ruby-dnn 0.8.1 → 0.8.2

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 447ad62d50c89eb90c20e5d8cbec0bc849696a197fe21183c9f101b85b6da926
4
- data.tar.gz: bc5a5d1f5b96991a38045cf4696b157692c5a82fc95480fe853ba2a691435e72
3
+ metadata.gz: ee33bcc8216f37bee65157d0d7330664e46b23da56100b0cb823254690cf4716
4
+ data.tar.gz: e6448eed2fd19dbdabe9ebf03fe2c4faf04af7c97e0e4acbba4051970c5a9a15
5
5
  SHA512:
6
- metadata.gz: 6aff825a4f3e20053cfdc3459ad7186809664604c5fb9df0e8261f5197dc40e45652487f9d0ef7d01a39757506e086d75e2bb835a5e41fef7796321932111f04
7
- data.tar.gz: 66bd57b376429617cf37012a2816cafb60e428d90a756b97460f9daa6d01120533b930c403fccab6ffce2a732be1684b6f090af30141b54dc2899144bb98fca1
6
+ metadata.gz: b8d1e6e7d895b993157e5fee5e02650cb201801f7681b8a4b05267fc346c2bf3088eaadb8a0dcea97e7096cd8a3c942855a704b775e2748f8c4e20747efda1d0
7
+ data.tar.gz: ae8c5a109c148eec1f20c723c49b49eb223023f7e25bcf3b852cb208c210e6a9262a838824eb58d175259db99676aaa4b0d1fd7ee4316ee4d044f3e193236702
data/API-Reference.ja.md CHANGED
@@ -2,7 +2,7 @@
2
2
  ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
3
3
  そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
4
4
 
5
- 最終更新バージョン:0.8.0
5
+ 最終更新バージョン:0.8.2
6
6
 
7
7
  # module DNN
8
8
  ruby-dnnの名前空間をなすモジュールです。
@@ -336,17 +336,15 @@ Integer
336
336
 
337
337
  ## 【Instance methods】
338
338
 
339
- ## def initialize(num_nodes, weight_initializer: nil, bias_initializer: nil, l1_lambda: 0, l2_lambda: 0)
339
+ ## def initialize(num_nodes, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0)
340
340
  コンストラクタ。
341
341
  ### arguments
342
342
  * Integer num_nodes
343
343
  レイヤーのノード数を設定します。
344
- * Initializer weight_initializer: nil
344
+ * Initializer weight_initializer: Initializers::RandomNormal.new
345
345
  重みの初期化に使用するイニシャライザーを設定します。
346
- nilを指定すると、RandomNormalイニシャライザーが使用されます。
347
- * Initializer bias_initializer: nil
346
+ * Initializer bias_initializer: Initializers::Zeros.new
348
347
  バイアスの初期化に使用するイニシャライザーを設定します。
349
- nilを指定すると、Zerosイニシャライザーが使用されます。
350
348
  * Float l1_lambda: 0
351
349
  重みのL1正則化の係数を設定します。
352
350
  * Float l2_lambda: 0
@@ -374,7 +372,7 @@ Array
374
372
 
375
373
  ## 【Instance methods】
376
374
 
377
- ## def initialize(num_filters, filter_size, weight_initializer: nil, bias_initializer: nil, strides: 1, padding false, l1_lambda: 0, l2_lambda: 0)
375
+ ## def initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, strides: 1, padding false, l1_lambda: 0, l2_lambda: 0)
378
376
  コンストラクタ。
379
377
  ### arguments
380
378
  * Integer num_filters
@@ -382,10 +380,9 @@ Array
382
380
  * Integer | Array filter_size
383
381
  フィルターの縦と横の長さ。
384
382
  Arrayで指定する場合、[Integer height, Integer width]の形式で指定します。
385
- * Initializer weight_initializer: nil
386
- 重みの初期化に使用するイニシャライザーを設定します
387
- nilを指定すると、RandomNormalイニシャライザーが使用されます。
388
- * Initializer bias_initializer: nil
383
+ * Initializer weight_initializer: Initializers::RandomNormal.new
384
+ 重みの初期化に使用するイニシャライザーを設定します。
385
+ * Initializer bias_initializer: Initializers::Zeros.new
389
386
  バイアスの初期化に使用するイニシャライザーを設定します。
390
387
  * Array<Integer> strides: 1
391
388
  畳み込みを行う際のストライドの単位を指定します。
@@ -472,7 +469,7 @@ bool
472
469
 
473
470
  ## 【Instance methods】
474
471
 
475
- ## def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: nil, bias_initializer: nil, l1_lamda: 0, l2_lambda: 0)
472
+ ## def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lamda: 0, l2_lambda: 0)
476
473
  コンストラクタ。
477
474
  ### arguments
478
475
  * Integer num_nodes
@@ -482,12 +479,10 @@ trueを設定すると、一つ前に計算した中間層の値を使用して
482
479
  * bool return_sequences
483
480
  trueを設定すると、時系列ネットワークの中間層全てを出力します。
484
481
  falseを設定すると、時系列ネットワークの中間層の最後のみを出力します。
485
- * Initializer weight_initializer: nil
482
+ * Initializer weight_initializer: Initializers::RandomNormal.new
486
483
  重みの初期化に使用するイニシャライザーを設定します。
487
- nilを指定すると、RandomNormalイニシャライザーが使用されます。
488
- * Initializer bias_initializer: nil
484
+ * Initializer bias_initializer: Initializers::Zeros.new
489
485
  バイアスの初期化に使用するイニシャライザーを設定します。
490
- nilを指定すると、Zerosイニシャライザーが使用されます。
491
486
  * Float l1_lambda: 0
492
487
  重みのL1正則化の係数を設定します。
493
488
  * Float l2_lambda: 0
@@ -502,7 +497,7 @@ nilを指定すると、Zerosイニシャライザーが使用されます。
502
497
 
503
498
  ## 【Instance methods】
504
499
 
505
- ## def initialize(num_nodes, stateful: false, return_sequences: true, activation: nil, weight_initializer: nil, bias_initializer: nil, l1_lamda: 0, l2_lambda: 0)
500
+ ## def initialize(num_nodes, stateful: false, return_sequences: true, activation: Tanh.new, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lamda: 0, l2_lambda: 0)
506
501
  コンストラクタ。
507
502
  ### arguments
508
503
  * Integer num_nodes
@@ -514,13 +509,10 @@ trueを設定すると、時系列ネットワークの中間層全てを出力
514
509
  falseを設定すると、時系列ネットワークの中間層の最後のみを出力します。
515
510
  * Layer activation
516
511
  リカレントニューラルネットワークにおいて、使用する活性化関数を設定します。
517
- nilを指定すると、Tanhが使用されます。
518
512
  * Initializer weight_initializer: nil
519
513
  重みの初期化に使用するイニシャライザーを設定します。
520
- nilを指定すると、RandomNormalイニシャライザーが使用されます。
521
514
  * Initializer bias_initializer: nil
522
515
  バイアスの初期化に使用するイニシャライザーを設定します。
523
- nilを指定すると、Zerosイニシャライザーが使用されます。
524
516
  * Float l1_lambda: 0
525
517
  重みのL1正則化の係数を設定します。
526
518
  * Float l2_lambda: 0
@@ -694,14 +686,12 @@ Float alpha
694
686
 
695
687
  ## 【Instance methods】
696
688
 
697
- ## def init_param(layer, param_key, param)
689
+ ## def init_param(layer, param)
698
690
  レイヤーの持つパラメータを更新します。
699
691
  ### arguments
700
692
  * HasParamLayer layer
701
693
  更新対象のパラメータを持つレイヤーを指定します。
702
- * Symbol param_key
703
- 更新す対象のパラメータの名前を指定します。
704
- * Numo::SFloat param
694
+ * LearningParam param
705
695
  更新するパラメータです。
706
696
 
707
697
 
@@ -68,14 +68,14 @@ module DNN
68
68
  attr_reader :strides
69
69
 
70
70
  def initialize(num_filters, filter_size,
71
- weight_initializer: nil,
72
- bias_initializer: nil,
71
+ weight_initializer: Initializers::RandomNormal.new,
72
+ bias_initializer: Initializers::RandomNormal.new,
73
73
  strides: 1,
74
74
  padding: false,
75
75
  l1_lambda: 0,
76
76
  l2_lambda: 0)
77
77
  super(weight_initializer: weight_initializer, bias_initializer: bias_initializer,
78
- l1_lambda: l1_lambda, l2_lambda: l1_lambda)
78
+ l1_lambda: l1_lambda, l2_lambda: l2_lambda)
79
79
  @num_filters = num_filters
80
80
  @filter_size = filter_size.is_a?(Integer) ? [filter_size, filter_size] : filter_size
81
81
  @strides = strides.is_a?(Integer) ? [strides, strides] : strides
@@ -111,18 +111,16 @@ module DNN
111
111
 
112
112
  # It is a superclass of all connection layers.
113
113
  class Connection < HasParamLayer
114
- include Initializers
115
-
116
114
  attr_reader :l1_lambda # L1 regularization
117
115
  attr_reader :l2_lambda # L2 regularization
118
116
 
119
- def initialize(weight_initializer: nil,
120
- bias_initializer: nil,
117
+ def initialize(weight_initializer: Initializers::RandomNormal.new,
118
+ bias_initializer: Initializers::Zeros.new,
121
119
  l1_lambda: 0,
122
120
  l2_lambda: 0)
123
121
  super()
124
- @weight_initializer = (weight_initializer || RandomNormal.new)
125
- @bias_initializer = (bias_initializer || Zeros.new)
122
+ @weight_initializer = weight_initializer
123
+ @bias_initializer = bias_initializer
126
124
  @l1_lambda = l1_lambda
127
125
  @l2_lambda = l2_lambda
128
126
  @params[:weight] = @weight = LearningParam.new
@@ -172,9 +172,9 @@ module DNN
172
172
  def initialize(num_nodes,
173
173
  stateful: false,
174
174
  return_sequences: true,
175
- activation: nil,
176
- weight_initializer: nil,
177
- bias_initializer: nil,
175
+ activation: Tanh.new,
176
+ weight_initializer: Initializers::RandomNormal.new,
177
+ bias_initializer: Initializers::Zeros.new,
178
178
  l1_lambda: 0,
179
179
  l2_lambda: 0)
180
180
  super(num_nodes,
@@ -184,7 +184,7 @@ module DNN
184
184
  bias_initializer: bias_initializer,
185
185
  l1_lambda: 0,
186
186
  l2_lambda: 0)
187
- @activation = (activation || Tanh.new)
187
+ @activation = activation
188
188
  end
189
189
 
190
190
  def to_hash
@@ -281,8 +281,8 @@ module DNN
281
281
  def initialize(num_nodes,
282
282
  stateful: false,
283
283
  return_sequences: true,
284
- weight_initializer: nil,
285
- bias_initializer: nil,
284
+ weight_initializer: Initializers::RandomNormal.new,
285
+ bias_initializer: Initializers::Zeros.new,
286
286
  l1_lambda: 0,
287
287
  l2_lambda: 0)
288
288
  super
@@ -429,8 +429,8 @@ module DNN
429
429
  def initialize(num_nodes,
430
430
  stateful: false,
431
431
  return_sequences: true,
432
- weight_initializer: nil,
433
- bias_initializer: nil,
432
+ weight_initializer: Initializers::RandomNormal.new,
433
+ bias_initializer: Initializers::Zeros.new
434
434
  l1_lambda: 0,
435
435
  l2_lambda: 0)
436
436
  super
data/lib/dnn/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module DNN
2
- VERSION = "0.8.1"
2
+ VERSION = "0.8.2"
3
3
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby-dnn
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.8.1
4
+ version: 0.8.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - unagiootoro
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2019-01-27 00:00:00.000000000 Z
11
+ date: 2019-02-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray