ruby-dnn 0.1.8 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +38 -33
- data/LIB-API-Reference.ja.md +2 -2
- data/examples/cifar10_example.rb +8 -12
- data/examples/mnist_example.rb +1 -3
- data/examples/mnist_example2.rb +4 -6
- data/lib/dnn/core/layers.rb +102 -75
- data/lib/dnn/core/model.rb +16 -11
- data/lib/dnn/core/version.rb +1 -1
- metadata +1 -1
checksums.yaml
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
---
|
|
2
2
|
SHA256:
|
|
3
|
-
metadata.gz:
|
|
4
|
-
data.tar.gz:
|
|
3
|
+
metadata.gz: c62e4bbbd5aa1e89dbff3e112c161f14fef9b4165721fed81815b6103af184f5
|
|
4
|
+
data.tar.gz: d5b46dfde07d33f9309adb4af6256fa404218b9ad1d1cfc82a79b6752fc4549e
|
|
5
5
|
SHA512:
|
|
6
|
-
metadata.gz:
|
|
7
|
-
data.tar.gz:
|
|
6
|
+
metadata.gz: 49515dd6ed15f07b551b88d3b724c280f417a07b12c869974d5b4f34a2c2bc6ff4747ba6c853840588b365e3d77ee50cebded9d82f739e79142aebaf505313b5
|
|
7
|
+
data.tar.gz: dbd7084f28a5a1c9b5675eadb9c20e76c42897ba32a20a552ed183ada75dc83aa7953718e853a9a658dcdb794317943c56f4e46ebeedf8d6a663eb02f90832c0
|
data/API-Reference.ja.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
|
|
3
3
|
そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
|
|
4
4
|
|
|
5
|
-
対応バージョン:0.
|
|
5
|
+
対応バージョン:0.2.0
|
|
6
6
|
|
|
7
7
|
# module DNN
|
|
8
8
|
ruby-dnnの名前空間をなすモジュールです。
|
|
@@ -90,7 +90,15 @@ Model
|
|
|
90
90
|
### return
|
|
91
91
|
なし。
|
|
92
92
|
|
|
93
|
-
## def
|
|
93
|
+
## def compiled?
|
|
94
|
+
モデルがコンパイル済みであるか否かを取得します。
|
|
95
|
+
### arguments
|
|
96
|
+
なし。
|
|
97
|
+
### return
|
|
98
|
+
bool
|
|
99
|
+
モデルがコンパイル済みであるか否か。
|
|
100
|
+
|
|
101
|
+
## def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc)
|
|
94
102
|
コンパイルしたモデルを用いて学習を行います。
|
|
95
103
|
### arguments
|
|
96
104
|
* SFloat x
|
|
@@ -101,10 +109,12 @@ Model
|
|
|
101
109
|
学習回数。
|
|
102
110
|
* Integer batch_size: 1
|
|
103
111
|
学習に使用するミニバッチの数。
|
|
104
|
-
*
|
|
105
|
-
|
|
112
|
+
* Array test: nil
|
|
113
|
+
[テスト用入力データ, テスト用出力データ]の形式で設定すると、1エポックごとにテストを行います。
|
|
106
114
|
* bool verbose: true
|
|
107
115
|
trueを設定すると、学習ログを出力します。
|
|
116
|
+
* Proc batch_proc: nil
|
|
117
|
+
一度のバッチ学習が行われる前に呼び出されるprocを登録します。
|
|
108
118
|
### block
|
|
109
119
|
epoch_proc
|
|
110
120
|
1エポックの学習が終了するたびに呼び出されます。
|
|
@@ -126,23 +136,8 @@ epoch_proc
|
|
|
126
136
|
Integer
|
|
127
137
|
損失関数の値を返します。
|
|
128
138
|
|
|
129
|
-
## def test(x, y, batch_size = nil, &batch_proc)
|
|
130
|
-
学習結果をもとにテストを行います。
|
|
131
|
-
### arguments
|
|
132
|
-
* SFloat x
|
|
133
|
-
テスト用入力データ。
|
|
134
|
-
* SFloat y
|
|
135
|
-
テスト用出力データ。
|
|
136
|
-
* batch_size
|
|
137
|
-
ミニバッチの数。学習を行っていないモデルのテストを行いたい場合等に使用します。
|
|
138
|
-
### block
|
|
139
|
-
一度のバッチ学習が行われる前に呼び出されます。
|
|
140
|
-
### return
|
|
141
|
-
Float
|
|
142
|
-
テスト結果の認識率を返します。
|
|
143
|
-
|
|
144
139
|
## def accurate(x, y, batch_size = nil, &batch_proc)
|
|
145
|
-
|
|
140
|
+
学習結果をもとに認識率を返します。
|
|
146
141
|
### arguments
|
|
147
142
|
* SFloat x
|
|
148
143
|
テスト用入力データ。
|
|
@@ -175,14 +170,22 @@ SFloat
|
|
|
175
170
|
|
|
176
171
|
## 【Instance methods】
|
|
177
172
|
|
|
178
|
-
## def
|
|
179
|
-
|
|
173
|
+
## def build(model)
|
|
174
|
+
モデルのコンパイル時に、レイヤーをビルドするために使用されます。
|
|
180
175
|
### arguments
|
|
181
176
|
* Model model
|
|
182
177
|
レイヤーを持つモデルを登録します。
|
|
183
178
|
### return
|
|
184
179
|
なし。
|
|
185
180
|
|
|
181
|
+
## def builded?
|
|
182
|
+
レイヤーがビルド済みであるか否かを取得します。
|
|
183
|
+
### arguments
|
|
184
|
+
なし。
|
|
185
|
+
### return
|
|
186
|
+
bool
|
|
187
|
+
レイヤーがビルド済みであるか否か。
|
|
188
|
+
|
|
186
189
|
## abstruct def forward(x)
|
|
187
190
|
順方向伝搬を行うメソッドです。Layerクラスを継承するクラスは、このメソッドを実装する必要があります。
|
|
188
191
|
### arguments
|
|
@@ -274,15 +277,15 @@ nilを指定すると、Zerosイニシャライザーが使用されます。
|
|
|
274
277
|
畳み込みレイヤーを扱うクラスです。
|
|
275
278
|
|
|
276
279
|
## 【Instance methods】
|
|
277
|
-
## def initialize(num_filters,
|
|
280
|
+
## def initialize(num_filters, filter_width, filter_height, weight_initializer: nil, bias_initializer: nil, strides: [1, 1], padding false, weight_decay: 0)
|
|
278
281
|
コンストラクタ。
|
|
279
282
|
### arguments
|
|
280
283
|
* Integer num_filters
|
|
281
284
|
出力するフィルターの枚数
|
|
282
|
-
* Integer filter_height
|
|
283
|
-
フィルターの縦の長さ
|
|
284
285
|
* Integer filter_width
|
|
285
286
|
フィルターの横の長さ
|
|
287
|
+
* Integer filter_height
|
|
288
|
+
フィルターの縦の長さ
|
|
286
289
|
* Initializer weight_initializer: nil
|
|
287
290
|
重みの初期化に使用するイニシャライザーを設定します
|
|
288
291
|
nilを指定すると、RandomNormalイニシャライザーが使用されます。
|
|
@@ -290,8 +293,9 @@ nilを指定すると、RandomNormalイニシャライザーが使用されま
|
|
|
290
293
|
バイアスの初期化に使用するイニシャライザーを設定します。
|
|
291
294
|
* Array<Integer> strides: [1, 1]
|
|
292
295
|
畳み込みを行う際のストライドの単位を指定します。配列の要素0でy軸方向のストライドを設定し、要素1でx軸方向のストライドを設定します。
|
|
293
|
-
*
|
|
294
|
-
|
|
296
|
+
* bool padding: true
|
|
297
|
+
イメージに対してゼロパディングを行うか否かを設定します。trueを設定すると、出力されるイメージのサイズが入力されたイメージと同じになるように
|
|
298
|
+
ゼロパディングを行います。
|
|
295
299
|
* Float weight_decay: 0
|
|
296
300
|
重み減衰を行うL2正則化項の強さを設定します。
|
|
297
301
|
|
|
@@ -300,17 +304,18 @@ nilを指定すると、RandomNormalイニシャライザーが使用されま
|
|
|
300
304
|
maxプーリングを行うレイヤーです。
|
|
301
305
|
|
|
302
306
|
## 【Instance methods】
|
|
303
|
-
## def initialize(
|
|
307
|
+
## def initialize(pool_width, pool_height, strides: nil, padding: false)
|
|
304
308
|
コンストラクタ。
|
|
305
309
|
### arguments
|
|
306
|
-
* Integer pool_height
|
|
307
|
-
プーリングを行う縦の長さ。
|
|
308
310
|
* Integer pool_width
|
|
309
311
|
プーリングを行う横の長さ。
|
|
312
|
+
* Integer pool_height
|
|
313
|
+
プーリングを行う縦の長さ。
|
|
310
314
|
* Array<Integer> strides: nil
|
|
311
|
-
畳み込みを行う際のストライドの単位を指定します。配列の要素0でy軸方向のストライドを設定し、要素1でx軸方向のストライドを設定します。なお、nilが設定された場合は、[
|
|
312
|
-
*
|
|
313
|
-
|
|
315
|
+
畳み込みを行う際のストライドの単位を指定します。配列の要素0でy軸方向のストライドを設定し、要素1でx軸方向のストライドを設定します。なお、nilが設定された場合は、[pool_width, pool_height]がstridesの値となります。
|
|
316
|
+
* bool padding: true
|
|
317
|
+
イメージに対してゼロパディングを行うか否かを設定します。trueを設定すると、出力されるイメージのサイズが入力されたイメージと同じになるように
|
|
318
|
+
ゼロパディングを行います。
|
|
314
319
|
|
|
315
320
|
|
|
316
321
|
# class Flatten
|
data/LIB-API-Reference.ja.md
CHANGED
|
@@ -54,7 +54,7 @@ CIFAR-10を扱うモジュールです。
|
|
|
54
54
|
Array
|
|
55
55
|
[イメージデータ, ラベルデータ]の形式で取得します。
|
|
56
56
|
* イメージデータ
|
|
57
|
-
UInt8の[50000,
|
|
57
|
+
UInt8の[50000, 3, 32, 32]の形式
|
|
58
58
|
* テストデータ
|
|
59
59
|
UInt8の[50000]の形式
|
|
60
60
|
|
|
@@ -66,7 +66,7 @@ Array
|
|
|
66
66
|
Array
|
|
67
67
|
[イメージデータ, ラベルデータ]の形式で取得します。
|
|
68
68
|
* イメージデータ
|
|
69
|
-
UInt8の[10000,
|
|
69
|
+
UInt8の[10000, 3, 32, 32]の形式
|
|
70
70
|
* テストデータ
|
|
71
71
|
UInt8の[10000]の形式
|
|
72
72
|
|
data/examples/cifar10_example.rb
CHANGED
|
@@ -12,8 +12,8 @@ CIFAR10 = DNN::CIFAR10
|
|
|
12
12
|
x_train, y_train = CIFAR10.load_train
|
|
13
13
|
x_test, y_test = CIFAR10.load_test
|
|
14
14
|
|
|
15
|
-
x_train = SFloat.cast(x_train).
|
|
16
|
-
x_test = SFloat.cast(x_test).
|
|
15
|
+
x_train = SFloat.cast(x_train).transpose(0, 2, 3, 1)
|
|
16
|
+
x_test = SFloat.cast(x_test).transpose(0, 2, 3, 1)
|
|
17
17
|
|
|
18
18
|
x_train /= 255
|
|
19
19
|
x_test /= 255
|
|
@@ -23,23 +23,23 @@ y_test = DNN::Util.to_categorical(y_test, 10)
|
|
|
23
23
|
|
|
24
24
|
model = Model.new
|
|
25
25
|
|
|
26
|
-
model << InputLayer.new([
|
|
26
|
+
model << InputLayer.new([32, 32, 3])
|
|
27
27
|
|
|
28
|
-
model << Conv2D.new(16, 5, 5)
|
|
28
|
+
model << Conv2D.new(16, 5, 5, padding: true)
|
|
29
29
|
model << BatchNormalization.new
|
|
30
30
|
model << ReLU.new
|
|
31
31
|
|
|
32
|
-
model << Conv2D.new(16, 5, 5)
|
|
32
|
+
model << Conv2D.new(16, 5, 5, padding: true)
|
|
33
33
|
model << BatchNormalization.new
|
|
34
34
|
model << ReLU.new
|
|
35
35
|
|
|
36
36
|
model << MaxPool2D.new(2, 2)
|
|
37
37
|
|
|
38
|
-
model << Conv2D.new(32, 5, 5)
|
|
38
|
+
model << Conv2D.new(32, 5, 5, padding: true)
|
|
39
39
|
model << BatchNormalization.new
|
|
40
40
|
model << ReLU.new
|
|
41
41
|
|
|
42
|
-
model << Conv2D.new(32, 5, 5)
|
|
42
|
+
model << Conv2D.new(32, 5, 5, padding: true)
|
|
43
43
|
model << BatchNormalization.new
|
|
44
44
|
model << ReLU.new
|
|
45
45
|
|
|
@@ -55,8 +55,4 @@ model << SoftmaxWithLoss.new
|
|
|
55
55
|
|
|
56
56
|
model.compile(Adam.new)
|
|
57
57
|
|
|
58
|
-
model.train(x_train, y_train,
|
|
59
|
-
model.test(x_test, y_test)
|
|
60
|
-
end
|
|
61
|
-
|
|
62
|
-
model.save("trained_cifar10.marshal")
|
|
58
|
+
model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])
|
data/examples/mnist_example.rb
CHANGED
data/examples/mnist_example2.rb
CHANGED
|
@@ -12,8 +12,8 @@ MNIST = DNN::MNIST
|
|
|
12
12
|
x_train, y_train = MNIST.load_train
|
|
13
13
|
x_test, y_test = MNIST.load_test
|
|
14
14
|
|
|
15
|
-
x_train = SFloat.cast(x_train).reshape(x_train.shape[0],
|
|
16
|
-
x_test = SFloat.cast(x_test).reshape(x_test.shape[0],
|
|
15
|
+
x_train = SFloat.cast(x_train).reshape(x_train.shape[0], 28, 28, 1)
|
|
16
|
+
x_test = SFloat.cast(x_test).reshape(x_test.shape[0], 28, 28, 1)
|
|
17
17
|
|
|
18
18
|
x_train /= 255
|
|
19
19
|
x_test /= 255
|
|
@@ -23,7 +23,7 @@ y_test = DNN::Util.to_categorical(y_test, 10)
|
|
|
23
23
|
|
|
24
24
|
model = Model.new
|
|
25
25
|
|
|
26
|
-
model << InputLayer.new([
|
|
26
|
+
model << InputLayer.new([28, 28, 1])
|
|
27
27
|
|
|
28
28
|
model << Conv2D.new(16, 5, 5)
|
|
29
29
|
model << BatchNormalization.new
|
|
@@ -47,6 +47,4 @@ model << SoftmaxWithLoss.new
|
|
|
47
47
|
|
|
48
48
|
model.compile(Adam.new)
|
|
49
49
|
|
|
50
|
-
model.train(x_train, y_train, 10, batch_size: 100)
|
|
51
|
-
model.test(x_test, y_test)
|
|
52
|
-
end
|
|
50
|
+
model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])
|
data/lib/dnn/core/layers.rb
CHANGED
|
@@ -5,11 +5,20 @@ module DNN
|
|
|
5
5
|
class Layer
|
|
6
6
|
include Numo
|
|
7
7
|
|
|
8
|
+
def initialize
|
|
9
|
+
@builded = false
|
|
10
|
+
end
|
|
11
|
+
|
|
8
12
|
#Initialize layer when model is compiled.
|
|
9
|
-
def
|
|
13
|
+
def build(model)
|
|
14
|
+
@builded = true
|
|
10
15
|
@model = model
|
|
11
16
|
end
|
|
12
17
|
|
|
18
|
+
def builded?
|
|
19
|
+
@builded
|
|
20
|
+
end
|
|
21
|
+
|
|
13
22
|
#Forward propagation.
|
|
14
23
|
def forward() end
|
|
15
24
|
|
|
@@ -42,7 +51,7 @@ module DNN
|
|
|
42
51
|
@grads = {}
|
|
43
52
|
end
|
|
44
53
|
|
|
45
|
-
def
|
|
54
|
+
def build(model)
|
|
46
55
|
super
|
|
47
56
|
init_params
|
|
48
57
|
end
|
|
@@ -153,46 +162,58 @@ module DNN
|
|
|
153
162
|
module Convert
|
|
154
163
|
private
|
|
155
164
|
|
|
156
|
-
def im2col(img,
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
(
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
165
|
+
def im2col(img, out_w, out_h, fil_w, fil_h, strides)
|
|
166
|
+
bsize = img.shape[0]
|
|
167
|
+
ch = img.shape[3]
|
|
168
|
+
col = SFloat.zeros(bsize, ch, fil_w, fil_h, out_w, out_h)
|
|
169
|
+
img = img.transpose(0, 3, 1, 2)
|
|
170
|
+
(0...fil_h).each do |i|
|
|
171
|
+
i_range = (i...(i + strides[1] * out_h)).step(strides[1]).to_a
|
|
172
|
+
(0...fil_w).each do |j|
|
|
173
|
+
j_range = (j...(j + strides[0] * out_w)).step(strides[0]).to_a
|
|
174
|
+
col[true, true, j, i, true, true] = img[true, true, j_range, i_range]
|
|
164
175
|
end
|
|
165
176
|
end
|
|
166
|
-
col.transpose(0, 4, 5,
|
|
177
|
+
col.transpose(0, 4, 5, 2, 3, 1).reshape(bsize * out_w * out_h, fil_w * fil_h * ch)
|
|
167
178
|
end
|
|
168
|
-
|
|
169
|
-
def col2im(col, img_shape,
|
|
170
|
-
|
|
171
|
-
col = col.reshape(
|
|
172
|
-
img = SFloat.zeros(
|
|
173
|
-
(0...
|
|
174
|
-
i_range = (i...(i + strides[
|
|
175
|
-
(0...
|
|
176
|
-
j_range = (j...(j + strides[
|
|
177
|
-
img[true, true,
|
|
179
|
+
|
|
180
|
+
def col2im(col, img_shape, out_w, out_h, fil_w, fil_h, strides)
|
|
181
|
+
bsize, img_w, img_h, ch = img_shape
|
|
182
|
+
col = col.reshape(bsize, out_w, out_h, fil_w, fil_h, ch).transpose(0, 5, 3, 4, 1, 2)
|
|
183
|
+
img = SFloat.zeros(bsize, ch, img_w, img_h)
|
|
184
|
+
(0...fil_h).each do |i|
|
|
185
|
+
i_range = (i...(i + strides[1] * out_h)).step(strides[1]).to_a
|
|
186
|
+
(0...fil_w).each do |j|
|
|
187
|
+
j_range = (j...(j + strides[0] * out_w)).step(strides[0]).to_a
|
|
188
|
+
img[true, true, j_range, i_range] += col[true, true, j, i, true, true]
|
|
178
189
|
end
|
|
179
190
|
end
|
|
180
|
-
img
|
|
191
|
+
img.transpose(0, 2, 3, 1)
|
|
181
192
|
end
|
|
182
193
|
|
|
183
194
|
def padding(img, pad)
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
195
|
+
bsize, img_w, img_h, ch = img.shape
|
|
196
|
+
img2 = SFloat.zeros(bsize, img_w + pad[0], img_h + pad[1], ch)
|
|
197
|
+
i_begin = pad[1] / 2
|
|
198
|
+
i_end = i_begin + img_h
|
|
199
|
+
j_begin = pad[0] / 2
|
|
200
|
+
j_end = j_begin + img_w
|
|
201
|
+
img2[true, j_begin...j_end, i_begin...i_end, true] = img
|
|
189
202
|
img2
|
|
190
203
|
end
|
|
191
204
|
|
|
192
205
|
def back_padding(img, pad)
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
206
|
+
i_begin = pad[1] / 2
|
|
207
|
+
i_end = img.shape[2] - (pad[1] / 2.0).round
|
|
208
|
+
j_begin = pad[0] / 2
|
|
209
|
+
j_end = img.shape[1] - (pad[0] / 2.0).round
|
|
210
|
+
img[true, j_begin...j_end, i_begin...i_end, true]
|
|
211
|
+
end
|
|
212
|
+
|
|
213
|
+
def out_size(prev_w, prev_h, fil_w, fil_h, strides)
|
|
214
|
+
out_w = (prev_w - fil_w) / strides[1] + 1
|
|
215
|
+
out_h = (prev_h - fil_h) / strides[0] + 1
|
|
216
|
+
[out_w, out_h]
|
|
196
217
|
end
|
|
197
218
|
end
|
|
198
219
|
|
|
@@ -201,16 +222,16 @@ module DNN
|
|
|
201
222
|
include Initializers
|
|
202
223
|
include Convert
|
|
203
224
|
|
|
204
|
-
def initialize(num_filters,
|
|
225
|
+
def initialize(num_filters, filter_width, filter_height,
|
|
205
226
|
weight_initializer: nil,
|
|
206
227
|
bias_initializer: nil,
|
|
207
228
|
strides: [1, 1],
|
|
208
|
-
padding:
|
|
229
|
+
padding: false,
|
|
209
230
|
weight_decay: 0)
|
|
210
231
|
super()
|
|
211
232
|
@num_filters = num_filters
|
|
212
|
-
@filter_height = filter_height
|
|
213
233
|
@filter_width = filter_width
|
|
234
|
+
@filter_height = filter_height
|
|
214
235
|
@weight_initializer = (weight_initializer || RandomNormal.new)
|
|
215
236
|
@bias_initializer = (bias_initializer || Zeros.new)
|
|
216
237
|
@strides = strides
|
|
@@ -219,31 +240,34 @@ module DNN
|
|
|
219
240
|
end
|
|
220
241
|
|
|
221
242
|
def self.load_hash(hash)
|
|
222
|
-
Conv2D.new(hash[:num_filters], hash[:
|
|
243
|
+
Conv2D.new(hash[:num_filters], hash[:filter_width], hash[:filter_height],
|
|
223
244
|
weight_initializer: Util.load_hash(hash[:weight_initializer]),
|
|
224
245
|
bias_initializer: Util.load_hash(hash[:bias_initializer]),
|
|
225
246
|
strides: hash[:strides],
|
|
226
247
|
padding: hash[:padding],
|
|
227
248
|
weight_decay: hash[:weight_decay])
|
|
228
249
|
end
|
|
229
|
-
|
|
230
|
-
def
|
|
250
|
+
|
|
251
|
+
def build(model)
|
|
231
252
|
super
|
|
232
|
-
|
|
233
|
-
@out_height = (prev_height
|
|
234
|
-
|
|
253
|
+
prev_width, prev_height = prev_layer.shape[0..1]
|
|
254
|
+
@out_width, @out_height = out_size(prev_width, prev_height, @filter_width, @filter_height, @strides)
|
|
255
|
+
if @padding
|
|
256
|
+
@pad = [prev_width - @out_width, prev_height - @out_height]
|
|
257
|
+
@out_width = prev_width
|
|
258
|
+
@out_height = prev_height
|
|
259
|
+
end
|
|
235
260
|
end
|
|
236
|
-
|
|
261
|
+
|
|
237
262
|
def forward(x)
|
|
238
|
-
x = padding(x,
|
|
263
|
+
x = padding(x, @pad) if @padding
|
|
239
264
|
@x_shape = x.shape
|
|
240
|
-
@col = im2col(x, @
|
|
265
|
+
@col = im2col(x, @out_width, @out_height, @filter_width, @filter_height, @strides)
|
|
241
266
|
out = @col.dot(@params[:weight])
|
|
242
|
-
out.reshape(
|
|
267
|
+
out.reshape(x.shape[0], @out_width, @out_height, out.shape[3])
|
|
243
268
|
end
|
|
244
|
-
|
|
269
|
+
|
|
245
270
|
def backward(dout)
|
|
246
|
-
dout = dout.transpose(0, 2, 3, 1)
|
|
247
271
|
dout = dout.reshape(dout.shape[0..2].reduce(:*), dout.shape[3])
|
|
248
272
|
@grads[:weight] = @col.transpose.dot(dout)
|
|
249
273
|
if @weight_decay > 0
|
|
@@ -252,20 +276,20 @@ module DNN
|
|
|
252
276
|
end
|
|
253
277
|
@grads[:bias] = dout.sum(0)
|
|
254
278
|
dcol = dout.dot(@params[:weight].transpose)
|
|
255
|
-
dx = col2im(dcol, @x_shape, @
|
|
256
|
-
@padding ? back_padding(dx, @
|
|
279
|
+
dx = col2im(dcol, @x_shape, @out_width, @out_height, @filter_width, @filter_height, @strides)
|
|
280
|
+
@padding ? back_padding(dx, @pad) : dx
|
|
257
281
|
end
|
|
258
|
-
|
|
282
|
+
|
|
259
283
|
def shape
|
|
260
|
-
[@
|
|
284
|
+
[@out_width, @out_height, @num_filters]
|
|
261
285
|
end
|
|
262
286
|
|
|
263
287
|
def to_hash
|
|
264
288
|
{
|
|
265
289
|
name: self.class.name,
|
|
266
290
|
num_filters: @num_filters,
|
|
267
|
-
filter_height: @filter_height,
|
|
268
291
|
filter_width: @filter_width,
|
|
292
|
+
filter_height: @filter_height,
|
|
269
293
|
weight_initializer: @weight_initializer.to_hash,
|
|
270
294
|
bias_initializer: @bias_initializer.to_hash,
|
|
271
295
|
strides: @strides,
|
|
@@ -277,8 +301,8 @@ module DNN
|
|
|
277
301
|
private
|
|
278
302
|
|
|
279
303
|
def init_params
|
|
280
|
-
num_prev_filter = prev_layer.shape[
|
|
281
|
-
@params[:weight] = SFloat.new(num_prev_filter * @
|
|
304
|
+
num_prev_filter = prev_layer.shape[2]
|
|
305
|
+
@params[:weight] = SFloat.new(num_prev_filter * @filter_width * @filter_height, @num_filters)
|
|
282
306
|
@params[:bias] = SFloat.new(@num_filters)
|
|
283
307
|
@weight_initializer.init_param(self, :weight)
|
|
284
308
|
@bias_initializer.init_param(self, :bias)
|
|
@@ -289,49 +313,52 @@ module DNN
|
|
|
289
313
|
class MaxPool2D < Layer
|
|
290
314
|
include Convert
|
|
291
315
|
|
|
292
|
-
def initialize(
|
|
293
|
-
@pool_height = pool_height
|
|
316
|
+
def initialize(pool_width, pool_height, strides: nil, padding: false)
|
|
294
317
|
@pool_width = pool_width
|
|
295
|
-
@
|
|
318
|
+
@pool_height = pool_height
|
|
319
|
+
@strides = strides ? strides : [@pool_width, @pool_height]
|
|
296
320
|
@padding = padding
|
|
297
|
-
end
|
|
298
|
-
|
|
299
|
-
def
|
|
321
|
+
end
|
|
322
|
+
|
|
323
|
+
def build(model)
|
|
300
324
|
super
|
|
301
|
-
|
|
302
|
-
@num_channel = prev_layer.shape[
|
|
303
|
-
@out_height = (prev_height
|
|
304
|
-
|
|
325
|
+
prev_width, prev_height = prev_layer.shape[0..1]
|
|
326
|
+
@num_channel = prev_layer.shape[2]
|
|
327
|
+
@out_width, @out_height = out_size(prev_width, prev_height, @pool_width, @pool_height, @strides)
|
|
328
|
+
if @padding
|
|
329
|
+
@pad = [prev_width - @out_width, prev_height - @out_height]
|
|
330
|
+
@out_width = prev_width
|
|
331
|
+
@out_height = prev_height
|
|
332
|
+
end
|
|
305
333
|
end
|
|
306
|
-
|
|
334
|
+
|
|
307
335
|
def forward(x)
|
|
308
|
-
x = padding(x,
|
|
336
|
+
x = padding(x, @pad) if @padding
|
|
309
337
|
@x_shape = x.shape
|
|
310
|
-
col = im2col(x, @
|
|
311
|
-
col = col.reshape(x.shape[0] * @
|
|
338
|
+
col = im2col(x, @out_width, @out_height, @pool_width, @pool_height, @strides)
|
|
339
|
+
col = col.reshape(x.shape[0] * @out_width * @out_height * x.shape[3], @pool_width * @pool_height)
|
|
312
340
|
@max_index = col.max_index(1)
|
|
313
|
-
col.max(1).reshape(x.shape[0], @
|
|
341
|
+
col.max(1).reshape(x.shape[0], @out_width, @out_height, x.shape[3])#.transpose(0, 3, 1, 2)
|
|
314
342
|
end
|
|
315
|
-
|
|
343
|
+
|
|
316
344
|
def backward(dout)
|
|
317
|
-
|
|
318
|
-
pool_size = @pool_height * @pool_width
|
|
345
|
+
pool_size = @pool_width * @pool_height
|
|
319
346
|
dmax = SFloat.zeros(dout.size * pool_size)
|
|
320
347
|
dmax[@max_index] = dout.flatten
|
|
321
348
|
dcol = dmax.reshape(dout.shape[0..2].reduce(:*), dout.shape[3] * pool_size)
|
|
322
|
-
dx = col2im(dcol, @x_shape, @
|
|
323
|
-
@padding ? back_padding(dx, @
|
|
349
|
+
dx = col2im(dcol, @x_shape, @out_width, @out_height, @pool_width, @pool_height, @strides)
|
|
350
|
+
@padding ? back_padding(dx, @pad) : dx
|
|
324
351
|
end
|
|
325
|
-
|
|
352
|
+
|
|
326
353
|
def shape
|
|
327
|
-
[@
|
|
354
|
+
[@out_width, @out_height, @num_channel]
|
|
328
355
|
end
|
|
329
356
|
|
|
330
357
|
def to_hash
|
|
331
358
|
{
|
|
332
359
|
name: self.class.name,
|
|
333
|
-
pool_height: @pool_height,
|
|
334
360
|
pool_width: @pool_width,
|
|
361
|
+
pool_height: @pool_height,
|
|
335
362
|
strides: @strides,
|
|
336
363
|
padding: @padding,
|
|
337
364
|
}
|
data/lib/dnn/core/model.rb
CHANGED
|
@@ -14,6 +14,7 @@ module DNN
|
|
|
14
14
|
@layers = []
|
|
15
15
|
@optimizer = nil
|
|
16
16
|
@batch_size = nil
|
|
17
|
+
@compiled = false
|
|
17
18
|
end
|
|
18
19
|
|
|
19
20
|
def self.load(file_name)
|
|
@@ -73,18 +74,24 @@ module DNN
|
|
|
73
74
|
unless optimizer.is_a?(Optimizers::Optimizer)
|
|
74
75
|
raise DNN_TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.")
|
|
75
76
|
end
|
|
77
|
+
@compiled = true
|
|
76
78
|
layers_check
|
|
77
79
|
@optimizer = optimizer
|
|
78
80
|
@layers.each do |layer|
|
|
79
|
-
layer.
|
|
81
|
+
layer.build(self)
|
|
80
82
|
end
|
|
81
83
|
layers_shape_check
|
|
82
84
|
end
|
|
85
|
+
|
|
86
|
+
def compiled?
|
|
87
|
+
@compiled
|
|
88
|
+
end
|
|
83
89
|
|
|
84
90
|
def train(x, y, epochs,
|
|
85
91
|
batch_size: 1,
|
|
86
|
-
|
|
92
|
+
test: nil,
|
|
87
93
|
verbose: true,
|
|
94
|
+
batch_proc: nil,
|
|
88
95
|
&epoch_proc)
|
|
89
96
|
@batch_size = batch_size
|
|
90
97
|
num_train_data = x.shape[0]
|
|
@@ -110,6 +117,10 @@ module DNN
|
|
|
110
117
|
log << " #{num_trained_data}/#{num_train_data} loss: #{loss}"
|
|
111
118
|
print log if verbose
|
|
112
119
|
end
|
|
120
|
+
if verbose && test
|
|
121
|
+
acc = accurate(test[0], test[1], batch_size,&batch_proc)
|
|
122
|
+
print " accurate: #{acc}"
|
|
123
|
+
end
|
|
113
124
|
puts "" if verbose
|
|
114
125
|
epoch_proc.call(epoch) if epoch_proc
|
|
115
126
|
end
|
|
@@ -124,13 +135,6 @@ module DNN
|
|
|
124
135
|
@layers[-1].loss(y)
|
|
125
136
|
end
|
|
126
137
|
|
|
127
|
-
def test(x, y, batch_size = nil, &batch_proc)
|
|
128
|
-
@batch_size = batch_size if batch_size
|
|
129
|
-
acc = accurate(x, y, @batch_size, &batch_proc)
|
|
130
|
-
puts "accurate: #{acc}"
|
|
131
|
-
acc
|
|
132
|
-
end
|
|
133
|
-
|
|
134
138
|
def accurate(x, y, batch_size = nil, &batch_proc)
|
|
135
139
|
@batch_size = batch_size if batch_size
|
|
136
140
|
correct = 0
|
|
@@ -156,8 +160,6 @@ module DNN
|
|
|
156
160
|
forward(x, false)
|
|
157
161
|
end
|
|
158
162
|
|
|
159
|
-
private
|
|
160
|
-
|
|
161
163
|
def forward(x, training)
|
|
162
164
|
@training = training
|
|
163
165
|
@layers.each do |layer|
|
|
@@ -171,8 +173,11 @@ module DNN
|
|
|
171
173
|
@layers[0..-1].reverse.each do |layer|
|
|
172
174
|
dout = layer.backward(dout)
|
|
173
175
|
end
|
|
176
|
+
dout
|
|
174
177
|
end
|
|
175
178
|
|
|
179
|
+
private
|
|
180
|
+
|
|
176
181
|
def layers_check
|
|
177
182
|
unless @layers.first.is_a?(Layers::InputLayer)
|
|
178
183
|
raise DNN_Error.new("The first layer is not an InputLayer.")
|
data/lib/dnn/core/version.rb
CHANGED