ruby-fann 1.2.4 → 1.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +15 -0
- data/README.md +12 -7
- data/ext/ruby_fann/ruby_fann.c +33 -0
- data/lib/ruby_fann/neurotica.rb +10 -5
- data/lib/ruby_fann/version.rb +1 -1
- metadata +5 -7
checksums.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
!binary "U0hBMQ==":
|
3
|
+
metadata.gz: !binary |-
|
4
|
+
NjMyNmI4NDY5MjgwMDgzYjkxMDFjOTNkMGE5ZmI4ZWI2Mjc0MjQ0Zg==
|
5
|
+
data.tar.gz: !binary |-
|
6
|
+
MGU3NjUxNmEyZTFhOTRkMzI2OWU0Zjk5YzQzYjA1MTMxMjlkZGEwYQ==
|
7
|
+
!binary "U0hBNTEy":
|
8
|
+
metadata.gz: !binary |-
|
9
|
+
MGU5YmI0MWI3NDI2NDE4NGU1Y2FhYjcwMTgzOGJkZDM3MDUyNmE3NTA0OGEz
|
10
|
+
MmU4NzU3Y2UyMDIwNmNhMjE5MDNiYTMwNjRmY2I4NGQwNzhlZWUzMjM5YWMx
|
11
|
+
YWYzOWZlY2Q3NmNiN2I5OGVkNTgzOWRiODY1ZWUzMmU1MTk0YWM=
|
12
|
+
data.tar.gz: !binary |-
|
13
|
+
ZjQyOTI0NjU0NDQ5YWE0MmQ3ZDE0ZTMwMDgyMmM0YTkyZWQ5MTFkODVmM2Ji
|
14
|
+
YmE3YTU1YWEyZmI1ZjkyNDNmZDE0N2MyNzVjOTc2NGFjZmViM2EyZTI2N2Iy
|
15
|
+
ZDZlYjg0ZjI4NGRiNDUzMTJhZjFkNTllOGM5OWE2ZGQ5ZTUyMzQ=
|
data/README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1
|
-
#
|
1
|
+
# RubyFann
|
2
2
|
|
3
|
-
|
3
|
+
RubyFann, or "ruby-fann" is a ruby gem that binds to FANN (Fast Artificial Neural Network) from within a ruby/rails environment. FANN is a is a free open source neural network library, which implements multilayer artificial neural networks with support for both fully connected and sparsely connected networks. It is easy to use, versatile, well documented, and fast. RubyFann makes working with neural networks a breeze using ruby, with the added benefit that most of the heavy lifting is done natively.
|
4
4
|
|
5
5
|
## Installation
|
6
6
|
|
@@ -21,6 +21,9 @@ Or install it yourself as:
|
|
21
21
|
First, Go here & read about FANN. You don't need to install it before using the gem, but understanding FANN will help you understand what you can do with the ruby-fann gem:
|
22
22
|
http://leenissen.dk/fann/
|
23
23
|
|
24
|
+
ruby-fann RDocs:
|
25
|
+
http://ruby-fann.rubyforge.org/
|
26
|
+
|
24
27
|
### Example training & subsequent execution:
|
25
28
|
|
26
29
|
```ruby
|
@@ -67,13 +70,15 @@ class MyFann < RubyFann::Standard
|
|
67
70
|
end
|
68
71
|
end
|
69
72
|
```
|
70
|
-
### A sample project using
|
73
|
+
### A sample project using RubyFann to play tic-tac-toe
|
71
74
|
https://github.com/bigohstudios/tictactoe
|
72
75
|
|
73
|
-
##
|
74
|
-
|
75
|
-
|
76
|
-
|
76
|
+
## Contributors
|
77
|
+
1. Steven Miers
|
78
|
+
2. Ole Krüger
|
79
|
+
3. dignati
|
80
|
+
4. Michal Pokorný
|
81
|
+
5. Scott Li (locksley)
|
77
82
|
|
78
83
|
## Contributing
|
79
84
|
|
data/ext/ruby_fann/ruby_fann.c
CHANGED
@@ -1111,7 +1111,38 @@ static VALUE init_weights(VALUE self, VALUE train_data)
|
|
1111
1111
|
return self;
|
1112
1112
|
}
|
1113
1113
|
|
1114
|
+
/** call-seq: train(input, expected_output)
|
1114
1115
|
|
1116
|
+
Train with a single input-output pair.
|
1117
|
+
input - The inputs given to the network
|
1118
|
+
expected_output - The outputs expected. */
|
1119
|
+
static VALUE train(VALUE self, VALUE input, VALUE expected_output)
|
1120
|
+
{
|
1121
|
+
Check_Type(input, T_ARRAY);
|
1122
|
+
Check_Type(expected_output, T_ARRAY);
|
1123
|
+
|
1124
|
+
struct fann* f;
|
1125
|
+
Data_Get_Struct(self, struct fann, f);
|
1126
|
+
|
1127
|
+
unsigned int num_input = RARRAY_LEN(input);
|
1128
|
+
unsigned int num_output = RARRAY_LEN(expected_output);
|
1129
|
+
|
1130
|
+
fann_type data_input[num_input], data_output[num_output];
|
1131
|
+
|
1132
|
+
int i;
|
1133
|
+
|
1134
|
+
for (i = 0; i < num_input; i++) {
|
1135
|
+
data_input[i] = NUM2DBL(RARRAY_PTR(input)[i]);
|
1136
|
+
}
|
1137
|
+
|
1138
|
+
for (i = 0; i < num_output; i++) {
|
1139
|
+
data_output[i] = NUM2DBL(RARRAY_PTR(expected_output)[i]);
|
1140
|
+
}
|
1141
|
+
|
1142
|
+
fann_train(f, data_input, data_output);
|
1143
|
+
|
1144
|
+
return rb_int_new(0);
|
1145
|
+
}
|
1115
1146
|
|
1116
1147
|
/** call-seq: train_on_data(train_data, max_epochs, epochs_between_reports, desired_error)
|
1117
1148
|
|
@@ -1559,6 +1590,7 @@ void Init_ruby_fann ()
|
|
1559
1590
|
rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
|
1560
1591
|
rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
|
1561
1592
|
rb_define_method(m_rb_fann_standard_class, "run", run, 1);
|
1593
|
+
rb_define_method(m_rb_fann_standard_class, "train", train, 2);
|
1562
1594
|
rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
|
1563
1595
|
rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
|
1564
1596
|
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
@@ -1658,6 +1690,7 @@ void Init_ruby_fann ()
|
|
1658
1690
|
rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
|
1659
1691
|
rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
|
1660
1692
|
rb_define_method(m_rb_fann_shortcut_class, "run", run, 1);
|
1693
|
+
rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
|
1661
1694
|
rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
|
1662
1695
|
rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
|
1663
1696
|
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
data/lib/ruby_fann/neurotica.rb
CHANGED
@@ -30,11 +30,11 @@ module RubyFann
|
|
30
30
|
# Generate output graph with given neural network to the given output path (PNG)
|
31
31
|
# If args[:three_dimensional] is set, then a 3d VRML graph will be generated (experimental)
|
32
32
|
def graph(neural_net, output_path, args={})
|
33
|
-
if(args[:three_dimensional])
|
34
|
-
graph_viz = GraphViz::new( "G", :
|
33
|
+
if (args[:three_dimensional])
|
34
|
+
graph_viz = GraphViz::new( "G", :dim=>'3') # , :size=>"17,11"
|
35
35
|
shape="point"
|
36
36
|
else
|
37
|
-
graph_viz = GraphViz::new( "G", :
|
37
|
+
graph_viz = GraphViz::new( "G", :dim=>'2') # , :size=>"17,11"
|
38
38
|
shape="egg"
|
39
39
|
end
|
40
40
|
|
@@ -98,8 +98,13 @@ module RubyFann
|
|
98
98
|
end
|
99
99
|
|
100
100
|
end
|
101
|
-
|
102
|
-
|
101
|
+
|
102
|
+
if (args[:three_dimensional])
|
103
|
+
graph_viz.output(:vrml=>output_path)
|
104
|
+
else
|
105
|
+
graph_viz.output(:png=>output_path)
|
106
|
+
end
|
107
|
+
|
103
108
|
|
104
109
|
end
|
105
110
|
end
|
data/lib/ruby_fann/version.rb
CHANGED
metadata
CHANGED
@@ -1,15 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-fann
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.2.
|
5
|
-
prerelease:
|
4
|
+
version: 1.2.5
|
6
5
|
platform: ruby
|
7
6
|
authors:
|
8
7
|
- tangledpath
|
9
8
|
autorequire:
|
10
9
|
bindir: bin
|
11
10
|
cert_chain: []
|
12
|
-
date: 2013-
|
11
|
+
date: 2013-08-01 00:00:00.000000000 Z
|
13
12
|
dependencies: []
|
14
13
|
description: Bindings to use FANN from within ruby/rails environment
|
15
14
|
email:
|
@@ -49,28 +48,27 @@ files:
|
|
49
48
|
- README.md
|
50
49
|
homepage: http://github.com/tangledpath/ruby-fann
|
51
50
|
licenses: []
|
51
|
+
metadata: {}
|
52
52
|
post_install_message:
|
53
53
|
rdoc_options: []
|
54
54
|
require_paths:
|
55
55
|
- lib
|
56
56
|
- ext
|
57
57
|
required_ruby_version: !ruby/object:Gem::Requirement
|
58
|
-
none: false
|
59
58
|
requirements:
|
60
59
|
- - ! '>='
|
61
60
|
- !ruby/object:Gem::Version
|
62
61
|
version: '0'
|
63
62
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
64
|
-
none: false
|
65
63
|
requirements:
|
66
64
|
- - ! '>='
|
67
65
|
- !ruby/object:Gem::Version
|
68
66
|
version: '0'
|
69
67
|
requirements: []
|
70
68
|
rubyforge_project: ruby-fann
|
71
|
-
rubygems_version:
|
69
|
+
rubygems_version: 2.0.6
|
72
70
|
signing_key:
|
73
|
-
specification_version:
|
71
|
+
specification_version: 4
|
74
72
|
summary: Bindings to use FANN from within ruby/rails environment. Fann is a is a
|
75
73
|
free open source neural network library, which implements multilayer artificial
|
76
74
|
neural networks with support for both fully connected and sparsely connected networks. It
|