ruby-dnn 0.1.5 → 0.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +101 -230
- data/lib/dnn/core/activations.rb +17 -4
- data/lib/dnn/core/initializers.rb +13 -1
- data/lib/dnn/core/layers.rb +82 -6
- data/lib/dnn/core/model.rb +45 -5
- data/lib/dnn/core/optimizers.rb +45 -0
- data/lib/dnn/core/util.rb +9 -0
- data/lib/dnn/core/version.rb +1 -1
- data/ruby-dnn.gemspec +1 -1
- metadata +3 -3
checksums.yaml
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
---
|
|
2
2
|
SHA256:
|
|
3
|
-
metadata.gz:
|
|
4
|
-
data.tar.gz:
|
|
3
|
+
metadata.gz: 634ecbbfbad30f1660a3f04adc9e3a3835d54b93dc84eb765962406111243f46
|
|
4
|
+
data.tar.gz: 7b00ad63ddf17e95df2e852b29005fdb35671b2bed12e951d8c54fcc3415abe7
|
|
5
5
|
SHA512:
|
|
6
|
-
metadata.gz:
|
|
7
|
-
data.tar.gz:
|
|
6
|
+
metadata.gz: fba18cc2365d798e27fc3fa8be1f296664d23ef2b04d0e6d8db635189b4cf591675e29c8314437b00e8dc122d143ec956486915ed84a37e8b19b0952687a6467
|
|
7
|
+
data.tar.gz: f2d7f67c6331db0d58a01b3dbbc3f9b136fc692900811e88251e0a6865a0b0790e4291621296155f3f7778051ac0323a727ae6d1e812baebf76096a25b9ee0d9
|
data/API-Reference.ja.md
CHANGED
|
@@ -1,8 +1,16 @@
|
|
|
1
|
-
|
|
1
|
+
# APIリファレンス
|
|
2
|
+
ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
|
|
3
|
+
そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
|
|
4
|
+
|
|
5
|
+
対応バージョン:0.1.6
|
|
2
6
|
|
|
3
7
|
# module DNN
|
|
4
8
|
ruby-dnnの名前空間をなすモジュールです。
|
|
5
9
|
|
|
10
|
+
## 【Constants】
|
|
11
|
+
## VERSION
|
|
12
|
+
ruby-dnnのバージョン。
|
|
13
|
+
|
|
6
14
|
|
|
7
15
|
# class Model
|
|
8
16
|
ニューラルネットワークのモデルを作成するクラスです。
|
|
@@ -15,23 +23,56 @@ marshalファイルを読み込み、モデルを作成します。
|
|
|
15
23
|
* String file_name
|
|
16
24
|
読み込むmarshalファイル名。
|
|
17
25
|
### return
|
|
18
|
-
|
|
26
|
+
Model
|
|
27
|
+
生成したモデル。
|
|
28
|
+
|
|
29
|
+
## def self.load_json(json_str)
|
|
30
|
+
json文字列からモデルを作成します。
|
|
31
|
+
### arguments
|
|
32
|
+
* String json_str
|
|
33
|
+
json文字列。
|
|
34
|
+
### return
|
|
35
|
+
Model
|
|
36
|
+
生成したモデル。
|
|
19
37
|
|
|
20
38
|
## 【Instance methods】
|
|
21
39
|
|
|
22
|
-
## def
|
|
23
|
-
|
|
40
|
+
## def load_json_params(json_str)
|
|
41
|
+
学習パラメータをjson文字列から取得し、モデルにセットします。
|
|
24
42
|
### arguments
|
|
43
|
+
* String json_str
|
|
44
|
+
学習パラメータを変換して生成したjson文字列。
|
|
45
|
+
### return
|
|
25
46
|
なし。
|
|
26
47
|
|
|
27
48
|
## def save(file_name)
|
|
28
49
|
モデルをmarshalファイルに保存します。
|
|
50
|
+
このmarshalファイルには、学習パラメータ及びOptimizerの状態が保存されるため、
|
|
51
|
+
読み込んだ後、正確に学習を継続することができます。
|
|
29
52
|
### arguments
|
|
30
53
|
* String file_name
|
|
31
54
|
書き込むファイル名。
|
|
32
55
|
### return
|
|
33
56
|
なし。
|
|
34
57
|
|
|
58
|
+
## def to_json
|
|
59
|
+
モデルをjson文字列に変換します。
|
|
60
|
+
変換したjson文字列には学習パラメータの情報は含まれません。
|
|
61
|
+
学習パラメータの情報を取得したい場合は、params_to_jsonを使用してください。
|
|
62
|
+
### arguments
|
|
63
|
+
なし。
|
|
64
|
+
### return
|
|
65
|
+
String
|
|
66
|
+
モデルを変換して生成したjson文字列。
|
|
67
|
+
|
|
68
|
+
## def params_to_json
|
|
69
|
+
学習パラメータをjson文字列に変換します。
|
|
70
|
+
### arguments
|
|
71
|
+
なし。
|
|
72
|
+
### return
|
|
73
|
+
String
|
|
74
|
+
学習パラメータを変換して生成したjson文字列。
|
|
75
|
+
|
|
35
76
|
## def <<(layer)
|
|
36
77
|
モデルにレイヤーを追加します。
|
|
37
78
|
### arguments
|
|
@@ -168,34 +209,19 @@ SFloat
|
|
|
168
209
|
Array
|
|
169
210
|
レイヤーの形状。Layerクラスのshapeメソッドでは、前レイヤーの形状を返却します。
|
|
170
211
|
|
|
171
|
-
## def
|
|
172
|
-
|
|
212
|
+
## abstruct def to_hash
|
|
213
|
+
レイヤーをハッシュに変換します。このメソッドは、モデルをjsonに変換するために使用されます。このメソッドが返すハッシュの要素には、{name: self.class.name}が含まれていなければなりません。
|
|
173
214
|
### arguments
|
|
174
215
|
なし。
|
|
175
216
|
### return
|
|
176
|
-
|
|
177
|
-
|
|
217
|
+
Hash
|
|
218
|
+
レイヤーを変換したハッシュ。
|
|
178
219
|
|
|
179
220
|
|
|
180
221
|
# class HasParamLayer < Layer
|
|
181
222
|
学習可能なパラメータを持つ全てのレイヤーのスーパークラスです。
|
|
182
223
|
|
|
183
224
|
## 【Instance methods】
|
|
184
|
-
## def initialize
|
|
185
|
-
コンストラクタ
|
|
186
|
-
### arguments
|
|
187
|
-
なし。
|
|
188
|
-
|
|
189
|
-
## override def init(model)
|
|
190
|
-
Layerクラスからオーバーライドされたメソッドです。
|
|
191
|
-
init_paramの呼び出しを行います。
|
|
192
|
-
|
|
193
|
-
## def update
|
|
194
|
-
オプティマイザーを用いてパラメータの更新を行います。
|
|
195
|
-
### arguments
|
|
196
|
-
なし。
|
|
197
|
-
### return
|
|
198
|
-
なし。
|
|
199
225
|
|
|
200
226
|
## private abstruct def init_params
|
|
201
227
|
更新可能なパラメータを初期化します。HasParamLayerクラスを継承するクラスは、このメソッドを実装する必要があります。
|
|
@@ -208,11 +234,6 @@ init_paramの呼び出しを行います。
|
|
|
208
234
|
# class InputLayer < Layer
|
|
209
235
|
入力層に該当するレイヤーです。モデルの先頭レイヤーは、必ずこのクラスのインスタンスでなければなりません。
|
|
210
236
|
|
|
211
|
-
## 【Properties】
|
|
212
|
-
## attr_reaedr :shape
|
|
213
|
-
SFloat shape
|
|
214
|
-
コンストラクタで設定されたshapeを取得します。
|
|
215
|
-
|
|
216
237
|
## 【Instance methods】
|
|
217
238
|
## def initialize(dim_or_shape)
|
|
218
239
|
コンストラクタ
|
|
@@ -220,12 +241,6 @@ SFloat shape
|
|
|
220
241
|
* Integer|Array dim_or_shape
|
|
221
242
|
入力層のdimentionまたはshapeを指定します。引数がIntegerだとdimentionとみなし、Arrayだとshapeとみなします。
|
|
222
243
|
|
|
223
|
-
## override def forward(x)
|
|
224
|
-
入力値をそのまま順方向に伝搬します。
|
|
225
|
-
|
|
226
|
-
## override def backward(dout)
|
|
227
|
-
逆方向から伝搬してきた微分値をそのまま逆方向に伝搬します。
|
|
228
|
-
|
|
229
244
|
|
|
230
245
|
# class Dense
|
|
231
246
|
全結合レイヤーを扱うクラスです。
|
|
@@ -254,15 +269,6 @@ nilを指定すると、Zerosイニシャライザーが使用されます。
|
|
|
254
269
|
* Float weight_decay: 0
|
|
255
270
|
重み減衰の係数を設定します。
|
|
256
271
|
|
|
257
|
-
## override def forward(x)
|
|
258
|
-
ノードを順方向に伝搬します。
|
|
259
|
-
|
|
260
|
-
## override def backward(dout)
|
|
261
|
-
ノードを逆方向に伝搬します。
|
|
262
|
-
|
|
263
|
-
## override def shape
|
|
264
|
-
[ノード数]をshapeとして返却します。
|
|
265
|
-
|
|
266
272
|
|
|
267
273
|
# class Conv2D < HasParamLayer
|
|
268
274
|
畳み込みレイヤーを扱うクラスです。
|
|
@@ -289,18 +295,6 @@ nilを指定すると、RandomNormalイニシャライザーが使用されま
|
|
|
289
295
|
* Float weight_decay: 0
|
|
290
296
|
重み減衰を行うL2正則化項の強さを設定します。
|
|
291
297
|
|
|
292
|
-
## override def init(model)
|
|
293
|
-
モデルのコンパイル時に、レイヤーを初期化するために使用されます。
|
|
294
|
-
|
|
295
|
-
## override def forward(x)
|
|
296
|
-
イメージにフィルターを適用して順方向に伝搬します。
|
|
297
|
-
|
|
298
|
-
## override def backward(dout)
|
|
299
|
-
フィルターが適用されたイメージを変換して、逆方向に伝搬します。
|
|
300
|
-
|
|
301
|
-
## override def shape
|
|
302
|
-
畳み込み後のイメージの次元を返します。
|
|
303
|
-
|
|
304
298
|
|
|
305
299
|
# class MaxPool2D < Layer
|
|
306
300
|
maxプーリングを行うレイヤーです。
|
|
@@ -318,32 +312,10 @@ maxプーリングを行うレイヤーです。
|
|
|
318
312
|
* Integer padding: 0
|
|
319
313
|
イメージに対してゼロパディングを行う単位を指定します。
|
|
320
314
|
|
|
321
|
-
## override def init(model)
|
|
322
|
-
モデルのコンパイル時に、レイヤーを初期化するために使用されます。
|
|
323
|
-
|
|
324
|
-
## override def forward(x)
|
|
325
|
-
イメージにプーリングを行い、順方向に伝搬します。
|
|
326
|
-
|
|
327
|
-
## override def backward(dout)
|
|
328
|
-
プーリングされたイメージを変換し、逆方向に伝搬します。
|
|
329
|
-
|
|
330
|
-
## override def shape
|
|
331
|
-
プーリング後のイメージのshapeを返します。
|
|
332
|
-
|
|
333
315
|
|
|
334
316
|
# class Flatten
|
|
335
317
|
N次元のデータを平坦化します。
|
|
336
318
|
|
|
337
|
-
## 【Instance methods】
|
|
338
|
-
## override def forward(x)
|
|
339
|
-
データを平坦化して、順方向に伝搬します。
|
|
340
|
-
|
|
341
|
-
## override def backward(dout)
|
|
342
|
-
データを元の形状に戻し、逆方向に伝搬します。
|
|
343
|
-
|
|
344
|
-
## override def shape
|
|
345
|
-
前レイヤーの形状を平坦化して返します。
|
|
346
|
-
|
|
347
319
|
|
|
348
320
|
# class Reshape < Layer
|
|
349
321
|
データの形状を変更します。
|
|
@@ -355,11 +327,6 @@ N次元のデータを平坦化します。
|
|
|
355
327
|
* Array<Integer> shape
|
|
356
328
|
データの形状を変更するshapeです。
|
|
357
329
|
|
|
358
|
-
## override def forward(x)
|
|
359
|
-
データをコンストラクタで指定したshapeにreshapeして、順方向に伝搬します。
|
|
360
|
-
|
|
361
|
-
## override def backward(dout)
|
|
362
|
-
データを元のshapeにreshapeして、逆方向に伝搬します。
|
|
363
330
|
|
|
364
331
|
# class OutputLayer < Layer
|
|
365
332
|
出力層に該当するレイヤーです。出力層の活性化関数は、全てこのクラスを継承する必要があります。
|
|
@@ -380,14 +347,6 @@ SFloat y
|
|
|
380
347
|
### return
|
|
381
348
|
損失関数の値。
|
|
382
349
|
|
|
383
|
-
## def ridge
|
|
384
|
-
L2正則化係数を用いて、L2正則化項の値を計算して取得します。
|
|
385
|
-
### arguments
|
|
386
|
-
なし。
|
|
387
|
-
### return
|
|
388
|
-
SFloat
|
|
389
|
-
L2正則化項の値を取得します。
|
|
390
|
-
|
|
391
350
|
|
|
392
351
|
# class Dropout
|
|
393
352
|
学習の際に、一部のノードを非活性化させるクラスです。
|
|
@@ -398,135 +357,49 @@ L2正則化項の値を取得します。
|
|
|
398
357
|
* Float dropout_ration
|
|
399
358
|
ノードを非活性にする割合。
|
|
400
359
|
|
|
401
|
-
## abstruct def forward(x)
|
|
402
|
-
一部のノードを非活性にした上で、順方向に伝搬します。
|
|
403
|
-
|
|
404
|
-
## abstruct def backward(dout)
|
|
405
|
-
一部の非活性のノード以外の全てのノードを逆方向に伝搬します。
|
|
406
360
|
|
|
407
361
|
# class BatchNormalization < HasParamLayer
|
|
408
362
|
ミニバッチ単位でのデータの正規化を行います。
|
|
409
363
|
|
|
410
|
-
## override def forward(x)
|
|
411
|
-
正規化したデータを順方向に伝搬します。
|
|
412
|
-
|
|
413
|
-
## override def backward(dout)
|
|
414
|
-
正規化したデータを微分して、逆方向に伝搬します。
|
|
415
364
|
|
|
416
365
|
# module Activations
|
|
417
366
|
活性化関数のレイヤーの名前空間をなすモジュールです。
|
|
418
367
|
|
|
419
|
-
# module SigmoidFunction
|
|
420
|
-
シグモイド関数を提供するモジュールです。
|
|
421
|
-
|
|
422
|
-
## def forward(x)
|
|
423
|
-
シグモイド関数の値を順方向に伝搬します。
|
|
424
|
-
### arguments
|
|
425
|
-
SFloat x
|
|
426
|
-
シグモイド関数の引数。
|
|
427
|
-
### return
|
|
428
|
-
SFloat
|
|
429
|
-
シグモイド関数の戻り値
|
|
430
|
-
|
|
431
368
|
|
|
432
369
|
# class Sigmoid < Layer
|
|
433
|
-
## include SigmoidFunction
|
|
434
370
|
シグモイド関数のレイヤーです。
|
|
435
371
|
|
|
436
|
-
## override def forward(x)
|
|
437
|
-
シグモイド関数の値を順方向に伝搬します。
|
|
438
|
-
|
|
439
|
-
## def backward(dout)
|
|
440
|
-
### arguments
|
|
441
|
-
SFloat dout
|
|
442
|
-
シグモイド関数の導関数を適用した値を逆伝搬する。
|
|
443
|
-
### return
|
|
444
|
-
SFloat
|
|
445
|
-
シグモイド関数の導関数を適用した逆伝搬の値。
|
|
446
|
-
|
|
447
372
|
|
|
448
373
|
# class Tanh < Layer
|
|
449
374
|
tanh関数のレイヤーです。
|
|
450
|
-
## def forward(x)
|
|
451
|
-
tanh関数の値を順方向に伝搬します。
|
|
452
|
-
### arguments
|
|
453
|
-
SFloat x
|
|
454
|
-
tanh関数の引数。
|
|
455
|
-
### return
|
|
456
|
-
SFloat
|
|
457
|
-
tanh関数の戻り値
|
|
458
|
-
|
|
459
|
-
## def backward(dout)
|
|
460
|
-
### arguments
|
|
461
|
-
SFloat dout
|
|
462
|
-
tanh関数の導関数を適用した値を逆伝搬する。
|
|
463
|
-
### return
|
|
464
|
-
SFloat
|
|
465
|
-
tanh関数の導関数を適用した逆伝搬の値。
|
|
466
375
|
|
|
467
376
|
|
|
468
377
|
# class ReLU < Layer
|
|
469
378
|
ランプ関数のレイヤーです。
|
|
470
|
-
## def forward(x)
|
|
471
|
-
ランプ関数の値を順方向に伝搬します。
|
|
472
|
-
### arguments
|
|
473
|
-
SFloat x
|
|
474
|
-
ランプ関数の引数。
|
|
475
|
-
### return
|
|
476
|
-
SFloat
|
|
477
|
-
ランプ関数の戻り値
|
|
478
|
-
|
|
479
|
-
## def backward(dout)
|
|
480
|
-
### arguments
|
|
481
|
-
SFloat dout
|
|
482
|
-
ランプ関数の導関数を適用した値を逆伝搬する。
|
|
483
|
-
### return
|
|
484
|
-
SFloat
|
|
485
|
-
ランプ関数の導関数を適用した逆伝搬の値。
|
|
486
379
|
|
|
487
380
|
|
|
488
381
|
# class LeakyReLU < Layer
|
|
489
382
|
LeakyReLU関数のレイヤーです。
|
|
490
|
-
## def forward(x)
|
|
491
|
-
LeakyReLU関数の値を順方向に伝搬します。
|
|
492
|
-
### arguments
|
|
493
|
-
SFloat x
|
|
494
|
-
LeakyReLU関数の引数。
|
|
495
|
-
### return
|
|
496
|
-
SFloat
|
|
497
|
-
LeakyReLU関数の戻り値
|
|
498
383
|
|
|
499
|
-
##
|
|
384
|
+
## 【Instance methods】
|
|
385
|
+
|
|
386
|
+
## def initialize(alpha)
|
|
387
|
+
コンストラクタ。
|
|
500
388
|
### arguments
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
### return
|
|
504
|
-
SFloat
|
|
505
|
-
LeakyReLU関数の導関数を適用した逆伝搬の値。
|
|
389
|
+
* Float alpha
|
|
390
|
+
出力値が負のときの傾き。
|
|
506
391
|
|
|
507
392
|
|
|
508
393
|
# class IdentityWithLoss < OutputLayer
|
|
509
394
|
恒等関数と二乗誤差関数を合わせた出力層のレイヤーです。
|
|
510
|
-
## override def forward(x)
|
|
511
|
-
データをそのまま順方向に伝搬します。
|
|
512
|
-
## override def backward(y)
|
|
513
|
-
恒等関数と二乗誤差関数を合わせたものを微分した導関数を用いて、教師データの出力データを逆方向に伝搬します。
|
|
514
395
|
|
|
515
396
|
|
|
516
397
|
# class SoftmaxWithLoss < OutputLayer
|
|
517
398
|
ソフトマックス関数とクロスエントロピー誤差関数を合わせた出力層のレイヤーです。
|
|
518
|
-
## override def forward(x)
|
|
519
|
-
ソフトマックス関数の値を順方向に伝搬します。
|
|
520
|
-
## override def backward(y)
|
|
521
|
-
ソフトマックス関数とクロスエントロピー誤差関数を合わせたものを微分した導関数を用いて、教師データの出力データを逆方向に伝搬します。
|
|
522
399
|
|
|
523
400
|
|
|
524
401
|
# class SigmoidWithLoss < OutputLayer
|
|
525
402
|
シグモイド関数とバイナリクロスエントロピー誤差関数を合わせた出力層のレイヤーです。
|
|
526
|
-
## override def forward(x)
|
|
527
|
-
シグモイド関数の値を順方向に伝搬します。
|
|
528
|
-
## override def backward(y)
|
|
529
|
-
シグモイド関数とバイナリクロスエントロピー誤差関数を合わせたものを微分した導関数を用いて、教師データの出力データを逆方向に伝搬します。
|
|
530
403
|
|
|
531
404
|
|
|
532
405
|
# module Initializers
|
|
@@ -550,36 +423,25 @@ LeakyReLU関数の導関数を適用した逆伝搬の値。
|
|
|
550
423
|
# class Zeros < Initializer
|
|
551
424
|
パラメータを0で初期化します。
|
|
552
425
|
|
|
553
|
-
## override def init_param(layer, param_key)
|
|
554
|
-
レイヤーの持つパラメータを0で初期化します。
|
|
555
426
|
|
|
556
427
|
# class RandomNormal < Initializer
|
|
557
428
|
パラメータを正規分布による乱数で初期化します。
|
|
558
429
|
|
|
559
430
|
## def initialize(mean = 0, std = 0.05)
|
|
560
431
|
### arguments
|
|
561
|
-
Float mean = 0
|
|
562
|
-
正規分布の平均。
|
|
563
|
-
Float std = 0.05
|
|
564
|
-
正規分布の分散。
|
|
565
|
-
|
|
566
|
-
## override def init_param(layer, param_key)
|
|
567
|
-
レイヤーの持つパラメータを正規分布による乱数で初期化します。
|
|
432
|
+
* Float mean = 0
|
|
433
|
+
正規分布の平均。
|
|
434
|
+
* Float std = 0.05
|
|
435
|
+
正規分布の分散。
|
|
568
436
|
|
|
569
437
|
|
|
570
438
|
# class Xavier < Initializer
|
|
571
439
|
パラメータをXavierの初期値で初期化します。
|
|
572
440
|
|
|
573
|
-
## override def init_param(layer, param_key)
|
|
574
|
-
レイヤーの持つパラメータをXavierの初期値で初期化します。
|
|
575
|
-
|
|
576
441
|
|
|
577
442
|
# class He < Initializer
|
|
578
443
|
パラメータをHeの初期値で初期化します。
|
|
579
444
|
|
|
580
|
-
## override def init_param(layer, param_key)
|
|
581
|
-
レイヤーの持つパラメータをHeの初期値で初期化します。
|
|
582
|
-
|
|
583
445
|
|
|
584
446
|
# module Optimizers
|
|
585
447
|
全てのOptimizerの名前空間をなすモジュールです。
|
|
@@ -599,14 +461,14 @@ Float learning_rate
|
|
|
599
461
|
## def initialize(learning_rate)
|
|
600
462
|
コンストラクタ。
|
|
601
463
|
### arguments
|
|
602
|
-
Float learning_rate
|
|
603
|
-
Optimizerの学習率。
|
|
464
|
+
* Float learning_rate
|
|
465
|
+
Optimizerの学習率。
|
|
604
466
|
|
|
605
467
|
## abstruct def update(layer)
|
|
606
|
-
layerのgradsを元に、layerのparams
|
|
468
|
+
layerのgradsを元に、layerのparamsを更新します。全てのOptimizerを継承するクラスは、このメソッドを実装する必要があります。
|
|
607
469
|
### arguments
|
|
608
|
-
Layer layer
|
|
609
|
-
paramsを更新するレイヤー。
|
|
470
|
+
* Layer layer
|
|
471
|
+
paramsを更新するレイヤー。
|
|
610
472
|
### return
|
|
611
473
|
なし。
|
|
612
474
|
|
|
@@ -622,13 +484,13 @@ Float momentum
|
|
|
622
484
|
|
|
623
485
|
## 【Instance methods】
|
|
624
486
|
|
|
625
|
-
##
|
|
487
|
+
## def initialize(learning_rate = 0.01, momentum: 0)
|
|
626
488
|
コンストラクタ。
|
|
627
489
|
### arguments
|
|
628
|
-
Float learning_rate
|
|
629
|
-
学習率。
|
|
630
|
-
Float momentum
|
|
631
|
-
モーメンタム係数。
|
|
490
|
+
* Float learning_rate
|
|
491
|
+
学習率。
|
|
492
|
+
* Float momentum
|
|
493
|
+
モーメンタム係数。
|
|
632
494
|
|
|
633
495
|
|
|
634
496
|
# class AdaGrad < Optimizer
|
|
@@ -644,6 +506,16 @@ RMSPropによるオプティマイザです。
|
|
|
644
506
|
Float muse
|
|
645
507
|
指数平均移動のための係数。
|
|
646
508
|
|
|
509
|
+
## 【Instance methods】
|
|
510
|
+
|
|
511
|
+
## def initialize(learning_rate = 0.001, muse = 0.9)
|
|
512
|
+
コンストラクタ。
|
|
513
|
+
### arguments
|
|
514
|
+
* Float learning_rate
|
|
515
|
+
学習率。
|
|
516
|
+
* Float muse
|
|
517
|
+
指数平均移動のための係数。
|
|
518
|
+
|
|
647
519
|
|
|
648
520
|
# class Adam < Optimizer
|
|
649
521
|
Adamによるオプティマイザです。
|
|
@@ -658,6 +530,16 @@ Float beta1
|
|
|
658
530
|
Float beta2
|
|
659
531
|
指数平均移動のための係数2。
|
|
660
532
|
|
|
533
|
+
## 【Instance methods】
|
|
534
|
+
|
|
535
|
+
## def initialize(learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999)
|
|
536
|
+
コンストラクタ。
|
|
537
|
+
### arguments
|
|
538
|
+
* Float beta1
|
|
539
|
+
指数平均移動のための係数1。
|
|
540
|
+
* Float beta2
|
|
541
|
+
指数平均移動のための係数2。
|
|
542
|
+
|
|
661
543
|
|
|
662
544
|
# module Util
|
|
663
545
|
ユーティリティ関数を提供します。
|
|
@@ -667,12 +549,12 @@ Float beta2
|
|
|
667
549
|
## def self.get_minibatch(x, y, batch_size)
|
|
668
550
|
batch_size分のミニバッチを取得します。
|
|
669
551
|
### arguments
|
|
670
|
-
SFloat x
|
|
671
|
-
教師データの入力データ。
|
|
672
|
-
SFloat y
|
|
673
|
-
教師データの出力データ。
|
|
674
|
-
Integer batch_size
|
|
675
|
-
ミニバッチのサイズ。
|
|
552
|
+
* SFloat x
|
|
553
|
+
教師データの入力データ。
|
|
554
|
+
* SFloat y
|
|
555
|
+
教師データの出力データ。
|
|
556
|
+
* Integer batch_size
|
|
557
|
+
ミニバッチのサイズ。
|
|
676
558
|
### return
|
|
677
559
|
Array
|
|
678
560
|
[xのミニバッチ, yのミニバッチ]の形式の配列を返します。
|
|
@@ -680,23 +562,12 @@ Array
|
|
|
680
562
|
## def self.to_categorical(y, num_classes, type = nil)
|
|
681
563
|
ラベルをnum_classesのベクトルにカテゴライズします。
|
|
682
564
|
### arguments
|
|
683
|
-
SFloat y
|
|
684
|
-
教師データの出力データ。
|
|
685
|
-
Integer num_classes
|
|
686
|
-
カテゴライズするクラス数。
|
|
687
|
-
NArray narray_type = nil
|
|
688
|
-
カテゴライズしたNArrayデータの型。nilを指定すると、yの型を使用します。
|
|
565
|
+
* SFloat y
|
|
566
|
+
教師データの出力データ。
|
|
567
|
+
* Integer num_classes
|
|
568
|
+
カテゴライズするクラス数。
|
|
569
|
+
* NArray narray_type = nil
|
|
570
|
+
カテゴライズしたNArrayデータの型。nilを指定すると、yの型を使用します。
|
|
689
571
|
### return
|
|
690
572
|
NArray
|
|
691
573
|
カテゴライズされたNArrayのインスタンス。
|
|
692
|
-
|
|
693
|
-
## def self.numerical_grad(x, func)
|
|
694
|
-
引数で渡された関数を数値微分します。
|
|
695
|
-
### arguments
|
|
696
|
-
SFloat x
|
|
697
|
-
funcの引数。
|
|
698
|
-
Proc|Method func
|
|
699
|
-
数値微分を行う対象の関数。
|
|
700
|
-
### return
|
|
701
|
-
SFloat
|
|
702
|
-
数値微分した結果の値。
|
data/lib/dnn/core/activations.rb
CHANGED
|
@@ -50,13 +50,19 @@ module DNN
|
|
|
50
50
|
|
|
51
51
|
|
|
52
52
|
class LeakyReLU < Layer
|
|
53
|
+
include Numo
|
|
54
|
+
|
|
53
55
|
def initialize(alpha = 0.3)
|
|
54
56
|
@alpha = alpha
|
|
55
57
|
end
|
|
56
58
|
|
|
59
|
+
def self.load_hash(hash)
|
|
60
|
+
self.new(hash[:alpha])
|
|
61
|
+
end
|
|
62
|
+
|
|
57
63
|
def forward(x)
|
|
58
64
|
@x = x.clone
|
|
59
|
-
a =
|
|
65
|
+
a = SFloat.ones(x.shape)
|
|
60
66
|
a[x <= 0] = @alpha
|
|
61
67
|
x * a
|
|
62
68
|
end
|
|
@@ -66,6 +72,10 @@ module DNN
|
|
|
66
72
|
@x[@x <= 0] = @alpha
|
|
67
73
|
dout * @x
|
|
68
74
|
end
|
|
75
|
+
|
|
76
|
+
def to_hash
|
|
77
|
+
{name: self.class.name, alpha: alpha}
|
|
78
|
+
end
|
|
69
79
|
end
|
|
70
80
|
|
|
71
81
|
|
|
@@ -79,7 +89,8 @@ module DNN
|
|
|
79
89
|
end
|
|
80
90
|
|
|
81
91
|
def loss(y)
|
|
82
|
-
|
|
92
|
+
batch_size = y.shape[0]
|
|
93
|
+
0.5 * ((@out - y) ** 2).sum / batch_size + ridge
|
|
83
94
|
end
|
|
84
95
|
end
|
|
85
96
|
|
|
@@ -94,7 +105,8 @@ module DNN
|
|
|
94
105
|
end
|
|
95
106
|
|
|
96
107
|
def loss(y)
|
|
97
|
-
|
|
108
|
+
batch_size = y.shape[0]
|
|
109
|
+
-(y * NMath.log(@out + 1e-7)).sum / batch_size + ridge
|
|
98
110
|
end
|
|
99
111
|
end
|
|
100
112
|
|
|
@@ -108,7 +120,8 @@ module DNN
|
|
|
108
120
|
end
|
|
109
121
|
|
|
110
122
|
def loss(y)
|
|
111
|
-
|
|
123
|
+
batch_size = y.shape[0]
|
|
124
|
+
-(y * NMath.log(@out + 1e-7) + (1 - y) * NMath.log(1 - @out + 1e-7)).sum / batch_size + ridge
|
|
112
125
|
end
|
|
113
126
|
end
|
|
114
127
|
|
|
@@ -5,6 +5,10 @@ module DNN
|
|
|
5
5
|
def init_param(layer, param_key, param)
|
|
6
6
|
layer.params[param_key] = param
|
|
7
7
|
end
|
|
8
|
+
|
|
9
|
+
def to_hash
|
|
10
|
+
{name: self.class.name}
|
|
11
|
+
end
|
|
8
12
|
end
|
|
9
13
|
|
|
10
14
|
|
|
@@ -16,14 +20,22 @@ module DNN
|
|
|
16
20
|
|
|
17
21
|
|
|
18
22
|
class RandomNormal < Initializer
|
|
23
|
+
def self.load_hash(hash)
|
|
24
|
+
self.new(hash[:mean], hash[:std])
|
|
25
|
+
end
|
|
26
|
+
|
|
19
27
|
def initialize(mean = 0, std = 0.05)
|
|
20
28
|
@mean = mean
|
|
21
29
|
@std = std
|
|
22
30
|
end
|
|
23
|
-
|
|
31
|
+
|
|
24
32
|
def init_param(layer, param_key)
|
|
25
33
|
super(layer, param_key, layer.params[param_key].rand_norm(@mean, @std))
|
|
26
34
|
end
|
|
35
|
+
|
|
36
|
+
def to_hash
|
|
37
|
+
{name: self.class.name, mean: @mean, std: @std}
|
|
38
|
+
end
|
|
27
39
|
end
|
|
28
40
|
|
|
29
41
|
|
data/lib/dnn/core/layers.rb
CHANGED
|
@@ -20,6 +20,11 @@ module DNN
|
|
|
20
20
|
def shape
|
|
21
21
|
prev_layer.shape
|
|
22
22
|
end
|
|
23
|
+
|
|
24
|
+
#Layer to a hash.
|
|
25
|
+
def to_hash
|
|
26
|
+
{name: self.class.name}
|
|
27
|
+
end
|
|
23
28
|
|
|
24
29
|
#Get the previous layer.
|
|
25
30
|
def prev_layer
|
|
@@ -56,7 +61,11 @@ module DNN
|
|
|
56
61
|
|
|
57
62
|
class InputLayer < Layer
|
|
58
63
|
attr_reader :shape
|
|
59
|
-
|
|
64
|
+
|
|
65
|
+
def self.load_hash(hash)
|
|
66
|
+
self.new(hash[:shape])
|
|
67
|
+
end
|
|
68
|
+
|
|
60
69
|
def initialize(dim_or_shape)
|
|
61
70
|
@shape = dim_or_shape.is_a?(Array) ? dim_or_shape : [dim_or_shape]
|
|
62
71
|
end
|
|
@@ -68,6 +77,10 @@ module DNN
|
|
|
68
77
|
def backward(dout)
|
|
69
78
|
dout
|
|
70
79
|
end
|
|
80
|
+
|
|
81
|
+
def to_hash
|
|
82
|
+
{name: self.class.name, shape: @shape}
|
|
83
|
+
end
|
|
71
84
|
end
|
|
72
85
|
|
|
73
86
|
|
|
@@ -87,6 +100,13 @@ module DNN
|
|
|
87
100
|
@bias_initializer = (bias_initializer || Zeros.new)
|
|
88
101
|
@weight_decay = weight_decay
|
|
89
102
|
end
|
|
103
|
+
|
|
104
|
+
def self.load_hash(hash)
|
|
105
|
+
self.new(hash[:num_nodes],
|
|
106
|
+
weight_initializer: Util.load_hash(hash[:weight_initializer]),
|
|
107
|
+
bias_initializer: Util.load_hash(hash[:bias_initializer]),
|
|
108
|
+
weight_decay: hash[:weight_decay])
|
|
109
|
+
end
|
|
90
110
|
|
|
91
111
|
def forward(x)
|
|
92
112
|
@x = x
|
|
@@ -106,6 +126,16 @@ module DNN
|
|
|
106
126
|
def shape
|
|
107
127
|
[@num_nodes]
|
|
108
128
|
end
|
|
129
|
+
|
|
130
|
+
def to_hash
|
|
131
|
+
{
|
|
132
|
+
name: self.class.name,
|
|
133
|
+
num_nodes: @num_nodes,
|
|
134
|
+
weight_initializer: @weight_initializer.to_hash,
|
|
135
|
+
bias_initializer: @bias_initializer.to_hash,
|
|
136
|
+
weight_decay: @weight_decay,
|
|
137
|
+
}
|
|
138
|
+
end
|
|
109
139
|
|
|
110
140
|
private
|
|
111
141
|
|
|
@@ -178,8 +208,17 @@ module DNN
|
|
|
178
208
|
@weight_initializer = (weight_initializer || RandomNormal.new)
|
|
179
209
|
@bias_initializer = (bias_initializer || Zeros.new)
|
|
180
210
|
@strides = strides
|
|
181
|
-
@weight_decay = weight_decay
|
|
182
211
|
@padding = padding
|
|
212
|
+
@weight_decay = weight_decay
|
|
213
|
+
end
|
|
214
|
+
|
|
215
|
+
def self.load_hash(hash)
|
|
216
|
+
Conv2D.new(hash[:num_filters], hash[:filter_height], hash[:filter_width],
|
|
217
|
+
weight_initializer: Util.load_hash(hash[:weight_initializer]),
|
|
218
|
+
bias_initializer: Util.load_hash(hash[:bias_initializer]),
|
|
219
|
+
strides: hash[:strides],
|
|
220
|
+
padding: hash[:padding],
|
|
221
|
+
weight_decay: hash[:weight_decay])
|
|
183
222
|
end
|
|
184
223
|
|
|
185
224
|
def init(model)
|
|
@@ -213,6 +252,20 @@ module DNN
|
|
|
213
252
|
def shape
|
|
214
253
|
[@num_filters, @out_height, @out_width]
|
|
215
254
|
end
|
|
255
|
+
|
|
256
|
+
def to_hash
|
|
257
|
+
{
|
|
258
|
+
name: self.class.name,
|
|
259
|
+
num_filters: @num_filters,
|
|
260
|
+
filter_height: @filter_height,
|
|
261
|
+
filter_width: @filter_width,
|
|
262
|
+
weight_initializer: @weight_initializer.to_hash,
|
|
263
|
+
bias_initializer: @bias_initializer.to_hash,
|
|
264
|
+
strides: @strides,
|
|
265
|
+
padding: @padding,
|
|
266
|
+
weight_decay: @weight_decay,
|
|
267
|
+
}
|
|
268
|
+
end
|
|
216
269
|
|
|
217
270
|
private
|
|
218
271
|
|
|
@@ -264,6 +317,16 @@ module DNN
|
|
|
264
317
|
def shape
|
|
265
318
|
[@num_channel, @out_height, @out_width]
|
|
266
319
|
end
|
|
320
|
+
|
|
321
|
+
def to_hash
|
|
322
|
+
{
|
|
323
|
+
name: self.class.name,
|
|
324
|
+
pool_height: @pool_height,
|
|
325
|
+
pool_width: @pool_width,
|
|
326
|
+
strides: @strides,
|
|
327
|
+
padding: @padding,
|
|
328
|
+
}
|
|
329
|
+
end
|
|
267
330
|
end
|
|
268
331
|
|
|
269
332
|
|
|
@@ -291,6 +354,10 @@ module DNN
|
|
|
291
354
|
@x_shape = nil
|
|
292
355
|
end
|
|
293
356
|
|
|
357
|
+
def self.load_hash(hash)
|
|
358
|
+
self.new(hash[:shape])
|
|
359
|
+
end
|
|
360
|
+
|
|
294
361
|
def forward(x)
|
|
295
362
|
@x_shape = x.shape
|
|
296
363
|
x.reshape(*@shape)
|
|
@@ -299,6 +366,10 @@ module DNN
|
|
|
299
366
|
def backward(dout)
|
|
300
367
|
dout.reshape(@x_shape)
|
|
301
368
|
end
|
|
369
|
+
|
|
370
|
+
def to_hash
|
|
371
|
+
{name: self.class.name, shape: @shape}
|
|
372
|
+
end
|
|
302
373
|
end
|
|
303
374
|
|
|
304
375
|
|
|
@@ -317,6 +388,10 @@ module DNN
|
|
|
317
388
|
@dropout_ratio = dropout_ratio
|
|
318
389
|
@mask = nil
|
|
319
390
|
end
|
|
391
|
+
|
|
392
|
+
def self.load(hash)
|
|
393
|
+
self.new(hash[:dropout_ratio])
|
|
394
|
+
end
|
|
320
395
|
|
|
321
396
|
def forward(x)
|
|
322
397
|
if @model.training
|
|
@@ -346,22 +421,23 @@ module DNN
|
|
|
346
421
|
end
|
|
347
422
|
|
|
348
423
|
def backward(dout)
|
|
424
|
+
batch_size = dout.shape[0]
|
|
349
425
|
@grads[:beta] = dout.sum(0)
|
|
350
426
|
@grads[:gamma] = (@xn * dout).sum(0)
|
|
351
427
|
dxn = @params[:gamma] * dout
|
|
352
428
|
dxc = dxn / @std
|
|
353
429
|
dstd = -((dxn * @xc) / (@std**2)).sum(0)
|
|
354
430
|
dvar = 0.5 * dstd / @std
|
|
355
|
-
dxc += (2.0 /
|
|
431
|
+
dxc += (2.0 / batch_size) * @xc * dvar
|
|
356
432
|
dmean = dxc.sum(0)
|
|
357
|
-
dxc - dmean /
|
|
433
|
+
dxc - dmean / batch_size
|
|
358
434
|
end
|
|
359
435
|
|
|
360
436
|
private
|
|
361
437
|
|
|
362
438
|
def init_params
|
|
363
|
-
@params[:gamma] =
|
|
364
|
-
@params[:beta] =
|
|
439
|
+
@params[:gamma] = SFloat.ones(*shape)
|
|
440
|
+
@params[:beta] = SFloat.zeros(*shape)
|
|
365
441
|
end
|
|
366
442
|
end
|
|
367
443
|
end
|
data/lib/dnn/core/model.rb
CHANGED
|
@@ -1,25 +1,65 @@
|
|
|
1
|
+
require "json"
|
|
2
|
+
require "base64"
|
|
3
|
+
|
|
1
4
|
module DNN
|
|
2
5
|
class Model
|
|
3
|
-
|
|
6
|
+
include Numo
|
|
7
|
+
|
|
8
|
+
attr_accessor :layers
|
|
4
9
|
attr_reader :optimizer
|
|
5
10
|
attr_reader :batch_size
|
|
6
11
|
attr_reader :training
|
|
7
12
|
|
|
8
|
-
def self.load(file_name)
|
|
9
|
-
Marshal.load(File.binread(file_name))
|
|
10
|
-
end
|
|
11
|
-
|
|
12
13
|
def initialize
|
|
13
14
|
@layers = []
|
|
14
15
|
@optimizer = nil
|
|
15
16
|
@batch_size = nil
|
|
16
17
|
end
|
|
18
|
+
|
|
19
|
+
def self.load(file_name)
|
|
20
|
+
Marshal.load(File.binread(file_name))
|
|
21
|
+
end
|
|
22
|
+
|
|
23
|
+
def self.load_json(json_str)
|
|
24
|
+
hash = JSON.parse(json_str, symbolize_names: true)
|
|
25
|
+
model = self.new
|
|
26
|
+
model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) }
|
|
27
|
+
model.compile(Util.load_hash(hash[:optimizer]))
|
|
28
|
+
model
|
|
29
|
+
end
|
|
30
|
+
|
|
31
|
+
def load_json_params(json_str)
|
|
32
|
+
has_param_layers_params = JSON.parse(json_str, symbolize_names: true)
|
|
33
|
+
has_param_layers_index = 0
|
|
34
|
+
@layers.each do |layer|
|
|
35
|
+
next unless layer.is_a?(HasParamLayer)
|
|
36
|
+
hash_params = has_param_layers_params[has_param_layers_index]
|
|
37
|
+
hash_params.each do |key, param|
|
|
38
|
+
layer.params[key] = SFloat.cast(param)
|
|
39
|
+
end
|
|
40
|
+
has_param_layers_index += 1
|
|
41
|
+
end
|
|
42
|
+
end
|
|
17
43
|
|
|
18
44
|
def save(file_name)
|
|
19
45
|
dir_name = file_name.match(%r`(.*)/.+$`)[1]
|
|
20
46
|
Dir.mkdir(dir_name) unless Dir.exist?(dir_name)
|
|
21
47
|
File.binwrite(file_name, Marshal.dump(self))
|
|
22
48
|
end
|
|
49
|
+
|
|
50
|
+
def to_json
|
|
51
|
+
hash_layers = @layers.map { |layer| layer.to_hash }
|
|
52
|
+
hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash}
|
|
53
|
+
JSON.dump(hash)
|
|
54
|
+
end
|
|
55
|
+
|
|
56
|
+
def params_to_json
|
|
57
|
+
has_param_layers = @layers.select { |layer| layer.is_a?(HasParamLayer) }
|
|
58
|
+
has_param_layers_params = has_param_layers.map do |layer|
|
|
59
|
+
layer.params.map { |key, param| [key, param.to_a] }.to_h
|
|
60
|
+
end
|
|
61
|
+
JSON.dump(has_param_layers_params)
|
|
62
|
+
end
|
|
23
63
|
|
|
24
64
|
def <<(layer)
|
|
25
65
|
unless layer.is_a?(Layers::Layer)
|
data/lib/dnn/core/optimizers.rb
CHANGED
|
@@ -11,6 +11,10 @@ module DNN
|
|
|
11
11
|
|
|
12
12
|
#Update layer has params.
|
|
13
13
|
def update(layer) end
|
|
14
|
+
|
|
15
|
+
def to_hash
|
|
16
|
+
{name: self.class.name, learning_rate: @learning_rate}
|
|
17
|
+
end
|
|
14
18
|
end
|
|
15
19
|
|
|
16
20
|
|
|
@@ -22,6 +26,10 @@ module DNN
|
|
|
22
26
|
@momentum = momentum
|
|
23
27
|
@amounts = {}
|
|
24
28
|
end
|
|
29
|
+
|
|
30
|
+
def self.load_hash(hash)
|
|
31
|
+
self.new(hash[:learning_rate], hash[:momentum])
|
|
32
|
+
end
|
|
25
33
|
|
|
26
34
|
def update(layer)
|
|
27
35
|
amount = if @amounts[layer]
|
|
@@ -39,6 +47,14 @@ module DNN
|
|
|
39
47
|
layer.params[key] -= amount[key]
|
|
40
48
|
end
|
|
41
49
|
end
|
|
50
|
+
|
|
51
|
+
def to_hash
|
|
52
|
+
{
|
|
53
|
+
name: self.class.name,
|
|
54
|
+
learning_rate: @learning_rate,
|
|
55
|
+
momentum: @momentum,
|
|
56
|
+
}
|
|
57
|
+
end
|
|
42
58
|
end
|
|
43
59
|
|
|
44
60
|
|
|
@@ -47,6 +63,10 @@ module DNN
|
|
|
47
63
|
super(learning_rate)
|
|
48
64
|
@g = {}
|
|
49
65
|
end
|
|
66
|
+
|
|
67
|
+
def self.load_hash(hash)
|
|
68
|
+
@learning_rate = hash[:learning_rate]
|
|
69
|
+
end
|
|
50
70
|
|
|
51
71
|
def update(layer)
|
|
52
72
|
@g[layer] ||= {}
|
|
@@ -67,6 +87,10 @@ module DNN
|
|
|
67
87
|
@muse = muse
|
|
68
88
|
@g = {}
|
|
69
89
|
end
|
|
90
|
+
|
|
91
|
+
def self.load_hash(hash)
|
|
92
|
+
self.new(hash[:learning_rate], hash[:muse])
|
|
93
|
+
end
|
|
70
94
|
|
|
71
95
|
def update(layer)
|
|
72
96
|
@g[layer] ||= {}
|
|
@@ -76,6 +100,14 @@ module DNN
|
|
|
76
100
|
layer.params[key] -= (@learning_rate / NMath.sqrt(@g[layer][key] + 1e-7)) * layer.grads[key]
|
|
77
101
|
end
|
|
78
102
|
end
|
|
103
|
+
|
|
104
|
+
def to_hash
|
|
105
|
+
{
|
|
106
|
+
name: self.class.name,
|
|
107
|
+
learning_rate: @learning_rate,
|
|
108
|
+
muse: @muse,
|
|
109
|
+
}
|
|
110
|
+
end
|
|
79
111
|
end
|
|
80
112
|
|
|
81
113
|
|
|
@@ -94,6 +126,10 @@ module DNN
|
|
|
94
126
|
@v = {}
|
|
95
127
|
end
|
|
96
128
|
|
|
129
|
+
def self.load_hash(hash)
|
|
130
|
+
self.new(hash[:learning_rate], hash[:beta1], hash[:beta2])
|
|
131
|
+
end
|
|
132
|
+
|
|
97
133
|
def update(layer)
|
|
98
134
|
@iter += 1
|
|
99
135
|
@m[layer] ||= {}
|
|
@@ -107,6 +143,15 @@ module DNN
|
|
|
107
143
|
layer.params[key] -= lr * @m[layer][key] / NMath.sqrt(@v[layer][key] + 1e-7)
|
|
108
144
|
end
|
|
109
145
|
end
|
|
146
|
+
|
|
147
|
+
def to_hash
|
|
148
|
+
{
|
|
149
|
+
name: self.class.name,
|
|
150
|
+
learning_rate: @learning_rate,
|
|
151
|
+
beta1: @beta1,
|
|
152
|
+
beta2: @beta2,
|
|
153
|
+
}
|
|
154
|
+
end
|
|
110
155
|
end
|
|
111
156
|
|
|
112
157
|
end
|
data/lib/dnn/core/util.rb
CHANGED
|
@@ -20,5 +20,14 @@ module DNN
|
|
|
20
20
|
def self.numerical_grad(x, func)
|
|
21
21
|
(func.(x + 1e-7) - func.(x)) / 1e-7
|
|
22
22
|
end
|
|
23
|
+
|
|
24
|
+
#Convert hash to an object.
|
|
25
|
+
def self.load_hash(hash)
|
|
26
|
+
dnn_class = DNN.const_get(hash[:name])
|
|
27
|
+
if dnn_class.respond_to?(:load_hash)
|
|
28
|
+
return dnn_class.load_hash(hash)
|
|
29
|
+
end
|
|
30
|
+
dnn_class.new
|
|
31
|
+
end
|
|
23
32
|
end
|
|
24
33
|
end
|
data/lib/dnn/core/version.rb
CHANGED
data/ruby-dnn.gemspec
CHANGED
|
@@ -11,7 +11,7 @@ Gem::Specification.new do |spec|
|
|
|
11
11
|
|
|
12
12
|
spec.summary = %q{ruby deep learning library.}
|
|
13
13
|
spec.description = %q{ruby-dnn is a ruby deep learning library.}
|
|
14
|
-
spec.homepage = "https://github.com/unagiootoro/dnn.git"
|
|
14
|
+
spec.homepage = "https://github.com/unagiootoro/ruby-dnn.git"
|
|
15
15
|
spec.license = "MIT"
|
|
16
16
|
spec.extensions = ["lib/dnn/ext/mnist/extconf.rb", "lib/dnn/ext/cifar10/extconf.rb", "lib/dnn/ext/image_io/extconf.rb"]
|
|
17
17
|
|
metadata
CHANGED
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
|
2
2
|
name: ruby-dnn
|
|
3
3
|
version: !ruby/object:Gem::Version
|
|
4
|
-
version: 0.1.
|
|
4
|
+
version: 0.1.6
|
|
5
5
|
platform: ruby
|
|
6
6
|
authors:
|
|
7
7
|
- unagiootoro
|
|
8
8
|
autorequire:
|
|
9
9
|
bindir: exe
|
|
10
10
|
cert_chain: []
|
|
11
|
-
date: 2018-07-
|
|
11
|
+
date: 2018-07-07 00:00:00.000000000 Z
|
|
12
12
|
dependencies:
|
|
13
13
|
- !ruby/object:Gem::Dependency
|
|
14
14
|
name: numo-narray
|
|
@@ -212,7 +212,7 @@ files:
|
|
|
212
212
|
- lib/dnn/lib/image_io.rb
|
|
213
213
|
- lib/dnn/lib/mnist.rb
|
|
214
214
|
- ruby-dnn.gemspec
|
|
215
|
-
homepage: https://github.com/unagiootoro/dnn.git
|
|
215
|
+
homepage: https://github.com/unagiootoro/ruby-dnn.git
|
|
216
216
|
licenses:
|
|
217
217
|
- MIT
|
|
218
218
|
metadata: {}
|