
     | 
    
         
            +
            }
         
     | 
| 
      
 379 
     | 
    
         
            +
             
     | 
| 
      
 380 
     | 
    
         
            +
            static int tail_zeros(VALUE n)
         
     | 
| 
      
 381 
     | 
    
         
            +
            {
         
     | 
| 
      
 382 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 383 
     | 
    
         
            +
                {
         
     | 
| 
      
 384 
     | 
    
         
            +
                    int t = FIX2LONG(n);
         
     | 
| 
      
 385 
     | 
    
         
            +
                    int s = 0;
         
     | 
| 
      
 386 
     | 
    
         
            +
                    while (!(t & 1))
         
     | 
| 
      
 387 
     | 
    
         
            +
                        t >>= 1, ++s;
         
     | 
| 
      
 388 
     | 
    
         
            +
                    return s;
         
     | 
| 
      
 389 
     | 
    
         
            +
                }
         
     | 
| 
      
 390 
     | 
    
         
            +
                else
         
     | 
| 
      
 391 
     | 
    
         
            +
                {
         
     | 
| 
      
 392 
     | 
    
         
            +
                    BDIGIT* digit = RBIGNUM_DIGITS(n);
         
     | 
| 
      
 393 
     | 
    
         
            +
                    unsigned int L = RBIGNUM_LEN(n);
         
     | 
| 
      
 394 
     | 
    
         
            +
                    unsigned int i, j, s, z;
         
     | 
| 
      
 395 
     | 
    
         
            +
                    const unsigned long MAX = 1 << (SIZEOF_BDIGITS * 8 - 1);
         
     | 
| 
      
 396 
     | 
    
         
            +
                    for (i = s = 0, z = 1; i < L; ++i, ++digit)
         
     | 
| 
      
 397 
     | 
    
         
            +
                    {
         
     | 
| 
      
 398 
     | 
    
         
            +
                        for (j = 1; j <= MAX; j <<= 1)
         
     | 
| 
      
 399 
     | 
    
         
            +
                            if ((*digit & j) || j == MAX)
         
     | 
| 
      
 400 
     | 
    
         
            +
                            {
         
     | 
| 
      
 401 
     | 
    
         
            +
                                z = 0;
         
     | 
| 
      
 402 
     | 
    
         
            +
                                break;
         
     | 
| 
      
 403 
     | 
    
         
            +
                            }
         
     | 
| 
      
 404 
     | 
    
         
            +
                            else
         
     | 
| 
      
 405 
     | 
    
         
            +
                            {
         
     | 
| 
      
 406 
     | 
    
         
            +
                                ++s;
         
     | 
| 
      
 407 
     | 
    
         
            +
                            }
         
     | 
| 
      
 408 
     | 
    
         
            +
                        if (z == 0) break;
         
     | 
| 
      
 409 
     | 
    
         
            +
                    }
         
     | 
| 
      
 410 
     | 
    
         
            +
                    return s;
         
     | 
| 
      
 411 
     | 
    
         
            +
                }
         
     | 
| 
      
 412 
     | 
    
         
            +
            }
         
     | 
| 
      
 413 
     | 
    
         
            +
             
     | 
| 
      
 414 
     | 
    
         
            +
            /*
         
     | 
| 
      
 415 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 416 
     | 
    
         
            +
             *    integer.MR_pseudoprime? -> true or false
         
     | 
| 
      
 417 
     | 
    
         
            +
             *
         
     | 
| 
      
 418 
     | 
    
         
            +
             *  Returns <code>true</code> if +self+ is pseudoprime
         
     | 
| 
      
 419 
     | 
    
         
            +
             *  accordingly to Miller-Rabin test with <i>NumTheory::PrimalityTests</i>
         
     | 
| 
      
 420 
     | 
    
         
            +
             *  rounds. Otherwise returns <code>false</code>.
         
     | 
| 
      
 421 
     | 
    
         
            +
             */
         
     | 
| 
      
 422 
     | 
    
         
            +
            static VALUE 
         
     | 
| 
      
 423 
     | 
    
         
            +
            numtheory_miller_rabin_pseudoprime_p(VALUE n)
         
     | 
| 
      
 424 
     | 
    
         
            +
            {
         
     | 
| 
      
 425 
     | 
    
         
            +
                long PRIMALITY_TESTS = FIX2LONG(rb_const_get(mNumTheory, primality_tests_ID));
         
     | 
| 
      
 426 
     | 
    
         
            +
                
         
     | 
| 
      
 427 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 428 
     | 
    
         
            +
                {
         
     | 
| 
      
 429 
     | 
    
         
            +
                    long t = FIX2LONG(n);
         
     | 
| 
      
 430 
     | 
    
         
            +
                    if (t < 0) t = -t;
         
     | 
| 
      
 431 
     | 
    
         
            +
                    if (t == 2) return Qtrue;
         
     | 
| 
      
 432 
     | 
    
         
            +
                    if (!(t & 1)) return Qfalse;
         
     | 
| 
      
 433 
     | 
    
         
            +
                    if (t < 2) return Qfalse;
         
     | 
| 
      
 434 
     | 
    
         
            +
                }
         
     | 
| 
      
 435 
     | 
    
         
            +
             
     | 
| 
      
 436 
     | 
    
         
            +
                VALUE num;
         
     | 
| 
      
 437 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 438 
     | 
    
         
            +
                {
         
     | 
| 
      
 439 
     | 
    
         
            +
                    num = ABS(n);
         
     | 
| 
      
 440 
     | 
    
         
            +
                }
         
     | 
| 
      
 441 
     | 
    
         
            +
                else
         
     | 
| 
      
 442 
     | 
    
         
            +
                {
         
     | 
| 
      
 443 
     | 
    
         
            +
                    num = n; // keeps just a reference instead of clone
         
     | 
| 
      
 444 
     | 
    
         
            +
                }
         
     | 
| 
      
 445 
     | 
    
         
            +
             
     | 
| 
      
 446 
     | 
    
         
            +
                if (EVEN_P(num))
         
     | 
| 
      
 447 
     | 
    
         
            +
                {
         
     | 
| 
      
 448 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 449 
     | 
    
         
            +
                }
         
     | 
| 
      
 450 
     | 
    
         
            +
             
     | 
| 
      
 451 
     | 
    
         
            +
                VALUE num_minus_one = SUB(num, one);
         
     | 
| 
      
 452 
     | 
    
         
            +
                VALUE d = CLONE(num_minus_one);
         
     | 
| 
      
 453 
     | 
    
         
            +
                VALUE num_minus_four = SUB(num, four);
         
     | 
| 
      
 454 
     | 
    
         
            +
             
     | 
| 
      
 455 
     | 
    
         
            +
                int s = tail_zeros(d);
         
     | 
| 
      
 456 
     | 
    
         
            +
                d = RIGHT_SHIFT(d, s);
         
     | 
| 
      
 457 
     | 
    
         
            +
             
     | 
| 
      
 458 
     | 
    
         
            +
                int i,j;
         
     | 
| 
      
 459 
     | 
    
         
            +
                for (i = 0; i < PRIMALITY_TESTS; ++i)
         
     | 
| 
      
 460 
     | 
    
         
            +
                {
         
     | 
| 
      
 461 
     | 
    
         
            +
             
     | 
| 
      
 462 
     | 
    
         
            +
                    VALUE a = rb_funcall(rb_cRandom, 
         
     | 
| 
      
 463 
     | 
    
         
            +
                            id_rand,
         
     | 
| 
      
 464 
     | 
    
         
            +
                            1, 
         
     | 
| 
      
 465 
     | 
    
         
            +
                            num_minus_four);
         
     | 
| 
      
 466 
     | 
    
         
            +
                    a = ADD(a, two);
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
                    VALUE x = numtheory_int_powermod(a, d, num);
         
     | 
| 
      
 469 
     | 
    
         
            +
                    if (EQL(x, one) ||
         
     | 
| 
      
 470 
     | 
    
         
            +
                        EQL(x, num_minus_one))
         
     | 
| 
      
 471 
     | 
    
         
            +
                    {
         
     | 
| 
      
 472 
     | 
    
         
            +
                        continue;
         
     | 
| 
      
 473 
     | 
    
         
            +
                    }
         
     | 
| 
      
 474 
     | 
    
         
            +
                    for(j = 0; j < s; ++j)
         
     | 
| 
      
 475 
     | 
    
         
            +
                    {
         
     | 
| 
      
 476 
     | 
    
         
            +
                        x = MOD(MUL(x, x), num);
         
     | 
| 
      
 477 
     | 
    
         
            +
                        if (EQL(x, one))
         
     | 
| 
      
 478 
     | 
    
         
            +
                        {
         
     | 
| 
      
 479 
     | 
    
         
            +
                            return Qfalse;
         
     | 
| 
      
 480 
     | 
    
         
            +
                        }
         
     | 
| 
      
 481 
     | 
    
         
            +
                        if (EQL(x, num_minus_one))
         
     | 
| 
      
 482 
     | 
    
         
            +
                        {
         
     | 
| 
      
 483 
     | 
    
         
            +
                            break;
         
     | 
| 
      
 484 
     | 
    
         
            +
                        }
         
     | 
| 
      
 485 
     | 
    
         
            +
                    }
         
     | 
| 
      
 486 
     | 
    
         
            +
                    if (!EQL(x, num_minus_one))
         
     | 
| 
      
 487 
     | 
    
         
            +
                    {
         
     | 
| 
      
 488 
     | 
    
         
            +
                        return Qfalse;
         
     | 
| 
      
 489 
     | 
    
         
            +
                    }
         
     | 
| 
      
 490 
     | 
    
         
            +
                }
         
     | 
| 
      
 491 
     | 
    
         
            +
                return Qtrue;
         
     | 
| 
      
 492 
     | 
    
         
            +
            }
         
     | 
| 
      
 493 
     | 
    
         
            +
             
     | 
| 
      
 494 
     | 
    
         
            +
            inline static int
         
     | 
| 
      
 495 
     | 
    
         
            +
            prime_p(unsigned long t)
         
     | 
| 
      
 496 
     | 
    
         
            +
            {
         
     | 
| 
      
 497 
     | 
    
         
            +
                return (t & 1) ? t == 3 ? 1 : 
         
     | 
| 
      
 498 
     | 
    
         
            +
                                   ((t % 6 == 1) || (t % 6 == 5)) ?
         
     | 
| 
      
 499 
     | 
    
         
            +
                                       t < PRIMES_UPPER_LIMIT ? 
         
     | 
| 
      
 500 
     | 
    
         
            +
                                           is_set(numtheory_is_prime, t) ? 1 : 0 :
         
     | 
| 
      
 501 
     | 
    
         
            +
                                           numtheory_bpsw_pseudoprime_p(ULL2NUM(t)) :
         
     | 
| 
      
 502 
     | 
    
         
            +
                                   0
         
     | 
| 
      
 503 
     | 
    
         
            +
                               : t == 2 ? 1 : 0;
         
     | 
| 
      
 504 
     | 
    
         
            +
            }
         
     | 
| 
      
 505 
     | 
    
         
            +
             
     | 
| 
      
 506 
     | 
    
         
            +
            /*
         
     | 
| 
      
 507 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 508 
     | 
    
         
            +
             *    integer.prime?  -> true or false
         
     | 
| 
      
 509 
     | 
    
         
            +
             *
         
     | 
| 
      
 510 
     | 
    
         
            +
             *  Returns exact result for values which are precomputed, and result
         
     | 
| 
      
 511 
     | 
    
         
            +
             *  of standard Baillie-Pomerance-Selfridge-Wagstaff test for larger values.
         
     | 
| 
      
 512 
     | 
    
         
            +
             *
         
     | 
| 
      
 513 
     | 
    
         
            +
             *    29.prime?      #=> true
         
     | 
| 
      
 514 
     | 
    
         
            +
             */
         
     | 
| 
      
 515 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 516 
     | 
    
         
            +
            numtheory_prime_p(VALUE n) 
         
     | 
| 
      
 517 
     | 
    
         
            +
            {
         
     | 
| 
      
 518 
     | 
    
         
            +
                unsigned long t;
         
     | 
| 
      
 519 
     | 
    
         
            +
                if (FIXNUM_P(n) && (t = abs(FIX2LONG(n)), t < PRIMES_UPPER_LIMIT))
         
     | 
| 
      
 520 
     | 
    
         
            +
                {
         
     | 
| 
      
 521 
     | 
    
         
            +
                    return prime_p(t) ? Qtrue : Qfalse;
         
     | 
| 
      
 522 
     | 
    
         
            +
                }
         
     | 
| 
      
 523 
     | 
    
         
            +
                else
         
     | 
| 
      
 524 
     | 
    
         
            +
                {
         
     | 
| 
      
 525 
     | 
    
         
            +
                    return numtheory_bpsw_pseudoprime_p(n);
         
     | 
| 
      
 526 
     | 
    
         
            +
                }
         
     | 
| 
      
 527 
     | 
    
         
            +
            }
         
     | 
| 
      
 528 
     | 
    
         
            +
             
     | 
| 
      
 529 
     | 
    
         
            +
            /*
         
     | 
| 
      
 530 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 531 
     | 
    
         
            +
             *    integer.nextprime -> integer
         
     | 
| 
      
 532 
     | 
    
         
            +
             *
         
     | 
| 
      
 533 
     | 
    
         
            +
             *  Returns the least (pseudo)prime > +self+. 
         
     | 
| 
      
 534 
     | 
    
         
            +
             *
         
     | 
| 
      
 535 
     | 
    
         
            +
             *    (10**28).nextprime #=> 10000000000000000000000000331
         
     | 
| 
      
 536 
     | 
    
         
            +
             */
         
     | 
| 
      
 537 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 538 
     | 
    
         
            +
            numtheory_nextprime(VALUE n)
         
     | 
| 
      
 539 
     | 
    
         
            +
            {
         
     | 
| 
      
 540 
     | 
    
         
            +
                VALUE p = n;
         
     | 
| 
      
 541 
     | 
    
         
            +
                for(;;)
         
     | 
| 
      
 542 
     | 
    
         
            +
                {
         
     | 
| 
      
 543 
     | 
    
         
            +
                    p = ADD(p, one);
         
     | 
| 
      
 544 
     | 
    
         
            +
                    if (numtheory_prime_p(p))
         
     | 
| 
      
 545 
     | 
    
         
            +
                        return p;
         
     | 
| 
      
 546 
     | 
    
         
            +
                }
         
     | 
| 
      
 547 
     | 
    
         
            +
            }
         
     | 
| 
      
 548 
     | 
    
         
            +
             
     | 
| 
      
 549 
     | 
    
         
            +
            inline static void raise_not_enough_exception()
         
     | 
| 
      
 550 
     | 
    
         
            +
            {
         
     | 
| 
      
 551 
     | 
    
         
            +
                rb_raise(rb_eArgError, "Not enough precomputed primes");
         
     | 
| 
      
 552 
     | 
    
         
            +
            }
         
     | 
| 
      
 553 
     | 
    
         
            +
             
     | 
| 
      
 554 
     | 
    
         
            +
            inline static unsigned long
         
     | 
| 
      
 555 
     | 
    
         
            +
            nth_prime(long n)
         
     | 
| 
      
 556 
     | 
    
         
            +
            {
         
     | 
| 
      
 557 
     | 
    
         
            +
                return numtheory_primes[n-1];
         
     | 
| 
      
 558 
     | 
    
         
            +
            }
         
     | 
| 
      
 559 
     | 
    
         
            +
             
     | 
| 
      
 560 
     | 
    
         
            +
            /*
         
     | 
| 
      
 561 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 562 
     | 
    
         
            +
             *    NumTheory.prime(integer)  -> integer
         
     | 
| 
      
 563 
     | 
    
         
            +
             *
         
     | 
| 
      
 564 
     | 
    
         
            +
             *  Returns prime with corresponding index. 
         
     | 
| 
      
 565 
     | 
    
         
            +
             *  The prime 2 is assumed to have index 1.
         
     | 
| 
      
 566 
     | 
    
         
            +
             *
         
     | 
| 
      
 567 
     | 
    
         
            +
             *    NumTheory.prime 1             #=> 2
         
     | 
| 
      
 568 
     | 
    
         
            +
             *    NumTheory.prime 1000          #=> 7919
         
     | 
| 
      
 569 
     | 
    
         
            +
             */
         
     | 
| 
      
 570 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 571 
     | 
    
         
            +
            numtheory_prime(VALUE obj, VALUE i)
         
     | 
| 
      
 572 
     | 
    
         
            +
            {
         
     | 
| 
      
 573 
     | 
    
         
            +
                long t;
         
     | 
| 
      
 574 
     | 
    
         
            +
                if (FIXNUM_P(i))
         
     | 
| 
      
 575 
     | 
    
         
            +
                {
         
     | 
| 
      
 576 
     | 
    
         
            +
                    t = FIX2LONG(i);
         
     | 
| 
      
 577 
     | 
    
         
            +
                    if (t < 1)
         
     | 
| 
      
 578 
     | 
    
         
            +
                    {
         
     | 
| 
      
 579 
     | 
    
         
            +
                        rb_raise(rb_eArgError, "the argument must be positive");
         
     | 
| 
      
 580 
     | 
    
         
            +
                    }
         
     | 
| 
      
 581 
     | 
    
         
            +
                    if ((unsigned long)t > NUM_OF_PRIMES)
         
     | 
| 
      
 582 
     | 
    
         
            +
                    {
         
     | 
| 
      
 583 
     | 
    
         
            +
                        raise_not_enough_exception();
         
     | 
| 
      
 584 
     | 
    
         
            +
                    }
         
     | 
| 
      
 585 
     | 
    
         
            +
                    return ULONG2NUM(nth_prime((unsigned long)t));
         
     | 
| 
      
 586 
     | 
    
         
            +
                }
         
     | 
| 
      
 587 
     | 
    
         
            +
                raise_not_enough_exception();
         
     | 
| 
      
 588 
     | 
    
         
            +
                return Qnil;
         
     | 
| 
      
 589 
     | 
    
         
            +
            }
         
     | 
| 
      
 590 
     | 
    
         
            +
             
     | 
| 
      
 591 
     | 
    
         
            +
            long
         
     | 
| 
      
 592 
     | 
    
         
            +
            primepi(unsigned long t)
         
     | 
| 
      
 593 
     | 
    
         
            +
            {
         
     | 
| 
      
 594 
     | 
    
         
            +
                if (t < 2) return 0;
         
     | 
| 
      
 595 
     | 
    
         
            +
                
         
     | 
| 
      
 596 
     | 
    
         
            +
                unsigned long l, m, r;
         
     | 
| 
      
 597 
     | 
    
         
            +
                l = 0;
         
     | 
| 
      
 598 
     | 
    
         
            +
                r = NUM_OF_PRIMES - 1;
         
     | 
| 
      
 599 
     | 
    
         
            +
             
     | 
| 
      
 600 
     | 
    
         
            +
                if (numtheory_primes[r] <= t)
         
     | 
| 
      
 601 
     | 
    
         
            +
                {
         
     | 
| 
      
 602 
     | 
    
         
            +
                    return r + 1;
         
     | 
| 
      
 603 
     | 
    
         
            +
                }
         
     | 
| 
      
 604 
     | 
    
         
            +
             
     | 
| 
      
 605 
     | 
    
         
            +
                while (l < r-1)
         
     | 
| 
      
 606 
     | 
    
         
            +
                {
         
     | 
| 
      
 607 
     | 
    
         
            +
                    m = (l + r) >> 1;
         
     | 
| 
      
 608 
     | 
    
         
            +
                    if (numtheory_primes[m] > t)
         
     | 
| 
      
 609 
     | 
    
         
            +
                        r = m;
         
     | 
| 
      
 610 
     | 
    
         
            +
                    else if (numtheory_primes[m] < t)
         
     | 
| 
      
 611 
     | 
    
         
            +
                        l = m;
         
     | 
| 
      
 612 
     | 
    
         
            +
                    else return m + 1;
         
     | 
| 
      
 613 
     | 
    
         
            +
                }
         
     | 
| 
      
 614 
     | 
    
         
            +
                return r;
         
     | 
| 
      
 615 
     | 
    
         
            +
            }
         
     | 
| 
      
 616 
     | 
    
         
            +
             
     | 
| 
      
 617 
     | 
    
         
            +
            /*
         
     | 
| 
      
 618 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 619 
     | 
    
         
            +
             *    NumTheory.primepi(integer) -> integer
         
     | 
| 
      
 620 
     | 
    
         
            +
             *
         
     | 
| 
      
 621 
     | 
    
         
            +
             *  Returns the number of primes less or equal than a given value.
         
     | 
| 
      
 622 
     | 
    
         
            +
             *
         
     | 
| 
      
 623 
     | 
    
         
            +
             *    NumTheory.primepi 10          #=> 4
         
     | 
| 
      
 624 
     | 
    
         
            +
             *    NumTheory.primepi -10         #=> 0
         
     | 
| 
      
 625 
     | 
    
         
            +
             */
         
     | 
| 
      
 626 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 627 
     | 
    
         
            +
            numtheory_primepi(VALUE obj, VALUE n)
         
     | 
| 
      
 628 
     | 
    
         
            +
            {
         
     | 
| 
      
 629 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 630 
     | 
    
         
            +
                {
         
     | 
| 
      
 631 
     | 
    
         
            +
                    return zero;
         
     | 
| 
      
 632 
     | 
    
         
            +
                }
         
     | 
| 
      
 633 
     | 
    
         
            +
                unsigned long t = TO_ULONG(n);
         
     | 
| 
      
 634 
     | 
    
         
            +
                if (t <= PRIMES_UPPER_LIMIT)
         
     | 
| 
      
 635 
     | 
    
         
            +
                {
         
     | 
| 
      
 636 
     | 
    
         
            +
                    return ULONG2NUM(primepi(t));
         
     | 
| 
      
 637 
     | 
    
         
            +
                }
         
     | 
| 
      
 638 
     | 
    
         
            +
                raise_not_enough_exception();
         
     | 
| 
      
 639 
     | 
    
         
            +
                return Qnil;
         
     | 
| 
      
 640 
     | 
    
         
            +
            }
         
     | 
| 
      
 641 
     | 
    
         
            +
             
     | 
| 
      
 642 
     | 
    
         
            +
            /*
         
     | 
| 
      
 643 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 644 
     | 
    
         
            +
             *    NumTheory.fibonacci(n, [modulo]) -> integer
         
     | 
| 
      
 645 
     | 
    
         
            +
             *
         
     | 
| 
      
 646 
     | 
    
         
            +
             *  Returns <i>n</i>-th fibonacci number (<code>% modulo</code> 
         
     | 
| 
      
 647 
     | 
    
         
            +
             *  if the <i>modulo</i> is given).
         
     | 
| 
      
 648 
     | 
    
         
            +
             *  0-th fibonacci number is assumed to be zero.
         
     | 
| 
      
 649 
     | 
    
         
            +
             *
         
     | 
| 
      
 650 
     | 
    
         
            +
             *    NumTheory.fibonacci 10                    #=> 55
         
     | 
| 
      
 651 
     | 
    
         
            +
             *    NumTheory.fibonacci 10**30, 1234567890    #=> 862134135
         
     | 
| 
      
 652 
     | 
    
         
            +
             */
         
     | 
| 
      
 653 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 654 
     | 
    
         
            +
            numtheory_fibonacci(int argc, VALUE* argv)
         
     | 
| 
      
 655 
     | 
    
         
            +
            {
         
     | 
| 
      
 656 
     | 
    
         
            +
                VALUE n, modulo;
         
     | 
| 
      
 657 
     | 
    
         
            +
                rb_scan_args(argc, argv, "11", &n, &modulo);
         
     | 
| 
      
 658 
     | 
    
         
            +
              
         
     | 
| 
      
 659 
     | 
    
         
            +
                if (FIXNUM_P(n) && FIX2LONG(n) < 2)
         
     | 
| 
      
 660 
     | 
    
         
            +
                {
         
     | 
| 
      
 661 
     | 
    
         
            +
                    return n;
         
     | 
| 
      
 662 
     | 
    
         
            +
                }
         
     | 
| 
      
 663 
     | 
    
         
            +
                
         
     | 
| 
      
 664 
     | 
    
         
            +
                if (!INTEGER_P(n) || NEGATIVE_P(n))
         
     | 
| 
      
 665 
     | 
    
         
            +
                {
         
     | 
| 
      
 666 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "n must be nonnegative integer");
         
     | 
| 
      
 667 
     | 
    
         
            +
                }
         
     | 
| 
      
 668 
     | 
    
         
            +
                if (!NIL_P(modulo) && !INTEGER_P(modulo))
         
     | 
| 
      
 669 
     | 
    
         
            +
                {
         
     | 
| 
      
 670 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "modulo must be integer");
         
     | 
| 
      
 671 
     | 
    
         
            +
                }
         
     | 
| 
      
 672 
     | 
    
         
            +
             
     | 
| 
      
 673 
     | 
    
         
            +
                VALUE a, b, c, old_a, old_b, old_c, old_b_sq;
         
     | 
| 
      
 674 
     | 
    
         
            +
                a = c = one;
         
     | 
| 
      
 675 
     | 
    
         
            +
                b = zero;
         
     | 
| 
      
 676 
     | 
    
         
            +
             
     | 
| 
      
 677 
     | 
    
         
            +
                n = SUB(n, one);
         
     | 
| 
      
 678 
     | 
    
         
            +
             
     | 
| 
      
 679 
     | 
    
         
            +
                FOR_BITS(n, { old_a = a; old_b = b; old_c = c;
         
     | 
| 
      
 680 
     | 
    
         
            +
                              old_b_sq = MUL(b, b);
         
     | 
| 
      
 681 
     | 
    
         
            +
                              
         
     | 
| 
      
 682 
     | 
    
         
            +
                              a = ADD(MUL(a, a), old_b_sq);
         
     | 
| 
      
 683 
     | 
    
         
            +
                              c = ADD(MUL(c, c), old_b_sq);
         
     | 
| 
      
 684 
     | 
    
         
            +
                              b = MUL(b, ADD(old_a, old_c));
         
     | 
| 
      
 685 
     | 
    
         
            +
                            },
         
     | 
| 
      
 686 
     | 
    
         
            +
                            {
         
     | 
| 
      
 687 
     | 
    
         
            +
                            },
         
     | 
| 
      
 688 
     | 
    
         
            +
                            { c = b;
         
     | 
| 
      
 689 
     | 
    
         
            +
                              b = a;
         
     | 
| 
      
 690 
     | 
    
         
            +
                              a = ADD(b, c);
         
     | 
| 
      
 691 
     | 
    
         
            +
                            },
         
     | 
| 
      
 692 
     | 
    
         
            +
                            if (!NIL_P(modulo))
         
     | 
| 
      
 693 
     | 
    
         
            +
                            {
         
     | 
| 
      
 694 
     | 
    
         
            +
                              a = MOD(a, modulo);
         
     | 
| 
      
 695 
     | 
    
         
            +
                              b = MOD(b, modulo);
         
     | 
| 
      
 696 
     | 
    
         
            +
                              c = MOD(c, modulo);
         
     | 
| 
      
 697 
     | 
    
         
            +
                            });
         
     | 
| 
      
 698 
     | 
    
         
            +
                return a;
         
     | 
| 
      
 699 
     | 
    
         
            +
            }
         
     | 
| 
      
 700 
     | 
    
         
            +
             
     | 
| 
      
 701 
     | 
    
         
            +
            /*
         
     | 
| 
      
 702 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 703 
     | 
    
         
            +
             *    NumTheory.sigma(n, [pow=1])  -> integer
         
     | 
| 
      
 704 
     | 
    
         
            +
             *
         
     | 
| 
      
 705 
     | 
    
         
            +
             *  Returns sum of <i>pow</i>-th powers of 
         
     | 
| 
      
 706 
     | 
    
         
            +
             *  divisors of <code>|n|</code>. <i>pow</i> must be
         
     | 
| 
      
 707 
     | 
    
         
            +
             *  nonnegative integer.
         
     | 
| 
      
 708 
     | 
    
         
            +
             *
         
     | 
| 
      
 709 
     | 
    
         
            +
             *    NumTheory.sigma 1234567890, 0        #=> 48 
         
     | 
| 
      
 710 
     | 
    
         
            +
             *    NumTheory.sigma 1234567890, 1        #=> 3211610688
         
     | 
| 
      
 711 
     | 
    
         
            +
             */
         
     | 
| 
      
 712 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 713 
     | 
    
         
            +
            numtheory_sigma(int argc, VALUE* argv)
         
     | 
| 
      
 714 
     | 
    
         
            +
            {
         
     | 
| 
      
 715 
     | 
    
         
            +
                VALUE n, pow;
         
     | 
| 
      
 716 
     | 
    
         
            +
                rb_scan_args(argc, argv, "11", &n, &pow);
         
     | 
| 
      
 717 
     | 
    
         
            +
              
         
     | 
| 
      
 718 
     | 
    
         
            +
                if (!INTEGER_P(n))
         
     | 
| 
      
 719 
     | 
    
         
            +
                {
         
     | 
| 
      
 720 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "n must be integer");
         
     | 
| 
      
 721 
     | 
    
         
            +
                }
         
     | 
| 
      
 722 
     | 
    
         
            +
                n = ABS(n);
         
     | 
| 
      
 723 
     | 
    
         
            +
             
     | 
| 
      
 724 
     | 
    
         
            +
                if (NIL_P(pow))
         
     | 
| 
      
 725 
     | 
    
         
            +
                {
         
     | 
| 
      
 726 
     | 
    
         
            +
                    pow = one;
         
     | 
| 
      
 727 
     | 
    
         
            +
                } 
         
     | 
| 
      
 728 
     | 
    
         
            +
                else if (!INTEGER_P(pow))
         
     | 
| 
      
 729 
     | 
    
         
            +
                {
         
     | 
| 
      
 730 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "power must be integer");
         
     | 
| 
      
 731 
     | 
    
         
            +
                }
         
     | 
| 
      
 732 
     | 
    
         
            +
                if (NEGATIVE_P(pow))
         
     | 
| 
      
 733 
     | 
    
         
            +
                {
         
     | 
| 
      
 734 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "power must be >= 0");
         
     | 
| 
      
 735 
     | 
    
         
            +
                }
         
     | 
| 
      
 736 
     | 
    
         
            +
                if (ZERO_P(n))
         
     | 
| 
      
 737 
     | 
    
         
            +
                {
         
     | 
| 
      
 738 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "n can't be zero");
         
     | 
| 
      
 739 
     | 
    
         
            +
                }
         
     | 
| 
      
 740 
     | 
    
         
            +
                VALUE result = one;
         
     | 
| 
      
 741 
     | 
    
         
            +
                VALUE tmp1, tmp2;
         
     | 
| 
      
 742 
     | 
    
         
            +
                int i;
         
     | 
| 
      
 743 
     | 
    
         
            +
                FOR_PRIME_FACTORS(n, p, d,
         
     | 
| 
      
 744 
     | 
    
         
            +
                        { tmp1 = one;
         
     | 
| 
      
 745 
     | 
    
         
            +
                          tmp2 = rb_big_pow(TO_BIGNUM(p), pow);
         
     | 
| 
      
 746 
     | 
    
         
            +
                          for (i = FIX2LONG(d); i; --i)
         
     | 
| 
      
 747 
     | 
    
         
            +
                          {
         
     | 
| 
      
 748 
     | 
    
         
            +
                              tmp1 = MUL(tmp1, tmp2);
         
     | 
| 
      
 749 
     | 
    
         
            +
                              tmp1 = ADD(tmp1, one);
         
     | 
| 
      
 750 
     | 
    
         
            +
                          }
         
     | 
| 
      
 751 
     | 
    
         
            +
                          result = MUL(result, tmp1);
         
     | 
| 
      
 752 
     | 
    
         
            +
                        });
         
     | 
| 
      
 753 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 754 
     | 
    
         
            +
            }
         
     | 
| 
      
 755 
     | 
    
         
            +
             
     | 
| 
      
 756 
     | 
    
         
            +
            /*
         
     | 
| 
      
 757 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 758 
     | 
    
         
            +
             *    NumTheory.eulerphi(n)   -> integer
         
     | 
| 
      
 759 
     | 
    
         
            +
             *
         
     | 
| 
      
 760 
     | 
    
         
            +
             *  Returns the number of positive integers less than <code>|n|</code>
         
     | 
| 
      
 761 
     | 
    
         
            +
             *  and coprime with <code>n</code>.
         
     | 
| 
      
 762 
     | 
    
         
            +
             *
         
     | 
| 
      
 763 
     | 
    
         
            +
             *    NumTheory.eulerphi(1234567890)        #=> 329040288
         
     | 
| 
      
 764 
     | 
    
         
            +
             */
         
     | 
| 
      
 765 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 766 
     | 
    
         
            +
            numtheory_eulerphi(VALUE obj, VALUE n)
         
     | 
| 
      
 767 
     | 
    
         
            +
            {
         
     | 
| 
      
 768 
     | 
    
         
            +
                if (!INTEGER_P(n))
         
     | 
| 
      
 769 
     | 
    
         
            +
                {
         
     | 
| 
      
 770 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "n must be integer");
         
     | 
| 
      
 771 
     | 
    
         
            +
                }
         
     | 
| 
      
 772 
     | 
    
         
            +
                VALUE num = ABS(n);
         
     | 
| 
      
 773 
     | 
    
         
            +
                if (ZERO_P(num))
         
     | 
| 
      
 774 
     | 
    
         
            +
                {
         
     | 
| 
      
 775 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "the number must be nonzero");
         
     | 
| 
      
 776 
     | 
    
         
            +
                }
         
     | 
| 
      
 777 
     | 
    
         
            +
                VALUE result = CLONE(num);
         
     | 
| 
      
 778 
     | 
    
         
            +
                FOR_PRIME_FACTORS(num, p, d, 
         
     | 
| 
      
 779 
     | 
    
         
            +
                        {
         
     | 
| 
      
 780 
     | 
    
         
            +
                            result = MUL(result, SUB(p, one));
         
     | 
| 
      
 781 
     | 
    
         
            +
                            result = DIV(result, p);
         
     | 
| 
      
 782 
     | 
    
         
            +
                        });
         
     | 
| 
      
 783 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 784 
     | 
    
         
            +
            }
         
     | 
| 
      
 785 
     | 
    
         
            +
             
     | 
| 
      
 786 
     | 
    
         
            +
            /*
         
     | 
| 
      
 787 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 788 
     | 
    
         
            +
             *    integer.prime_division    ->  ary
         
     | 
| 
      
 789 
     | 
    
         
            +
             *
         
     | 
| 
      
 790 
     | 
    
         
            +
             *  Returns factorization of the number in the form of
         
     | 
| 
      
 791 
     | 
    
         
            +
             *  array of pairs <code>[prime, power]</code>.
         
     | 
| 
      
 792 
     | 
    
         
            +
             *
         
     | 
| 
      
 793 
     | 
    
         
            +
             *    1234567890.prime_division   
         
     | 
| 
      
 794 
     | 
    
         
            +
             *          #=> [[2, 1], [3, 2], [5, 1], [3607, 1], [3803, 1]]
         
     | 
| 
      
 795 
     | 
    
         
            +
             *    (-987654321).prime_division 
         
     | 
| 
      
 796 
     | 
    
         
            +
             *          #=> [[-1, 1], [3, 2], [17, 2], [379721, 1]]
         
     | 
| 
      
 797 
     | 
    
         
            +
             */
         
     | 
| 
      
 798 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 799 
     | 
    
         
            +
            numtheory_prime_division(VALUE n)
         
     | 
| 
      
 800 
     | 
    
         
            +
            {
         
     | 
| 
      
 801 
     | 
    
         
            +
                VALUE pd[2];
         
     | 
| 
      
 802 
     | 
    
         
            +
                VALUE pds = rb_ary_new();
         
     | 
| 
      
 803 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 804 
     | 
    
         
            +
                {
         
     | 
| 
      
 805 
     | 
    
         
            +
                    pd[0] = INT2FIX(-1); pd[1] = one;
         
     | 
| 
      
 806 
     | 
    
         
            +
                    rb_ary_push(pds, rb_ary_new4(2,pd));
         
     | 
| 
      
 807 
     | 
    
         
            +
                }
         
     | 
| 
      
 808 
     | 
    
         
            +
                VALUE num = ABS(n);
         
     | 
| 
      
 809 
     | 
    
         
            +
                if (ZERO_P(n))
         
     | 
| 
      
 810 
     | 
    
         
            +
                {
         
     | 
| 
      
 811 
     | 
    
         
            +
                    pd[0] = zero; pd[1] = one;
         
     | 
| 
      
 812 
     | 
    
         
            +
                    rb_ary_push(pds, rb_ary_new4(2,pd));
         
     | 
| 
      
 813 
     | 
    
         
            +
                }
         
     | 
| 
      
 814 
     | 
    
         
            +
                else
         
     | 
| 
      
 815 
     | 
    
         
            +
                {
         
     | 
| 
      
 816 
     | 
    
         
            +
                    FOR_PRIME_FACTORS(num, p, d,
         
     | 
| 
      
 817 
     | 
    
         
            +
                        {
         
     | 
| 
      
 818 
     | 
    
         
            +
                            pd[0] = p; pd[1] = d;
         
     | 
| 
      
 819 
     | 
    
         
            +
                            rb_ary_push(pds, rb_ary_new4(2,pd));
         
     | 
| 
      
 820 
     | 
    
         
            +
                        });
         
     | 
| 
      
 821 
     | 
    
         
            +
                }
         
     | 
| 
      
 822 
     | 
    
         
            +
                return pds;
         
     | 
| 
      
 823 
     | 
    
         
            +
            }
         
     | 
| 
      
 824 
     | 
    
         
            +
             
     | 
| 
      
 825 
     | 
    
         
            +
            /*
         
     | 
| 
      
 826 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 827 
     | 
    
         
            +
             *    NumTheory.moebius(integer)  ->  -1, 0 or 1
         
     | 
| 
      
 828 
     | 
    
         
            +
             *
         
     | 
| 
      
 829 
     | 
    
         
            +
             *  Returns moebius function of argument.
         
     | 
| 
      
 830 
     | 
    
         
            +
             *
         
     | 
| 
      
 831 
     | 
    
         
            +
             *    NumTheory.moebius(4)      #=> 0
         
     | 
| 
      
 832 
     | 
    
         
            +
             *    NumTheory.moebius(35)     #=> 1
         
     | 
| 
      
 833 
     | 
    
         
            +
             */
         
     | 
| 
      
 834 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 835 
     | 
    
         
            +
            numtheory_moebius(VALUE obj, VALUE n)
         
     | 
| 
      
 836 
     | 
    
         
            +
            {
         
     | 
| 
      
 837 
     | 
    
         
            +
                if (!INTEGER_P(n))
         
     | 
| 
      
 838 
     | 
    
         
            +
                {
         
     | 
| 
      
 839 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "n must be integer");
         
     | 
| 
      
 840 
     | 
    
         
            +
                }
         
     | 
| 
      
 841 
     | 
    
         
            +
                VALUE num = ABS(n);
         
     | 
| 
      
 842 
     | 
    
         
            +
                if (ZERO_P(num))
         
     | 
| 
      
 843 
     | 
    
         
            +
                {
         
     | 
| 
      
 844 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "the number must be nonzero");
         
     | 
| 
      
 845 
     | 
    
         
            +
                }
         
     | 
| 
      
 846 
     | 
    
         
            +
                char result = 1;
         
     | 
| 
      
 847 
     | 
    
         
            +
                FOR_PRIME_FACTORS(num, p, d,
         
     | 
| 
      
 848 
     | 
    
         
            +
                        {
         
     | 
| 
      
 849 
     | 
    
         
            +
                            if (FIX2LONG(d) > 1)
         
     | 
| 
      
 850 
     | 
    
         
            +
                            {
         
     | 
| 
      
 851 
     | 
    
         
            +
                                return zero;
         
     | 
| 
      
 852 
     | 
    
         
            +
                            }
         
     | 
| 
      
 853 
     | 
    
         
            +
                            else
         
     | 
| 
      
 854 
     | 
    
         
            +
                            {
         
     | 
| 
      
 855 
     | 
    
         
            +
                                result *= -1;
         
     | 
| 
      
 856 
     | 
    
         
            +
                            }
         
     | 
| 
      
 857 
     | 
    
         
            +
                        });
         
     | 
| 
      
 858 
     | 
    
         
            +
                return INT2FIX(result);
         
     | 
| 
      
 859 
     | 
    
         
            +
            }
         
     | 
| 
      
 860 
     | 
    
         
            +
             
     | 
| 
      
 861 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 862 
     | 
    
         
            +
            product(VALUE* beg, VALUE* end)
         
     | 
| 
      
 863 
     | 
    
         
            +
            {
         
     | 
| 
      
 864 
     | 
    
         
            +
                long len = end - beg;
         
     | 
| 
      
 865 
     | 
    
         
            +
                if (!len)
         
     | 
| 
      
 866 
     | 
    
         
            +
                {
         
     | 
| 
      
 867 
     | 
    
         
            +
                    return one;
         
     | 
| 
      
 868 
     | 
    
         
            +
                }
         
     | 
| 
      
 869 
     | 
    
         
            +
                if (len < 4)
         
     | 
| 
      
 870 
     | 
    
         
            +
                {
         
     | 
| 
      
 871 
     | 
    
         
            +
                    VALUE t = *(--end);
         
     | 
| 
      
 872 
     | 
    
         
            +
                    while (beg != end)
         
     | 
| 
      
 873 
     | 
    
         
            +
                        t = MUL(t, *(--end));
         
     | 
| 
      
 874 
     | 
    
         
            +
                    return t;
         
     | 
| 
      
 875 
     | 
    
         
            +
                }
         
     | 
| 
      
 876 
     | 
    
         
            +
                long half_len = len >> 1;
         
     | 
| 
      
 877 
     | 
    
         
            +
                VALUE* mid= beg + half_len;
         
     | 
| 
      
 878 
     | 
    
         
            +
                return MUL(product(beg, mid),
         
     | 
| 
      
 879 
     | 
    
         
            +
                           product(mid, end));
         
     | 
| 
      
 880 
     | 
    
         
            +
            }
         
     | 
| 
      
 881 
     | 
    
         
            +
             
     | 
| 
      
 882 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 883 
     | 
    
         
            +
            product_of_ulongs(unsigned long* beg, unsigned long* end)
         
     | 
| 
      
 884 
     | 
    
         
            +
            {
         
     | 
| 
      
 885 
     | 
    
         
            +
                long len = end - beg;
         
     | 
| 
      
 886 
     | 
    
         
            +
                unsigned long tmp;
         
     | 
| 
      
 887 
     | 
    
         
            +
                if (len < 4)
         
     | 
| 
      
 888 
     | 
    
         
            +
                {
         
     | 
| 
      
 889 
     | 
    
         
            +
                    tmp = *(--end);
         
     | 
| 
      
 890 
     | 
    
         
            +
                    VALUE t = ULONG2NUM(tmp);
         
     | 
| 
      
 891 
     | 
    
         
            +
                    while (beg != end)
         
     | 
| 
      
 892 
     | 
    
         
            +
                        tmp = *(--end),
         
     | 
| 
      
 893 
     | 
    
         
            +
                        t = MUL(t, ULONG2NUM(tmp));
         
     | 
| 
      
 894 
     | 
    
         
            +
                    return t;
         
     | 
| 
      
 895 
     | 
    
         
            +
                }
         
     | 
| 
      
 896 
     | 
    
         
            +
                long half_len = len >> 1;
         
     | 
| 
      
 897 
     | 
    
         
            +
                unsigned long* mid = beg + half_len;
         
     | 
| 
      
 898 
     | 
    
         
            +
                return MUL(product_of_ulongs(beg, mid),
         
     | 
| 
      
 899 
     | 
    
         
            +
                           product_of_ulongs(mid, end));
         
     | 
| 
      
 900 
     | 
    
         
            +
            }
         
     | 
| 
      
 901 
     | 
    
         
            +
             
     | 
| 
      
 902 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 903 
     | 
    
         
            +
            primorial(unsigned long min, unsigned long max)
         
     | 
| 
      
 904 
     | 
    
         
            +
            {
         
     | 
| 
      
 905 
     | 
    
         
            +
                unsigned long *l;
         
     | 
| 
      
 906 
     | 
    
         
            +
                long m_pi = primepi(min);
         
     | 
| 
      
 907 
     | 
    
         
            +
                if (m_pi == 0)
         
     | 
| 
      
 908 
     | 
    
         
            +
                {
         
     | 
| 
      
 909 
     | 
    
         
            +
                    m_pi = 1;
         
     | 
| 
      
 910 
     | 
    
         
            +
                }
         
     | 
| 
      
 911 
     | 
    
         
            +
                l = numtheory_primes + m_pi - 1;
         
     | 
| 
      
 912 
     | 
    
         
            +
                if (nth_prime(m_pi) < min)
         
     | 
| 
      
 913 
     | 
    
         
            +
                {
         
     | 
| 
      
 914 
     | 
    
         
            +
                    ++m_pi;
         
     | 
| 
      
 915 
     | 
    
         
            +
                    ++l;
         
     | 
| 
      
 916 
     | 
    
         
            +
                }
         
     | 
| 
      
 917 
     | 
    
         
            +
                return product_of_ulongs(l, numtheory_primes + primepi(max));
         
     | 
| 
      
 918 
     | 
    
         
            +
            }
         
     | 
| 
      
 919 
     | 
    
         
            +
             
     | 
| 
      
 920 
     | 
    
         
            +
            /*
         
     | 
| 
      
 921 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 922 
     | 
    
         
            +
             *    NumTheory.product(ary)  -> integer
         
     | 
| 
      
 923 
     | 
    
         
            +
             *
         
     | 
| 
      
 924 
     | 
    
         
            +
             *  Returns product of integer values stored in <i>ary</i>.
         
     | 
| 
      
 925 
     | 
    
         
            +
             *  Returns 1 if <i>ary</i> is empty.
         
     | 
| 
      
 926 
     | 
    
         
            +
             *
         
     | 
| 
      
 927 
     | 
    
         
            +
             *    NumTheory.product([1,2,3,4,5,6])    #=> 720
         
     | 
| 
      
 928 
     | 
    
         
            +
             */
         
     | 
| 
      
 929 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 930 
     | 
    
         
            +
            numtheory_product(VALUE obj, VALUE arr)
         
     | 
| 
      
 931 
     | 
    
         
            +
            {
         
     | 
| 
      
 932 
     | 
    
         
            +
                if (!RB_TYPE_P(arr, T_ARRAY))
         
     | 
| 
      
 933 
     | 
    
         
            +
                {
         
     | 
| 
      
 934 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "the argument must be an array");
         
     | 
| 
      
 935 
     | 
    
         
            +
                }
         
     | 
| 
      
 936 
     | 
    
         
            +
                return product(RARRAY_PTR(arr), RARRAY_PTR(arr) + RARRAY_LEN(arr));
         
     | 
| 
      
 937 
     | 
    
         
            +
            }
         
     | 
| 
      
 938 
     | 
    
         
            +
             
     | 
| 
      
 939 
     | 
    
         
            +
            /*
         
     | 
| 
      
 940 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 941 
     | 
    
         
            +
             *    integer.primes_upto(limit) {|i| block } -> self
         
     | 
| 
      
 942 
     | 
    
         
            +
             *    integer.primes_upto(limit)              -> enumerator
         
     | 
| 
      
 943 
     | 
    
         
            +
             *
         
     | 
| 
      
 944 
     | 
    
         
            +
             *  Yields primes in interval from +self+ to <i>limit</i> inclusively.
         
     | 
| 
      
 945 
     | 
    
         
            +
             *
         
     | 
| 
      
 946 
     | 
    
         
            +
             *    2.primes_upto(17).to_a   #=> [2, 3, 5, 7, 11, 13, 17]
         
     | 
| 
      
 947 
     | 
    
         
            +
             */
         
     | 
| 
      
 948 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 949 
     | 
    
         
            +
            numtheory_primes_upto(VALUE min, VALUE _max)
         
     | 
| 
      
 950 
     | 
    
         
            +
            {
         
     | 
| 
      
 951 
     | 
    
         
            +
                VALUE max = _max;
         
     | 
| 
      
 952 
     | 
    
         
            +
                if (!INTEGER_P(max))
         
     | 
| 
      
 953 
     | 
    
         
            +
                {
         
     | 
| 
      
 954 
     | 
    
         
            +
                    if (TYPE(max) == T_FLOAT)
         
     | 
| 
      
 955 
     | 
    
         
            +
                    {
         
     | 
| 
      
 956 
     | 
    
         
            +
                       max = rb_to_int(max); 
         
     | 
| 
      
 957 
     | 
    
         
            +
                    }
         
     | 
| 
      
 958 
     | 
    
         
            +
                    else
         
     | 
| 
      
 959 
     | 
    
         
            +
                    {
         
     | 
| 
      
 960 
     | 
    
         
            +
                        rb_raise(rb_eTypeError, "upper bound must be a number");
         
     | 
| 
      
 961 
     | 
    
         
            +
                    }
         
     | 
| 
      
 962 
     | 
    
         
            +
                }
         
     | 
| 
      
 963 
     | 
    
         
            +
                if (NEGATIVE_P(SUB(max,min)))
         
     | 
| 
      
 964 
     | 
    
         
            +
                {
         
     | 
| 
      
 965 
     | 
    
         
            +
                   rb_raise(rb_eArgError, "upper bound must be more than lower");
         
     | 
| 
      
 966 
     | 
    
         
            +
                }
         
     | 
| 
      
 967 
     | 
    
         
            +
                if (NEGATIVE_P(SUB(max, two)))
         
     | 
| 
      
 968 
     | 
    
         
            +
                {
         
     | 
| 
      
 969 
     | 
    
         
            +
                   return rb_ary_new2(0);
         
     | 
| 
      
 970 
     | 
    
         
            +
                }
         
     | 
| 
      
 971 
     | 
    
         
            +
                if (NEGATIVE_P(SUB(min, two)))
         
     | 
| 
      
 972 
     | 
    
         
            +
                {
         
     | 
| 
      
 973 
     | 
    
         
            +
                   min = two;
         
     | 
| 
      
 974 
     | 
    
         
            +
                }
         
     | 
| 
      
 975 
     | 
    
         
            +
                unsigned long m = TO_ULONG(min);
         
     | 
| 
      
 976 
     | 
    
         
            +
                unsigned long M = TO_ULONG(max);
         
     | 
| 
      
 977 
     | 
    
         
            +
                if (M > PRIMES_UPPER_LIMIT)
         
     | 
| 
      
 978 
     | 
    
         
            +
                {
         
     | 
| 
      
 979 
     | 
    
         
            +
                   raise_not_enough_exception();
         
     | 
| 
      
 980 
     | 
    
         
            +
            // TODO: allow for bignums
         
     | 
| 
      
 981 
     | 
    
         
            +
                }
         
     | 
| 
      
 982 
     | 
    
         
            +
             
     | 
| 
      
 983 
     | 
    
         
            +
                RETURN_ENUMERATOR(min, 1, &max);
         
     | 
| 
      
 984 
     | 
    
         
            +
             
     | 
| 
      
 985 
     | 
    
         
            +
                long m_pi = primepi(m);
         
     | 
| 
      
 986 
     | 
    
         
            +
                long M_pi = primepi(M);
         
     | 
| 
      
 987 
     | 
    
         
            +
             
     | 
| 
      
 988 
     | 
    
         
            +
                unsigned long* p_c = numtheory_primes + m_pi - 1;
         
     | 
| 
      
 989 
     | 
    
         
            +
                if (*p_c < m)
         
     | 
| 
      
 990 
     | 
    
         
            +
                   ++m_pi, ++p_c;
         
     | 
| 
      
 991 
     | 
    
         
            +
                   
         
     | 
| 
      
 992 
     | 
    
         
            +
                for ( ; m_pi <= M_pi; ++m_pi)
         
     | 
| 
      
 993 
     | 
    
         
            +
                {
         
     | 
| 
      
 994 
     | 
    
         
            +
                   rb_yield(ULONG2NUM(*p_c));
         
     | 
| 
      
 995 
     | 
    
         
            +
                   ++p_c;
         
     | 
| 
      
 996 
     | 
    
         
            +
                }
         
     | 
| 
      
 997 
     | 
    
         
            +
                return min;
         
     | 
| 
      
 998 
     | 
    
         
            +
            }
         
     | 
| 
      
 999 
     | 
    
         
            +
             
     | 
| 
      
 1000 
     | 
    
         
            +
            static VALUE 
         
     | 
| 
      
 1001 
     | 
    
         
            +
            odd_swing(long n)
         
     | 
| 
      
 1002 
     | 
    
         
            +
            {
         
     | 
| 
      
 1003 
     | 
    
         
            +
                if (n < 65)
         
     | 
| 
      
 1004 
     | 
    
         
            +
                {
         
     | 
| 
      
 1005 
     | 
    
         
            +
                    return ULL2NUM(numtheory_small_odd_swings[n]);
         
     | 
| 
      
 1006 
     | 
    
         
            +
                }
         
     | 
| 
      
 1007 
     | 
    
         
            +
                unsigned long root_n = (int)(floor(sqrt((double)n))+0.5);
         
     | 
| 
      
 1008 
     | 
    
         
            +
                unsigned long n3 = n / 3;
         
     | 
| 
      
 1009 
     | 
    
         
            +
                long pi_n3 = primepi(n3);
         
     | 
| 
      
 1010 
     | 
    
         
            +
                long count = 0;
         
     | 
| 
      
 1011 
     | 
    
         
            +
                long q;
         
     | 
| 
      
 1012 
     | 
    
         
            +
                VALUE* prime_list = malloc(sizeof(VALUE) * pi_n3);
         
     | 
| 
      
 1013 
     | 
    
         
            +
                unsigned long* ptr = numtheory_primes + 1; // initially points to 3
         
     | 
| 
      
 1014 
     | 
    
         
            +
                unsigned long prime;
         
     | 
| 
      
 1015 
     | 
    
         
            +
                unsigned long prod;
         
     | 
| 
      
 1016 
     | 
    
         
            +
                for ( ; *ptr <= root_n; ++ptr)
         
     | 
| 
      
 1017 
     | 
    
         
            +
                {
         
     | 
| 
      
 1018 
     | 
    
         
            +
                    prod = 1;
         
     | 
| 
      
 1019 
     | 
    
         
            +
                    q = n;
         
     | 
| 
      
 1020 
     | 
    
         
            +
                    prime = *ptr;
         
     | 
| 
      
 1021 
     | 
    
         
            +
                    while (q /= prime)
         
     | 
| 
      
 1022 
     | 
    
         
            +
                        if (q & 1)
         
     | 
| 
      
 1023 
     | 
    
         
            +
                            prod *= prime;
         
     | 
| 
      
 1024 
     | 
    
         
            +
             
     | 
| 
      
 1025 
     | 
    
         
            +
                    if (prod > 1)
         
     | 
| 
      
 1026 
     | 
    
         
            +
                        prime_list[count++] = INT2FIX(prod);
         
     | 
| 
      
 1027 
     | 
    
         
            +
                }
         
     | 
| 
      
 1028 
     | 
    
         
            +
                for ( ; *ptr <= n3; ++ptr)
         
     | 
| 
      
 1029 
     | 
    
         
            +
                {
         
     | 
| 
      
 1030 
     | 
    
         
            +
                    prime = *ptr;
         
     | 
| 
      
 1031 
     | 
    
         
            +
                    if ((n / prime) & 1)
         
     | 
| 
      
 1032 
     | 
    
         
            +
                        prime_list[count++] = INT2FIX(prime);
         
     | 
| 
      
 1033 
     | 
    
         
            +
                }
         
     | 
| 
      
 1034 
     | 
    
         
            +
                VALUE r = product(prime_list, prime_list + count);
         
     | 
| 
      
 1035 
     | 
    
         
            +
                free(prime_list);
         
     | 
| 
      
 1036 
     | 
    
         
            +
                return MUL(r, primorial(n/2 + 1, n));
         
     | 
| 
      
 1037 
     | 
    
         
            +
            }
         
     | 
| 
      
 1038 
     | 
    
         
            +
             
     | 
| 
      
 1039 
     | 
    
         
            +
             
     | 
| 
      
 1040 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1041 
     | 
    
         
            +
            rec_factorial(long n)
         
     | 
| 
      
 1042 
     | 
    
         
            +
            {
         
     | 
| 
      
 1043 
     | 
    
         
            +
                if (n < 2) return one;
         
     | 
| 
      
 1044 
     | 
    
         
            +
                VALUE n2fac = rec_factorial(n >> 1);
         
     | 
| 
      
 1045 
     | 
    
         
            +
                n2fac = MUL(n2fac, n2fac);
         
     | 
| 
      
 1046 
     | 
    
         
            +
                return MUL(n2fac, odd_swing(n));
         
     | 
| 
      
 1047 
     | 
    
         
            +
            }
         
     | 
| 
      
 1048 
     | 
    
         
            +
             
     | 
| 
      
 1049 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1050 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1051 
     | 
    
         
            +
             *    integer.factorial    -> integer
         
     | 
| 
      
 1052 
     | 
    
         
            +
             *
         
     | 
| 
      
 1053 
     | 
    
         
            +
             *  Returns factorial of the number.
         
     | 
| 
      
 1054 
     | 
    
         
            +
             *
         
     | 
| 
      
 1055 
     | 
    
         
            +
             *    50.factorial.to_s(31)  #=> "283sp352ltrc9csg1398f0dt7dg067g15ikr4b6spf70"
         
     | 
| 
      
 1056 
     | 
    
         
            +
             */
         
     | 
| 
      
 1057 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1058 
     | 
    
         
            +
            numtheory_factorial_primeswing(VALUE n)
         
     | 
| 
      
 1059 
     | 
    
         
            +
            {
         
     | 
| 
      
 1060 
     | 
    
         
            +
                long t;
         
     | 
| 
      
 1061 
     | 
    
         
            +
                if ((t = FIX2LONG(n)) >= 10000000)
         
     | 
| 
      
 1062 
     | 
    
         
            +
                {
         
     | 
| 
      
 1063 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "the argument is too big!");
         
     | 
| 
      
 1064 
     | 
    
         
            +
                }
         
     | 
| 
      
 1065 
     | 
    
         
            +
                if (t < 0)
         
     | 
| 
      
 1066 
     | 
    
         
            +
                {
         
     | 
| 
      
 1067 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "factorial of negative number is undefined");
         
     | 
| 
      
 1068 
     | 
    
         
            +
                }
         
     | 
| 
      
 1069 
     | 
    
         
            +
                if (t <= 20)
         
     | 
| 
      
 1070 
     | 
    
         
            +
                {
         
     | 
| 
      
 1071 
     | 
    
         
            +
                    return ULL2NUM(numtheory_small_factorials[t]);
         
     | 
| 
      
 1072 
     | 
    
         
            +
                }
         
     | 
| 
      
 1073 
     | 
    
         
            +
                if ((unsigned long)t > PRIMES_UPPER_LIMIT)
         
     | 
| 
      
 1074 
     | 
    
         
            +
                {
         
     | 
| 
      
 1075 
     | 
    
         
            +
                    raise_not_enough_exception();
         
     | 
| 
      
 1076 
     | 
    
         
            +
                }
         
     | 
| 
      
 1077 
     | 
    
         
            +
                long shift = 0;
         
     | 
| 
      
 1078 
     | 
    
         
            +
                long q = t;
         
     | 
| 
      
 1079 
     | 
    
         
            +
                while (q > 0)
         
     | 
| 
      
 1080 
     | 
    
         
            +
                {
         
     | 
| 
      
 1081 
     | 
    
         
            +
                    q >>= 1;
         
     | 
| 
      
 1082 
     | 
    
         
            +
                    shift += q;
         
     | 
| 
      
 1083 
     | 
    
         
            +
                }
         
     | 
| 
      
 1084 
     | 
    
         
            +
                return rb_big_lshift(rec_factorial(t), LONG2NUM(shift));
         
     | 
| 
      
 1085 
     | 
    
         
            +
            }
         
     | 
| 
      
 1086 
     | 
    
         
            +
             
     | 
| 
      
 1087 
     | 
    
         
            +
            struct Egcd {
         
     | 
| 
      
 1088 
     | 
    
         
            +
                VALUE d, a, b;
         
     | 
| 
      
 1089 
     | 
    
         
            +
            };
         
     | 
| 
      
 1090 
     | 
    
         
            +
             
     | 
| 
      
 1091 
     | 
    
         
            +
            static struct Egcd
         
     | 
| 
      
 1092 
     | 
    
         
            +
            extended_gcd(VALUE x, VALUE y)
         
     | 
| 
      
 1093 
     | 
    
         
            +
            {
         
     | 
| 
      
 1094 
     | 
    
         
            +
                struct Egcd egcd_old, egcd_new;
         
     | 
| 
      
 1095 
     | 
    
         
            +
                if (ZERO_P(y))
         
     | 
| 
      
 1096 
     | 
    
         
            +
                {
         
     | 
| 
      
 1097 
     | 
    
         
            +
                    egcd_new.d = x;
         
     | 
| 
      
 1098 
     | 
    
         
            +
                    egcd_new.a = one;
         
     | 
| 
      
 1099 
     | 
    
         
            +
                    egcd_new.b = zero;
         
     | 
| 
      
 1100 
     | 
    
         
            +
                    return egcd_new;
         
     | 
| 
      
 1101 
     | 
    
         
            +
                }
         
     | 
| 
      
 1102 
     | 
    
         
            +
                VALUE divmod = DIVMOD(x, y);
         
     | 
| 
      
 1103 
     | 
    
         
            +
                egcd_old = extended_gcd(y, rb_ary_entry(divmod, 1));
         
     | 
| 
      
 1104 
     | 
    
         
            +
                egcd_new.d = egcd_old.d;
         
     | 
| 
      
 1105 
     | 
    
         
            +
                egcd_new.a = egcd_old.b;
         
     | 
| 
      
 1106 
     | 
    
         
            +
                egcd_new.b = SUB(egcd_old.a, MUL(rb_ary_entry(divmod, 0),
         
     | 
| 
      
 1107 
     | 
    
         
            +
                                                 egcd_old.b));
         
     | 
| 
      
 1108 
     | 
    
         
            +
                return egcd_new;
         
     | 
| 
      
 1109 
     | 
    
         
            +
            }
         
     | 
| 
      
 1110 
     | 
    
         
            +
             
     | 
| 
      
 1111 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1112 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1113 
     | 
    
         
            +
             *    Integer.extended_gcd(y)   -> Integer
         
     | 
| 
      
 1114 
     | 
    
         
            +
             *
         
     | 
| 
      
 1115 
     | 
    
         
            +
             *  Returns array <code>[d, [a, b]]</code> where
         
     | 
| 
      
 1116 
     | 
    
         
            +
             *  <i>d</i> is +self+.gcd(<i>y</i>) and <code>a*self + b*y = d</code>
         
     | 
| 
      
 1117 
     | 
    
         
            +
             *
         
     | 
| 
      
 1118 
     | 
    
         
            +
             *    0.extended_gcd(0)           #=> [0, [0, 0]]
         
     | 
| 
      
 1119 
     | 
    
         
            +
             *    239.extended_gcd(932)       #=> [1, [39, -10]]
         
     | 
| 
      
 1120 
     | 
    
         
            +
             */
         
     | 
| 
      
 1121 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1122 
     | 
    
         
            +
            numtheory_extended_gcd(VALUE x, VALUE y)
         
     | 
| 
      
 1123 
     | 
    
         
            +
            {
         
     | 
| 
      
 1124 
     | 
    
         
            +
                if (!INTEGER_P(y))
         
     | 
| 
      
 1125 
     | 
    
         
            +
                {
         
     | 
| 
      
 1126 
     | 
    
         
            +
                    rb_raise(rb_eTypeError, "not an integer");
         
     | 
| 
      
 1127 
     | 
    
         
            +
                }
         
     | 
| 
      
 1128 
     | 
    
         
            +
                struct Egcd egcd;
         
     | 
| 
      
 1129 
     | 
    
         
            +
                if (ZERO_P(x) && ZERO_P(y))
         
     | 
| 
      
 1130 
     | 
    
         
            +
                {
         
     | 
| 
      
 1131 
     | 
    
         
            +
                    egcd.d = egcd.a = egcd.b = zero;
         
     | 
| 
      
 1132 
     | 
    
         
            +
                }
         
     | 
| 
      
 1133 
     | 
    
         
            +
                else
         
     | 
| 
      
 1134 
     | 
    
         
            +
                {
         
     | 
| 
      
 1135 
     | 
    
         
            +
                    egcd = extended_gcd(x, y);
         
     | 
| 
      
 1136 
     | 
    
         
            +
                }
         
     | 
| 
      
 1137 
     | 
    
         
            +
                VALUE ary = rb_ary_new2(2);
         
     | 
| 
      
 1138 
     | 
    
         
            +
                rb_ary_store(ary, 0, egcd.d);
         
     | 
| 
      
 1139 
     | 
    
         
            +
                VALUE coeffs = rb_ary_new2(2);
         
     | 
| 
      
 1140 
     | 
    
         
            +
                rb_ary_store(coeffs, 0, egcd.a);
         
     | 
| 
      
 1141 
     | 
    
         
            +
                rb_ary_store(coeffs, 1, egcd.b);
         
     | 
| 
      
 1142 
     | 
    
         
            +
                rb_ary_store(ary, 1, coeffs);
         
     | 
| 
      
 1143 
     | 
    
         
            +
                return ary;
         
     | 
| 
      
 1144 
     | 
    
         
            +
            }
         
     | 
| 
      
 1145 
     | 
    
         
            +
             
     | 
| 
      
 1146 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1147 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1148 
     | 
    
         
            +
             *    integer.inverse(m)  -> integer
         
     | 
| 
      
 1149 
     | 
    
         
            +
             *
         
     | 
| 
      
 1150 
     | 
    
         
            +
             *  Returns modular inverse modulo <i>m</i> of +self+.
         
     | 
| 
      
 1151 
     | 
    
         
            +
             *
         
     | 
| 
      
 1152 
     | 
    
         
            +
             *    1234.inverse(12345)   #=> 9874
         
     | 
| 
      
 1153 
     | 
    
         
            +
             */
         
     | 
| 
      
 1154 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1155 
     | 
    
         
            +
            numtheory_modular_inverse(VALUE x, VALUE y)
         
     | 
| 
      
 1156 
     | 
    
         
            +
            {
         
     | 
| 
      
 1157 
     | 
    
         
            +
                struct Egcd egcd = extended_gcd(x, y);
         
     | 
| 
      
 1158 
     | 
    
         
            +
                if (egcd.d != one)
         
     | 
| 
      
 1159 
     | 
    
         
            +
                {
         
     | 
| 
      
 1160 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "modular inverse doesn't exist");
         
     | 
| 
      
 1161 
     | 
    
         
            +
                }
         
     | 
| 
      
 1162 
     | 
    
         
            +
                VALUE result = egcd.a;
         
     | 
| 
      
 1163 
     | 
    
         
            +
                if (NEGATIVE_P(result))
         
     | 
| 
      
 1164 
     | 
    
         
            +
                {
         
     | 
| 
      
 1165 
     | 
    
         
            +
                    result = ADD(result, y);
         
     | 
| 
      
 1166 
     | 
    
         
            +
                }
         
     | 
| 
      
 1167 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 1168 
     | 
    
         
            +
            }
         
     | 
| 
      
 1169 
     | 
    
         
            +
             
     | 
| 
      
 1170 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1171 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1172 
     | 
    
         
            +
             *    integer.znorder(modulo)  -> integer
         
     | 
| 
      
 1173 
     | 
    
         
            +
             *
         
     | 
| 
      
 1174 
     | 
    
         
            +
             *  Returns minimal positive integer <i>n</i> such that
         
     | 
| 
      
 1175 
     | 
    
         
            +
             *  <code>+self+.powermod(n, modulo) == 1</code>
         
     | 
| 
      
 1176 
     | 
    
         
            +
             *
         
     | 
| 
      
 1177 
     | 
    
         
            +
             *    20.znorder(11)  => 5
         
     | 
| 
      
 1178 
     | 
    
         
            +
             */
         
     | 
| 
      
 1179 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1180 
     | 
    
         
            +
            numtheory_multiplicative_order(VALUE a, VALUE m)
         
     | 
| 
      
 1181 
     | 
    
         
            +
            {
         
     | 
| 
      
 1182 
     | 
    
         
            +
                if (rb_funcall(a, id_gcd, 1, m) != one)
         
     | 
| 
      
 1183 
     | 
    
         
            +
                {
         
     | 
| 
      
 1184 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "not in (Z/nZ)*");
         
     | 
| 
      
 1185 
     | 
    
         
            +
                }
         
     | 
| 
      
 1186 
     | 
    
         
            +
                VALUE result = one;
         
     | 
| 
      
 1187 
     | 
    
         
            +
                VALUE pd, phi, o, x;
         
     | 
| 
      
 1188 
     | 
    
         
            +
                FOR_PRIME_FACTORS(ABS(m), p, d,
         
     | 
| 
      
 1189 
     | 
    
         
            +
                {
         
     | 
| 
      
 1190 
     | 
    
         
            +
                    o = one;
         
     | 
| 
      
 1191 
     | 
    
         
            +
                    pd = POW(p, SUB(d, o));
         
     | 
| 
      
 1192 
     | 
    
         
            +
                    phi = MUL(SUB(p, o), pd);
         
     | 
| 
      
 1193 
     | 
    
         
            +
                    pd = MUL(pd, p);
         
     | 
| 
      
 1194 
     | 
    
         
            +
                    FOR_PRIME_FACTORS(phi, q, e,
         
     | 
| 
      
 1195 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1196 
     | 
    
         
            +
                        x = numtheory_int_powermod(a, 
         
     | 
| 
      
 1197 
     | 
    
         
            +
                                                   DIV(phi, POW(q, e)),
         
     | 
| 
      
 1198 
     | 
    
         
            +
                                                   pd);
         
     | 
| 
      
 1199 
     | 
    
         
            +
                        while (x != one)
         
     | 
| 
      
 1200 
     | 
    
         
            +
                        {
         
     | 
| 
      
 1201 
     | 
    
         
            +
                            o = MUL(o, q);
         
     | 
| 
      
 1202 
     | 
    
         
            +
                            x = numtheory_int_powermod(x, q, pd);
         
     | 
| 
      
 1203 
     | 
    
         
            +
                        }
         
     | 
| 
      
 1204 
     | 
    
         
            +
                    });
         
     | 
| 
      
 1205 
     | 
    
         
            +
                    result = rb_funcall(result, id_lcm, 1, o);
         
     | 
| 
      
 1206 
     | 
    
         
            +
                });
         
     | 
| 
      
 1207 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 1208 
     | 
    
         
            +
            }
         
     | 
| 
      
 1209 
     | 
    
         
            +
             
     | 
| 
      
 1210 
     | 
    
         
            +
            inline VALUE* triple_new(VALUE v1, VALUE v2, VALUE v3)
         
     | 
| 
      
 1211 
     | 
    
         
            +
            {
         
     | 
| 
      
 1212 
     | 
    
         
            +
                VALUE* v = malloc(sizeof(VALUE)*3);
         
     | 
| 
      
 1213 
     | 
    
         
            +
                v[0] = v1; v[1] = v2; v[2] = v3;
         
     | 
| 
      
 1214 
     | 
    
         
            +
                return v;
         
     | 
| 
      
 1215 
     | 
    
         
            +
            }
         
     | 
| 
      
 1216 
     | 
    
         
            +
             
     | 
| 
      
 1217 
     | 
    
         
            +
            #define TRIPLE_SUM(triple) \
         
     | 
| 
      
 1218 
     | 
    
         
            +
                (ADD(triple[0], ADD(triple[1], triple[2])))
         
     | 
| 
      
 1219 
     | 
    
         
            +
             
     | 
| 
      
 1220 
     | 
    
         
            +
             
     | 
| 
      
 1221 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1222 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1223 
     | 
    
         
            +
             *    NumTheory.triples(max_perimeter) -> enumerator
         
     | 
| 
      
 1224 
     | 
    
         
            +
             *   
         
     | 
| 
      
 1225 
     | 
    
         
            +
             *  Yields primitive pythagorean triples with perimeter less
         
     | 
| 
      
 1226 
     | 
    
         
            +
             *  or equal to <i>max_perimeter</i>.
         
     | 
| 
      
 1227 
     | 
    
         
            +
             */
         
     | 
| 
      
 1228 
     | 
    
         
            +
            static VALUE 
         
     | 
| 
      
 1229 
     | 
    
         
            +
            numtheory_pythagorean_triples(VALUE obj, VALUE max_l)
         
     | 
| 
      
 1230 
     | 
    
         
            +
            {
         
     | 
| 
      
 1231 
     | 
    
         
            +
                RETURN_ENUMERATOR(obj, 1, &max_l);
         
     | 
| 
      
 1232 
     | 
    
         
            +
             
     | 
| 
      
 1233 
     | 
    
         
            +
                Queue* q = queue_new();
         
     | 
| 
      
 1234 
     | 
    
         
            +
             
     | 
| 
      
 1235 
     | 
    
         
            +
                VALUE* triple;
         
     | 
| 
      
 1236 
     | 
    
         
            +
             
     | 
| 
      
 1237 
     | 
    
         
            +
                queue_push(q, triple_new(three, four, five));
         
     | 
| 
      
 1238 
     | 
    
         
            +
             
     | 
| 
      
 1239 
     | 
    
         
            +
                VALUE a, b, c, a2, b2, c2, c3;
         
     | 
| 
      
 1240 
     | 
    
         
            +
                VALUE t1,t2,t3;
         
     | 
| 
      
 1241 
     | 
    
         
            +
             
     | 
| 
      
 1242 
     | 
    
         
            +
                while (q -> first)
         
     | 
| 
      
 1243 
     | 
    
         
            +
                {
         
     | 
| 
      
 1244 
     | 
    
         
            +
                    triple = queue_pop(q);
         
     | 
| 
      
 1245 
     | 
    
         
            +
                    if (MORE(TRIPLE_SUM(triple), max_l))
         
     | 
| 
      
 1246 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1247 
     | 
    
         
            +
                        free(triple);
         
     | 
| 
      
 1248 
     | 
    
         
            +
                        continue;
         
     | 
| 
      
 1249 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1250 
     | 
    
         
            +
             
     | 
| 
      
 1251 
     | 
    
         
            +
                    a = triple[0]; b = triple[1]; c = triple[2];
         
     | 
| 
      
 1252 
     | 
    
         
            +
                    rb_yield_values2(3, triple);
         
     | 
| 
      
 1253 
     | 
    
         
            +
             
     | 
| 
      
 1254 
     | 
    
         
            +
                    // uses ternary pythagorean tree
         
     | 
| 
      
 1255 
     | 
    
         
            +
                    a2 = DOUBLED(a);
         
     | 
| 
      
 1256 
     | 
    
         
            +
                    b2 = DOUBLED(b);
         
     | 
| 
      
 1257 
     | 
    
         
            +
                    c2 = DOUBLED(c);
         
     | 
| 
      
 1258 
     | 
    
         
            +
                    c3 = ADD(c, c2);
         
     | 
| 
      
 1259 
     | 
    
         
            +
             
     | 
| 
      
 1260 
     | 
    
         
            +
                    t1 = ADD(a,c2); t2 = ADD(a2,c2); t3 = ADD(a2,c3);
         
     | 
| 
      
 1261 
     | 
    
         
            +
             
     | 
| 
      
 1262 
     | 
    
         
            +
                    queue_push(q, triple_new(SUB(t1, b2),
         
     | 
| 
      
 1263 
     | 
    
         
            +
                                             SUB(t2, b),
         
     | 
| 
      
 1264 
     | 
    
         
            +
                                             SUB(t3, b2)));
         
     | 
| 
      
 1265 
     | 
    
         
            +
             
     | 
| 
      
 1266 
     | 
    
         
            +
                    queue_push(q, triple_new(SUB(ADD(b2, c2), a),
         
     | 
| 
      
 1267 
     | 
    
         
            +
                                             SUB(ADD(b, c2), a2),
         
     | 
| 
      
 1268 
     | 
    
         
            +
                                             SUB(ADD(b2, c3), a2)));
         
     | 
| 
      
 1269 
     | 
    
         
            +
             
     | 
| 
      
 1270 
     | 
    
         
            +
                    queue_push(q, triple_new(ADD(t1, b2),
         
     | 
| 
      
 1271 
     | 
    
         
            +
                                             ADD(t2, b),
         
     | 
| 
      
 1272 
     | 
    
         
            +
                                             ADD(t3, b2)));
         
     | 
| 
      
 1273 
     | 
    
         
            +
                    free(triple);
         
     | 
| 
      
 1274 
     | 
    
         
            +
                }
         
     | 
| 
      
 1275 
     | 
    
         
            +
                free(q);
         
     | 
| 
      
 1276 
     | 
    
         
            +
                return Qnil;
         
     | 
| 
      
 1277 
     | 
    
         
            +
            }
         
     | 
| 
      
 1278 
     | 
    
         
            +
             
     | 
| 
      
 1279 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1280 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1281 
     | 
    
         
            +
             *    integer.popcount -> integer
         
     | 
| 
      
 1282 
     | 
    
         
            +
             *  
         
     | 
| 
      
 1283 
     | 
    
         
            +
             *  Returns the number of set bits.
         
     | 
| 
      
 1284 
     | 
    
         
            +
             */
         
     | 
| 
      
 1285 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1286 
     | 
    
         
            +
            numtheory_popcount(VALUE n)
         
     | 
| 
      
 1287 
     | 
    
         
            +
            {
         
     | 
| 
      
 1288 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 1289 
     | 
    
         
            +
                {
         
     | 
| 
      
 1290 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "popcount is undefined for negative numbers");
         
     | 
| 
      
 1291 
     | 
    
         
            +
                }
         
     | 
| 
      
 1292 
     | 
    
         
            +
                unsigned long k = 0;
         
     | 
| 
      
 1293 
     | 
    
         
            +
                FOR_BITS(n, {}, {}, { ++k; }, {});
         
     | 
| 
      
 1294 
     | 
    
         
            +
                return ULONG2NUM(k);
         
     | 
| 
      
 1295 
     | 
    
         
            +
            }
         
     | 
| 
      
 1296 
     | 
    
         
            +
             
     | 
| 
      
 1297 
     | 
    
         
            +
            static int
         
     | 
| 
      
 1298 
     | 
    
         
            +
            int_bitlength(unsigned int v)
         
     | 
| 
      
 1299 
     | 
    
         
            +
            {   
         
     | 
| 
      
 1300 
     | 
    
         
            +
                // taken from http://graphics.stanford.edu/~seander/bithacks.html
         
     | 
| 
      
 1301 
     | 
    
         
            +
                const unsigned int b[] = {0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000};
         
     | 
| 
      
 1302 
     | 
    
         
            +
                const unsigned int S[] = {1, 2, 4, 8, 16};
         
     | 
| 
      
 1303 
     | 
    
         
            +
                int i;
         
     | 
| 
      
 1304 
     | 
    
         
            +
             
     | 
| 
      
 1305 
     | 
    
         
            +
                register unsigned int r = 0;
         
     | 
| 
      
 1306 
     | 
    
         
            +
                for (i = 4; i >= 0; --i)
         
     | 
| 
      
 1307 
     | 
    
         
            +
                {
         
     | 
| 
      
 1308 
     | 
    
         
            +
                  if (v & b[i])
         
     | 
| 
      
 1309 
     | 
    
         
            +
                  {
         
     | 
| 
      
 1310 
     | 
    
         
            +
                    v >>= S[i];
         
     | 
| 
      
 1311 
     | 
    
         
            +
                    r |= S[i];
         
     | 
| 
      
 1312 
     | 
    
         
            +
                  } 
         
     | 
| 
      
 1313 
     | 
    
         
            +
                }
         
     | 
| 
      
 1314 
     | 
    
         
            +
                return ++r;
         
     | 
| 
      
 1315 
     | 
    
         
            +
            }
         
     | 
| 
      
 1316 
     | 
    
         
            +
             
     | 
| 
      
 1317 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1318 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1319 
     | 
    
         
            +
             *    integer.bitlength -> integer
         
     | 
| 
      
 1320 
     | 
    
         
            +
             *
         
     | 
| 
      
 1321 
     | 
    
         
            +
             *  Returns the length in bits. Defined for positive integers only.
         
     | 
| 
      
 1322 
     | 
    
         
            +
             *  0 is assumed to have length 1.
         
     | 
| 
      
 1323 
     | 
    
         
            +
             */
         
     | 
| 
      
 1324 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1325 
     | 
    
         
            +
            numtheory_bitlength(VALUE n)
         
     | 
| 
      
 1326 
     | 
    
         
            +
            {
         
     | 
| 
      
 1327 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 1328 
     | 
    
         
            +
                {
         
     | 
| 
      
 1329 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "n must be positive");
         
     | 
| 
      
 1330 
     | 
    
         
            +
                }
         
     | 
| 
      
 1331 
     | 
    
         
            +
                long bit_len, half_k;
         
     | 
| 
      
 1332 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 1333 
     | 
    
         
            +
                {
         
     | 
| 
      
 1334 
     | 
    
         
            +
                    return INT2FIX(int_bitlength(FIX2LONG(n)));
         
     | 
| 
      
 1335 
     | 
    
         
            +
                }
         
     | 
| 
      
 1336 
     | 
    
         
            +
                else
         
     | 
| 
      
 1337 
     | 
    
         
            +
                {
         
     | 
| 
      
 1338 
     | 
    
         
            +
                    long len = RBIGNUM_LEN(n);
         
     | 
| 
      
 1339 
     | 
    
         
            +
                    bit_len = (len - 1) * SIZEOF_BDIGITS * 8;
         
     | 
| 
      
 1340 
     | 
    
         
            +
                    return INT2FIX(bit_len + int_bitlength(RBIGNUM_DIGITS(n)[len - 1]));
         
     | 
| 
      
 1341 
     | 
    
         
            +
                }
         
     | 
| 
      
 1342 
     | 
    
         
            +
            }
         
     | 
| 
      
 1343 
     | 
    
         
            +
             
     | 
| 
      
 1344 
     | 
    
         
            +
            static int
         
     | 
| 
      
 1345 
     | 
    
         
            +
            ull_jacobi(long long a, unsigned long long n)
         
     | 
| 
      
 1346 
     | 
    
         
            +
            {
         
     | 
| 
      
 1347 
     | 
    
         
            +
                /* it's assumed that n is odd and > 0 */
         
     | 
| 
      
 1348 
     | 
    
         
            +
                int t = 1;
         
     | 
| 
      
 1349 
     | 
    
         
            +
                long long tmp;
         
     | 
| 
      
 1350 
     | 
    
         
            +
                while (a) {
         
     | 
| 
      
 1351 
     | 
    
         
            +
                    if (a < 0) {
         
     | 
| 
      
 1352 
     | 
    
         
            +
                        a = -a; if ((n & 3) == 3) t = -t;
         
     | 
| 
      
 1353 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1354 
     | 
    
         
            +
                    switch (n & 7) {
         
     | 
| 
      
 1355 
     | 
    
         
            +
                        case 1: case 7:
         
     | 
| 
      
 1356 
     | 
    
         
            +
                            while (!(a&1)) a >>= 1; break;
         
     | 
| 
      
 1357 
     | 
    
         
            +
                        case 3: case 5:
         
     | 
| 
      
 1358 
     | 
    
         
            +
                            while (!(a&1)) a >>= 1, t = -t; break;
         
     | 
| 
      
 1359 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1360 
     | 
    
         
            +
                    tmp = a; a = n; n = tmp; 
         
     | 
| 
      
 1361 
     | 
    
         
            +
                    if ((a & 3) == 3 && (n & 3) == 3) t = -t;
         
     | 
| 
      
 1362 
     | 
    
         
            +
                    a %= n; 
         
     | 
| 
      
 1363 
     | 
    
         
            +
                    if (a > (long long)(n >> 1)) a -= n;
         
     | 
| 
      
 1364 
     | 
    
         
            +
                }
         
     | 
| 
      
 1365 
     | 
    
         
            +
                return n == 1 ? t : 0;
         
     | 
| 
      
 1366 
     | 
    
         
            +
            }
         
     | 
| 
      
 1367 
     | 
    
         
            +
             
     | 
| 
      
 1368 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1369 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1370 
     | 
    
         
            +
             *    integer.jacobi(n) -> -1, 0 or 1
         
     | 
| 
      
 1371 
     | 
    
         
            +
             *  
         
     | 
| 
      
 1372 
     | 
    
         
            +
             *  Returns jacobi symbol (a|n) where n must be odd positive
         
     | 
| 
      
 1373 
     | 
    
         
            +
             */
         
     | 
| 
      
 1374 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1375 
     | 
    
         
            +
            numtheory_jacobi(VALUE a, VALUE n)
         
     | 
| 
      
 1376 
     | 
    
         
            +
            {
         
     | 
| 
      
 1377 
     | 
    
         
            +
                if (EVEN_P(n) || NEGATIVE_P(n))
         
     | 
| 
      
 1378 
     | 
    
         
            +
                {
         
     | 
| 
      
 1379 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "n must be odd positive");
         
     | 
| 
      
 1380 
     | 
    
         
            +
                }
         
     | 
| 
      
 1381 
     | 
    
         
            +
                int t = 1;
         
     | 
| 
      
 1382 
     | 
    
         
            +
                VALUE tmp;
         
     | 
| 
      
 1383 
     | 
    
         
            +
                while (!ZERO_P(a))
         
     | 
| 
      
 1384 
     | 
    
         
            +
                {
         
     | 
| 
      
 1385 
     | 
    
         
            +
                    a = MOD(a, n);
         
     | 
| 
      
 1386 
     | 
    
         
            +
                    if (MORE(a, HALF(n)))
         
     | 
| 
      
 1387 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1388 
     | 
    
         
            +
                        a = SUB(a, n);
         
     | 
| 
      
 1389 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1390 
     | 
    
         
            +
                    if (FIXNUM_P(n)) 
         
     | 
| 
      
 1391 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1392 
     | 
    
         
            +
                        return INT2FIX(ull_jacobi(FIX2LONG(a), FIX2LONG(n)));
         
     | 
| 
      
 1393 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1394 
     | 
    
         
            +
                    if (RBIGNUM_LEN(n) <= 2) // unsigned long long is used 
         
     | 
| 
      
 1395 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1396 
     | 
    
         
            +
                        return INT2FIX(ull_jacobi(FIXNUM_P(a) ? FIX2LONG(a) : rb_big2ll(a), 
         
     | 
| 
      
 1397 
     | 
    
         
            +
                                          rb_big2ull(n)));
         
     | 
| 
      
 1398 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1399 
     | 
    
         
            +
                    if (NEGATIVE_P(a))
         
     | 
| 
      
 1400 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1401 
     | 
    
         
            +
                        a = SUB(zero, a);
         
     | 
| 
      
 1402 
     | 
    
         
            +
                        if (MOD(n, four) == three)
         
     | 
| 
      
 1403 
     | 
    
         
            +
                            t = -t;
         
     | 
| 
      
 1404 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1405 
     | 
    
         
            +
                    switch (FIX2LONG(MOD(n, eight)))
         
     | 
| 
      
 1406 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1407 
     | 
    
         
            +
                        case 1:
         
     | 
| 
      
 1408 
     | 
    
         
            +
                        case 7:
         
     | 
| 
      
 1409 
     | 
    
         
            +
                            while (EVEN_P(a))
         
     | 
| 
      
 1410 
     | 
    
         
            +
                                a = HALF(a);
         
     | 
| 
      
 1411 
     | 
    
         
            +
                            break;
         
     | 
| 
      
 1412 
     | 
    
         
            +
                        case 3:
         
     | 
| 
      
 1413 
     | 
    
         
            +
                        case 5:
         
     | 
| 
      
 1414 
     | 
    
         
            +
                            while (EVEN_P(a))
         
     | 
| 
      
 1415 
     | 
    
         
            +
                                a = HALF(a), t = -t;
         
     | 
| 
      
 1416 
     | 
    
         
            +
                            break;
         
     | 
| 
      
 1417 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1418 
     | 
    
         
            +
                    tmp = a;
         
     | 
| 
      
 1419 
     | 
    
         
            +
                    a = n;
         
     | 
| 
      
 1420 
     | 
    
         
            +
                    n = tmp;
         
     | 
| 
      
 1421 
     | 
    
         
            +
                    if (MOD(a, four) == three && MOD(n, four) == three)
         
     | 
| 
      
 1422 
     | 
    
         
            +
                        t = -t;
         
     | 
| 
      
 1423 
     | 
    
         
            +
                }
         
     | 
| 
      
 1424 
     | 
    
         
            +
                if (n == one)
         
     | 
| 
      
 1425 
     | 
    
         
            +
                {
         
     | 
| 
      
 1426 
     | 
    
         
            +
                    return INT2FIX(t);
         
     | 
| 
      
 1427 
     | 
    
         
            +
                }
         
     | 
| 
      
 1428 
     | 
    
         
            +
                else
         
     | 
| 
      
 1429 
     | 
    
         
            +
                {
         
     | 
| 
      
 1430 
     | 
    
         
            +
                    return zero;
         
     | 
| 
      
 1431 
     | 
    
         
            +
                }
         
     | 
| 
      
 1432 
     | 
    
         
            +
            }
         
     | 
| 
      
 1433 
     | 
    
         
            +
             
     | 
| 
      
 1434 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1435 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1436 
     | 
    
         
            +
             *    a.sqrt_mod(p) -> integer or nil
         
     | 
| 
      
 1437 
     | 
    
         
            +
             *
         
     | 
| 
      
 1438 
     | 
    
         
            +
             *  If (a|p) = 1 returns the square root of a in Z/pZ
         
     | 
| 
      
 1439 
     | 
    
         
            +
             *  from the interval [0, p/2]. Otherwise returns +nil+.
         
     | 
| 
      
 1440 
     | 
    
         
            +
             */
         
     | 
| 
      
 1441 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1442 
     | 
    
         
            +
            numtheory_sqrtmod(VALUE a, VALUE p)
         
     | 
| 
      
 1443 
     | 
    
         
            +
            {
         
     | 
| 
      
 1444 
     | 
    
         
            +
                if (!INTEGER_P(p))
         
     | 
| 
      
 1445 
     | 
    
         
            +
                {
         
     | 
| 
      
 1446 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "the parameters must be integer");
         
     | 
| 
      
 1447 
     | 
    
         
            +
                }
         
     | 
| 
      
 1448 
     | 
    
         
            +
                else if (!numtheory_prime_p(p))
         
     | 
| 
      
 1449 
     | 
    
         
            +
                {
         
     | 
| 
      
 1450 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "p must be prime");
         
     | 
| 
      
 1451 
     | 
    
         
            +
                }
         
     | 
| 
      
 1452 
     | 
    
         
            +
                p = ABS(p);
         
     | 
| 
      
 1453 
     | 
    
         
            +
                if (p == two)
         
     | 
| 
      
 1454 
     | 
    
         
            +
                {
         
     | 
| 
      
 1455 
     | 
    
         
            +
                    return EVEN_P(a) ? zero : one;
         
     | 
| 
      
 1456 
     | 
    
         
            +
                }
         
     | 
| 
      
 1457 
     | 
    
         
            +
                if (numtheory_jacobi(a, p) != one)
         
     | 
| 
      
 1458 
     | 
    
         
            +
                {
         
     | 
| 
      
 1459 
     | 
    
         
            +
                    return Qnil;
         
     | 
| 
      
 1460 
     | 
    
         
            +
                }
         
     | 
| 
      
 1461 
     | 
    
         
            +
             
     | 
| 
      
 1462 
     | 
    
         
            +
                VALUE t = SUB(p, one);
         
     | 
| 
      
 1463 
     | 
    
         
            +
                VALUE p_minus_one = CLONE(t);
         
     | 
| 
      
 1464 
     | 
    
         
            +
             
     | 
| 
      
 1465 
     | 
    
         
            +
                int e = tail_zeros(t);
         
     | 
| 
      
 1466 
     | 
    
         
            +
                VALUE r;
         
     | 
| 
      
 1467 
     | 
    
         
            +
             
     | 
| 
      
 1468 
     | 
    
         
            +
                t = RIGHT_SHIFT(t, e);
         
     | 
| 
      
 1469 
     | 
    
         
            +
             
     | 
| 
      
 1470 
     | 
    
         
            +
                if (e == 1)
         
     | 
| 
      
 1471 
     | 
    
         
            +
                {
         
     | 
| 
      
 1472 
     | 
    
         
            +
                    r = numtheory_int_powermod(a, ADD(HALF(t), one), p);
         
     | 
| 
      
 1473 
     | 
    
         
            +
                }
         
     | 
| 
      
 1474 
     | 
    
         
            +
                else if (e == 2)
         
     | 
| 
      
 1475 
     | 
    
         
            +
                {
         
     | 
| 
      
 1476 
     | 
    
         
            +
                    if (numtheory_int_powermod(a, t, p) == one)
         
     | 
| 
      
 1477 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1478 
     | 
    
         
            +
                        r = numtheory_int_powermod(a, ADD(HALF(t), one), p);
         
     | 
| 
      
 1479 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1480 
     | 
    
         
            +
                    else
         
     | 
| 
      
 1481 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1482 
     | 
    
         
            +
                        a = DOUBLED(a);
         
     | 
| 
      
 1483 
     | 
    
         
            +
                        r = MOD(MUL(a, numtheory_int_powermod(DOUBLED(a), HALF(t), p)), p);
         
     | 
| 
      
 1484 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1485 
     | 
    
         
            +
                }
         
     | 
| 
      
 1486 
     | 
    
         
            +
                else 
         
     | 
| 
      
 1487 
     | 
    
         
            +
                {
         
     | 
| 
      
 1488 
     | 
    
         
            +
                    // Tonelli-Shanks algorithm
         
     | 
| 
      
 1489 
     | 
    
         
            +
                    // implemented as described in "Handbook of Applied Cryptography"
         
     | 
| 
      
 1490 
     | 
    
         
            +
                    int b = 14;
         
     | 
| 
      
 1491 
     | 
    
         
            +
                    while(1)
         
     | 
| 
      
 1492 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1493 
     | 
    
         
            +
                        if (numtheory_jacobi(INT2FIX(b), p) == INT2FIX(-1))
         
     | 
| 
      
 1494 
     | 
    
         
            +
                            break;
         
     | 
| 
      
 1495 
     | 
    
         
            +
                        ++b;
         
     | 
| 
      
 1496 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1497 
     | 
    
         
            +
             
     | 
| 
      
 1498 
     | 
    
         
            +
                    VALUE a_inv = numtheory_modular_inverse(a, p);
         
     | 
| 
      
 1499 
     | 
    
         
            +
                    VALUE D = numtheory_int_powermod(INT2FIX(b), t, p);
         
     | 
| 
      
 1500 
     | 
    
         
            +
                    r = numtheory_int_powermod(a, ADD(HALF(t), one), p);
         
     | 
| 
      
 1501 
     | 
    
         
            +
             
     | 
| 
      
 1502 
     | 
    
         
            +
                    int i;
         
     | 
| 
      
 1503 
     | 
    
         
            +
                    VALUE d;
         
     | 
| 
      
 1504 
     | 
    
         
            +
                    VALUE power_of_two = rb_big_lshift(TO_BIGNUM(one), INT2FIX(e - 2));
         
     | 
| 
      
 1505 
     | 
    
         
            +
                    for (i = 1; i < e; ++i)
         
     | 
| 
      
 1506 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1507 
     | 
    
         
            +
                        d = numtheory_int_powermod(MUL(MUL(r, r), a_inv),
         
     | 
| 
      
 1508 
     | 
    
         
            +
                                                   power_of_two, p);
         
     | 
| 
      
 1509 
     | 
    
         
            +
                        power_of_two = HALF(power_of_two);
         
     | 
| 
      
 1510 
     | 
    
         
            +
                        if (EQL(d, p_minus_one))
         
     | 
| 
      
 1511 
     | 
    
         
            +
                        {
         
     | 
| 
      
 1512 
     | 
    
         
            +
                            r = MOD(MUL(r, D), p);
         
     | 
| 
      
 1513 
     | 
    
         
            +
                        }
         
     | 
| 
      
 1514 
     | 
    
         
            +
                        D = MOD(MUL(D, D), p);
         
     | 
| 
      
 1515 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1516 
     | 
    
         
            +
                }
         
     | 
| 
      
 1517 
     | 
    
         
            +
                if (MORE(r, HALF(p)))
         
     | 
| 
      
 1518 
     | 
    
         
            +
                {
         
     | 
| 
      
 1519 
     | 
    
         
            +
                    r = SUB(p, r);
         
     | 
| 
      
 1520 
     | 
    
         
            +
                }
         
     | 
| 
      
 1521 
     | 
    
         
            +
                return r;
         
     | 
| 
      
 1522 
     | 
    
         
            +
            }
         
     | 
| 
      
 1523 
     | 
    
         
            +
             
     | 
| 
      
 1524 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1525 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1526 
     | 
    
         
            +
             *    integer.isqrt -> integer
         
     | 
| 
      
 1527 
     | 
    
         
            +
             *
         
     | 
| 
      
 1528 
     | 
    
         
            +
             *  Returns the square root integer part.
         
     | 
| 
      
 1529 
     | 
    
         
            +
             */
         
     | 
| 
      
 1530 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1531 
     | 
    
         
            +
            numtheory_isqrt(VALUE n)
         
     | 
| 
      
 1532 
     | 
    
         
            +
            {
         
     | 
| 
      
 1533 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 1534 
     | 
    
         
            +
                {
         
     | 
| 
      
 1535 
     | 
    
         
            +
                    rb_raise(rb_eArgError, "can't take square root from negative number");
         
     | 
| 
      
 1536 
     | 
    
         
            +
                }
         
     | 
| 
      
 1537 
     | 
    
         
            +
                if (ZERO_P(n))
         
     | 
| 
      
 1538 
     | 
    
         
            +
                {
         
     | 
| 
      
 1539 
     | 
    
         
            +
                    return zero;
         
     | 
| 
      
 1540 
     | 
    
         
            +
                }
         
     | 
| 
      
 1541 
     | 
    
         
            +
                VALUE x, y;
         
     | 
| 
      
 1542 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 1543 
     | 
    
         
            +
                {
         
     | 
| 
      
 1544 
     | 
    
         
            +
                    x = n;
         
     | 
| 
      
 1545 
     | 
    
         
            +
                }
         
     | 
| 
      
 1546 
     | 
    
         
            +
                else
         
     | 
| 
      
 1547 
     | 
    
         
            +
                {
         
     | 
| 
      
 1548 
     | 
    
         
            +
                    x = rb_big_lshift(TO_BIGNUM(one), ADD(HALF(numtheory_bitlength(n)), one));
         
     | 
| 
      
 1549 
     | 
    
         
            +
                }
         
     | 
| 
      
 1550 
     | 
    
         
            +
                for ( ; ; )
         
     | 
| 
      
 1551 
     | 
    
         
            +
                {
         
     | 
| 
      
 1552 
     | 
    
         
            +
                    y = HALF(ADD(x, DIV(n, x)));
         
     | 
| 
      
 1553 
     | 
    
         
            +
                    if (LESS(y, x))
         
     | 
| 
      
 1554 
     | 
    
         
            +
                        x = y;
         
     | 
| 
      
 1555 
     | 
    
         
            +
                    else
         
     | 
| 
      
 1556 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 1557 
     | 
    
         
            +
                }
         
     | 
| 
      
 1558 
     | 
    
         
            +
                return x;
         
     | 
| 
      
 1559 
     | 
    
         
            +
            }
         
     | 
| 
      
 1560 
     | 
    
         
            +
             
     | 
| 
      
 1561 
     | 
    
         
            +
            static int MOD_255(VALUE n)
         
     | 
| 
      
 1562 
     | 
    
         
            +
            {
         
     | 
| 
      
 1563 
     | 
    
         
            +
                if (FIXNUM_P(n))
         
     | 
| 
      
 1564 
     | 
    
         
            +
                {
         
     | 
| 
      
 1565 
     | 
    
         
            +
                    return FIX2LONG(n) % 255;
         
     | 
| 
      
 1566 
     | 
    
         
            +
                }
         
     | 
| 
      
 1567 
     | 
    
         
            +
                unsigned long long m = 0;
         
     | 
| 
      
 1568 
     | 
    
         
            +
                BDIGIT* digit = RBIGNUM_DIGITS(n);
         
     | 
| 
      
 1569 
     | 
    
         
            +
                int i;
         
     | 
| 
      
 1570 
     | 
    
         
            +
                for (i = 0; i < RBIGNUM_LEN(n); ++i, ++digit)
         
     | 
| 
      
 1571 
     | 
    
         
            +
                {
         
     | 
| 
      
 1572 
     | 
    
         
            +
                    m += *digit & 0xFF;
         
     | 
| 
      
 1573 
     | 
    
         
            +
                    m += (*digit & 0xFF00) >> 8;
         
     | 
| 
      
 1574 
     | 
    
         
            +
                    m += (*digit & 0xFF0000) >> 16;
         
     | 
| 
      
 1575 
     | 
    
         
            +
                    m += (*digit & 0xFF000000UL) >> 24;
         
     | 
| 
      
 1576 
     | 
    
         
            +
                }
         
     | 
| 
      
 1577 
     | 
    
         
            +
                return m % 255;
         
     | 
| 
      
 1578 
     | 
    
         
            +
            }
         
     | 
| 
      
 1579 
     | 
    
         
            +
             
     | 
| 
      
 1580 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1581 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1582 
     | 
    
         
            +
             *    integer.square? -> true or false
         
     | 
| 
      
 1583 
     | 
    
         
            +
             *
         
     | 
| 
      
 1584 
     | 
    
         
            +
             *  Checks whether the integer is a perfect square or not.
         
     | 
| 
      
 1585 
     | 
    
         
            +
             */
         
     | 
| 
      
 1586 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1587 
     | 
    
         
            +
            numtheory_perfect_square_p(VALUE n)
         
     | 
| 
      
 1588 
     | 
    
         
            +
            {
         
     | 
| 
      
 1589 
     | 
    
         
            +
                if (NEGATIVE_P(n))
         
     | 
| 
      
 1590 
     | 
    
         
            +
                {
         
     | 
| 
      
 1591 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 1592 
     | 
    
         
            +
                }
         
     | 
| 
      
 1593 
     | 
    
         
            +
             
     | 
| 
      
 1594 
     | 
    
         
            +
                if ( !issquare_mod256[ (FIXNUM_P(n) ? FIX2ULONG(n) : RBIGNUM_DIGITS(n)[0]) & 0xFF ]
         
     | 
| 
      
 1595 
     | 
    
         
            +
                        ||
         
     | 
| 
      
 1596 
     | 
    
         
            +
                     !issquare_mod255[ MOD_255(n) ])
         
     | 
| 
      
 1597 
     | 
    
         
            +
                {
         
     | 
| 
      
 1598 
     | 
    
         
            +
                    // only 44 residues mod 256 are squares, and only 54 residues mod 255.
         
     | 
| 
      
 1599 
     | 
    
         
            +
                    // 44/256 * 54/255 = 0.0364 so in 96.4% of cases there's no need to 
         
     | 
| 
      
 1600 
     | 
    
         
            +
                    //   check anything else
         
     | 
| 
      
 1601 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 1602 
     | 
    
         
            +
                }
         
     | 
| 
      
 1603 
     | 
    
         
            +
             
     | 
| 
      
 1604 
     | 
    
         
            +
                VALUE r = numtheory_isqrt(n);
         
     | 
| 
      
 1605 
     | 
    
         
            +
                return EQL(MUL(r, r), n) ? Qtrue : Qfalse;
         
     | 
| 
      
 1606 
     | 
    
         
            +
            }
         
     | 
| 
      
 1607 
     | 
    
         
            +
             
     | 
| 
      
 1608 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1609 
     | 
    
         
            +
            lucas_pseudoprime_p(VALUE n, VALUE a, VALUE b)
         
     | 
| 
      
 1610 
     | 
    
         
            +
            {
         
     | 
| 
      
 1611 
     | 
    
         
            +
                // for internal use only
         
     | 
| 
      
 1612 
     | 
    
         
            +
             
     | 
| 
      
 1613 
     | 
    
         
            +
                // the details about the algorithm can be found in the book 
         
     | 
| 
      
 1614 
     | 
    
         
            +
                //     "Prime numbers. A computational perspective."
         
     | 
| 
      
 1615 
     | 
    
         
            +
             
     | 
| 
      
 1616 
     | 
    
         
            +
                VALUE d = SUB(MUL(a, a), MUL(b, four));
         
     | 
| 
      
 1617 
     | 
    
         
            +
                // it's assumed here that d is not a full square and gcd(2abd, n) = 1
         
     | 
| 
      
 1618 
     | 
    
         
            +
             
     | 
| 
      
 1619 
     | 
    
         
            +
                VALUE A = MOD(SUB(MUL(MUL(a, a), 
         
     | 
| 
      
 1620 
     | 
    
         
            +
                                      numtheory_modular_inverse(b, n)), 
         
     | 
| 
      
 1621 
     | 
    
         
            +
                                  two), 
         
     | 
| 
      
 1622 
     | 
    
         
            +
                              n);
         
     | 
| 
      
 1623 
     | 
    
         
            +
             
     | 
| 
      
 1624 
     | 
    
         
            +
                VALUE m = HALF(SUB(n, numtheory_jacobi(d, n)));
         
     | 
| 
      
 1625 
     | 
    
         
            +
             
     | 
| 
      
 1626 
     | 
    
         
            +
                VALUE u = two;
         
     | 
| 
      
 1627 
     | 
    
         
            +
                VALUE v = CLONE(A);
         
     | 
| 
      
 1628 
     | 
    
         
            +
                FOR_BITS(m, {},
         
     | 
| 
      
 1629 
     | 
    
         
            +
                            {
         
     | 
| 
      
 1630 
     | 
    
         
            +
                                v = MOD(SUB(MUL(u, v), A), n);
         
     | 
| 
      
 1631 
     | 
    
         
            +
                                u = MOD(SUB(MUL(u, u), two), n);
         
     | 
| 
      
 1632 
     | 
    
         
            +
                            },
         
     | 
| 
      
 1633 
     | 
    
         
            +
                            {
         
     | 
| 
      
 1634 
     | 
    
         
            +
                                u = MOD(SUB(MUL(u, v), A), n);
         
     | 
| 
      
 1635 
     | 
    
         
            +
                                v = MOD(SUB(MUL(v, v), two), n);
         
     | 
| 
      
 1636 
     | 
    
         
            +
                            },
         
     | 
| 
      
 1637 
     | 
    
         
            +
                            {});
         
     | 
| 
      
 1638 
     | 
    
         
            +
                if (EQL( MOD(MUL(A, u), n),
         
     | 
| 
      
 1639 
     | 
    
         
            +
                         MOD(MUL(two, v), n)))
         
     | 
| 
      
 1640 
     | 
    
         
            +
                {
         
     | 
| 
      
 1641 
     | 
    
         
            +
                    return Qtrue;
         
     | 
| 
      
 1642 
     | 
    
         
            +
                }
         
     | 
| 
      
 1643 
     | 
    
         
            +
                return Qfalse;
         
     | 
| 
      
 1644 
     | 
    
         
            +
            }
         
     | 
| 
      
 1645 
     | 
    
         
            +
             
         
     | 
| 
      
 1646 
     | 
    
         
            +
            static VALUE power_of_2_mod(VALUE p, VALUE m){
         
     | 
| 
      
 1647 
     | 
    
         
            +
                // Used internally in base-2 Miller-Rabin test.
         
     | 
| 
      
 1648 
     | 
    
         
            +
                // Uses left shift instead of multiplication.
         
     | 
| 
      
 1649 
     | 
    
         
            +
                VALUE result = one;
         
     | 
| 
      
 1650 
     | 
    
         
            +
                FOR_BITS(p, result = MUL(result, result),
         
     | 
| 
      
 1651 
     | 
    
         
            +
                            {},
         
     | 
| 
      
 1652 
     | 
    
         
            +
                            result = DOUBLED(result),
         
     | 
| 
      
 1653 
     | 
    
         
            +
                            result = MOD(result, m));
         
     | 
| 
      
 1654 
     | 
    
         
            +
                return result;
         
     | 
| 
      
 1655 
     | 
    
         
            +
            }
         
     | 
| 
      
 1656 
     | 
    
         
            +
               
         
     | 
| 
      
 1657 
     | 
    
         
            +
            static VALUE miller_rabin_base2_pseudoprime_p(VALUE n)
         
     | 
| 
      
 1658 
     | 
    
         
            +
            {
         
     | 
| 
      
 1659 
     | 
    
         
            +
                // for internal use only
         
     | 
| 
      
 1660 
     | 
    
         
            +
                VALUE num = rb_big_clone(TO_BIGNUM(n));
         
     | 
| 
      
 1661 
     | 
    
         
            +
                VALUE num_minus_one = SUB(num, one);
         
     | 
| 
      
 1662 
     | 
    
         
            +
                VALUE d = rb_big_clone(TO_BIGNUM(num_minus_one));
         
     | 
| 
      
 1663 
     | 
    
         
            +
             
     | 
| 
      
 1664 
     | 
    
         
            +
                int s = tail_zeros(d);
         
     | 
| 
      
 1665 
     | 
    
         
            +
                d = RIGHT_SHIFT(d, s); 
         
     | 
| 
      
 1666 
     | 
    
         
            +
             
     | 
| 
      
 1667 
     | 
    
         
            +
                VALUE x = power_of_2_mod(d, num);
         
     | 
| 
      
 1668 
     | 
    
         
            +
                if (EQL(x, one) || EQL(x, num_minus_one)) return Qtrue;
         
     | 
| 
      
 1669 
     | 
    
         
            +
             
     | 
| 
      
 1670 
     | 
    
         
            +
                while (s--) {
         
     | 
| 
      
 1671 
     | 
    
         
            +
                    x = MOD(MUL(x, x), num);
         
     | 
| 
      
 1672 
     | 
    
         
            +
                    if (EQL(x, one)) return Qfalse;
         
     | 
| 
      
 1673 
     | 
    
         
            +
                    if (EQL(x, num_minus_one)) break;
         
     | 
| 
      
 1674 
     | 
    
         
            +
                }
         
     | 
| 
      
 1675 
     | 
    
         
            +
                if (!EQL(x, num_minus_one)) {
         
     | 
| 
      
 1676 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 1677 
     | 
    
         
            +
                }
         
     | 
| 
      
 1678 
     | 
    
         
            +
                return Qtrue;
         
     | 
| 
      
 1679 
     | 
    
         
            +
            }
         
     | 
| 
      
 1680 
     | 
    
         
            +
             
     | 
| 
      
 1681 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1682 
     | 
    
         
            +
             *  call-seq:
         
     | 
| 
      
 1683 
     | 
    
         
            +
             *    integer.BPSW_pseudoprime? -> true or false
         
     | 
| 
      
 1684 
     | 
    
         
            +
             *
         
     | 
| 
      
 1685 
     | 
    
         
            +
             *  Standard BPSW primality test.
         
     | 
| 
      
 1686 
     | 
    
         
            +
             */
         
     | 
| 
      
 1687 
     | 
    
         
            +
            static VALUE
         
     | 
| 
      
 1688 
     | 
    
         
            +
            numtheory_bpsw_pseudoprime_p(VALUE n)
         
     | 
| 
      
 1689 
     | 
    
         
            +
            {
         
     | 
| 
      
 1690 
     | 
    
         
            +
                VALUE num = ABS(n);
         
     | 
| 
      
 1691 
     | 
    
         
            +
             
     | 
| 
      
 1692 
     | 
    
         
            +
                if (EQL(num, two))
         
     | 
| 
      
 1693 
     | 
    
         
            +
                {
         
     | 
| 
      
 1694 
     | 
    
         
            +
                    return Qtrue;
         
     | 
| 
      
 1695 
     | 
    
         
            +
                }
         
     | 
| 
      
 1696 
     | 
    
         
            +
                if (LESS(num, two) || EVEN_P(num) || 
         
     | 
| 
      
 1697 
     | 
    
         
            +
                                      (numtheory_perfect_square_p(num) == Qtrue))
         
     | 
| 
      
 1698 
     | 
    
         
            +
                {
         
     | 
| 
      
 1699 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 1700 
     | 
    
         
            +
                }
         
     | 
| 
      
 1701 
     | 
    
         
            +
             
     | 
| 
      
 1702 
     | 
    
         
            +
                // Miller-Rabin test with base 2
         
     | 
| 
      
 1703 
     | 
    
         
            +
                if (miller_rabin_base2_pseudoprime_p(num) == Qfalse)
         
     | 
| 
      
 1704 
     | 
    
         
            +
                {
         
     | 
| 
      
 1705 
     | 
    
         
            +
                    return Qfalse;
         
     | 
| 
      
 1706 
     | 
    
         
            +
                }
         
     | 
| 
      
 1707 
     | 
    
         
            +
             
     | 
| 
      
 1708 
     | 
    
         
            +
                // standard Lucas-Selfridge test. Based on the description from
         
     | 
| 
      
 1709 
     | 
    
         
            +
                //     http://www.e-maxx.ru/algo/bpsw
         
     | 
| 
      
 1710 
     | 
    
         
            +
                int d_abs, d_sign, d;
         
     | 
| 
      
 1711 
     | 
    
         
            +
                for (d_abs = 5, d_sign = 1; ; d_abs += 2, d_sign = -d_sign)
         
     | 
| 
      
 1712 
     | 
    
         
            +
                {
         
     | 
| 
      
 1713 
     | 
    
         
            +
                    d = d_abs * d_sign;
         
     | 
| 
      
 1714 
     | 
    
         
            +
                    VALUE G = rb_funcall(num, id_gcd, 1, INT2FIX(d));
         
     | 
| 
      
 1715 
     | 
    
         
            +
                    if (MORE(G, one) && LESS(G, num))
         
     | 
| 
      
 1716 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1717 
     | 
    
         
            +
                        return Qfalse;
         
     | 
| 
      
 1718 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1719 
     | 
    
         
            +
                    if (numtheory_jacobi(INT2FIX(d), num) == INT2FIX(-1))
         
     | 
| 
      
 1720 
     | 
    
         
            +
                    {
         
     | 
| 
      
 1721 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 1722 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1723 
     | 
    
         
            +
                }
         
     | 
| 
      
 1724 
     | 
    
         
            +
                
         
     | 
| 
      
 1725 
     | 
    
         
            +
                return lucas_pseudoprime_p(num, one, RIGHT_SHIFT(SUB(one, INT2FIX(d)), 2));
         
     | 
| 
      
 1726 
     | 
    
         
            +
            }
         
     |