reem 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/Changes.md +0 -0
- data/Gemfile +9 -0
- data/LICENSE +21 -0
- data/README.md +0 -0
- data/Rakefile +9 -0
- data/lib/reem.rb +8 -0
- data/lib/reem/.clusterer.rb.swp +0 -0
- data/lib/reem/cholesky_factorization.rb +33 -0
- data/lib/reem/clusterer.java +183 -0
- data/lib/reem/clusterer.rb +10 -0
- data/lib/reem/lower_triangular_matrix.rb +27 -0
- data/lib/reem/multivariate_gaussian.rb +13 -0
- data/lib/reem/version.rb +7 -0
- data/reem.gemspec +18 -0
- data/test/clusterer_test.rb +20 -0
- data/test/helper.rb +7 -0
- data/test/lower_triangular_matrix_test.rb +17 -0
- data/test/multivariate_gaussian_test.rb +27 -0
- metadata +95 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 21a616566baa006fcc7d121ca0d863beb7ce12f0
|
4
|
+
data.tar.gz: 7a7f6be47462eefe9901979414cf2cdf3a204a7e
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 58f172e95a0878b849778ea9029d81d32c0119d284c73f2967c1cf8010e888793839bbb086dc9603bec0234519bcfbe086ec7dd7e1c13e1fc5ee5f5b5987b00e
|
7
|
+
data.tar.gz: c59f57537da4203167f48da999f7deefc15912a864074b8244fb7152a6b821131a02a67d35ab61a8fbc984acdeb6836979e9022f9184e7b7d5d93bf32c2b5555
|
data/Changes.md
ADDED
File without changes
|
data/Gemfile
ADDED
@@ -0,0 +1,9 @@
|
|
1
|
+
source 'https://rubygems.org'
|
2
|
+
gemspec
|
3
|
+
|
4
|
+
platforms :rbx do
|
5
|
+
gem 'rubysl', '~> 2.0' # if using anything in the ruby standard library
|
6
|
+
gem 'psych' # if using yaml
|
7
|
+
gem 'minitest' # if using minitest
|
8
|
+
gem 'rubinius-developer_tools' # if using any of coverage, debugger, profiler
|
9
|
+
end
|
data/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2014 Matthew Kirk
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
File without changes
|
data/Rakefile
ADDED
data/lib/reem.rb
ADDED
Binary file
|
@@ -0,0 +1,33 @@
|
|
1
|
+
module Reem
|
2
|
+
class CholeskyFactorization
|
3
|
+
def initialize(matrix)
|
4
|
+
@matrix = matrix
|
5
|
+
@lower = LowerTriangularMatrix.new(matrix)
|
6
|
+
decompose!
|
7
|
+
end
|
8
|
+
|
9
|
+
def decompose!
|
10
|
+
@lower.n.times do |j|
|
11
|
+
# Sqrt the diagonal
|
12
|
+
@lower[j,j] = Math::sqrt(@lower[j,j])
|
13
|
+
# Divide the subdiagonal colum by the diagonal
|
14
|
+
|
15
|
+
(j + 1...@lower.m).each do |i|
|
16
|
+
@lower[i,j] = @lower[i,j] / @lower[j,j]
|
17
|
+
end
|
18
|
+
|
19
|
+
# symmetric rank 1 update
|
20
|
+
# subtract the crossproduct of the
|
21
|
+
# subdiagonal column from the remaining
|
22
|
+
# lower diagonal
|
23
|
+
(j+1...@lower.n).each do |k|
|
24
|
+
(k...@lower.m).each do |l|
|
25
|
+
@lower[l,k] = @lower[l, k] - @lower[l,k] * @lower[k,j]
|
26
|
+
end
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
@upper = @lower.transpose
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,183 @@
|
|
1
|
+
public class EMClusterer extends AbstractConditionalDistribution implements FunctionApproximater {
|
2
|
+
/**
|
3
|
+
* The tolerance
|
4
|
+
*/
|
5
|
+
private static final double TOLERANCE = 1E-6;
|
6
|
+
/**
|
7
|
+
* The tolerance
|
8
|
+
*/
|
9
|
+
private static final int MAX_ITERATIONS = 1000;
|
10
|
+
/**
|
11
|
+
* The mixture distribution
|
12
|
+
*/
|
13
|
+
private MixtureDistribution mixture;
|
14
|
+
/**
|
15
|
+
* The number of clusters
|
16
|
+
*/
|
17
|
+
private int k;
|
18
|
+
/**
|
19
|
+
* The threshold
|
20
|
+
*/
|
21
|
+
private double tolerance;
|
22
|
+
|
23
|
+
/**
|
24
|
+
* The max iterations
|
25
|
+
*/
|
26
|
+
private int maxIterations;
|
27
|
+
|
28
|
+
/**
|
29
|
+
* How many iterations it took
|
30
|
+
*/
|
31
|
+
private int iterations;
|
32
|
+
|
33
|
+
/**
|
34
|
+
* Whether to print stuff
|
35
|
+
*/
|
36
|
+
private boolean debug = false;
|
37
|
+
|
38
|
+
/**
|
39
|
+
* Make a new em clusterer
|
40
|
+
* @param k the number of clusters
|
41
|
+
* @param tolerance the tolerance
|
42
|
+
*/
|
43
|
+
public EMClusterer(int k, double tolerance, int maxIterations) {
|
44
|
+
this.k = k;
|
45
|
+
this.tolerance = tolerance;
|
46
|
+
this.maxIterations = maxIterations;
|
47
|
+
}
|
48
|
+
|
49
|
+
/**
|
50
|
+
* Make a new clusterer
|
51
|
+
*/
|
52
|
+
public EMClusterer() {
|
53
|
+
this(2, TOLERANCE, MAX_ITERATIONS);
|
54
|
+
}
|
55
|
+
|
56
|
+
/**
|
57
|
+
* @see func.Classifier#classDistribution(shared.Instance)
|
58
|
+
*/
|
59
|
+
public Distribution distributionFor(Instance instance) {
|
60
|
+
// calculate the log probs
|
61
|
+
double[] probs = new double[mixture.getComponents().length];
|
62
|
+
double maxLog = Double.NEGATIVE_INFINITY;
|
63
|
+
for (int i = 0; i < probs.length; i++) {
|
64
|
+
probs[i] = mixture.getComponents()[i].logp(instance);
|
65
|
+
maxLog = Math.max(maxLog, probs[i]);
|
66
|
+
}
|
67
|
+
// turn into real probs
|
68
|
+
double sum = 0;
|
69
|
+
for (int i = 0; i < probs.length; i++) {
|
70
|
+
probs[i] = Math.exp(probs[i] - maxLog);
|
71
|
+
sum += probs[i];
|
72
|
+
}
|
73
|
+
// normalize
|
74
|
+
for (int i = 0; i < probs.length; i++) {
|
75
|
+
probs[i] /= sum;
|
76
|
+
}
|
77
|
+
return new DiscreteDistribution(probs);
|
78
|
+
}
|
79
|
+
|
80
|
+
/**
|
81
|
+
* @see func.FunctionApproximater#estimate(shared.DataSet)
|
82
|
+
*/
|
83
|
+
public void estimate(DataSet set) {
|
84
|
+
// kmeans initialization
|
85
|
+
KMeansClusterer kmeans = new KMeansClusterer(k);
|
86
|
+
kmeans.estimate(set);
|
87
|
+
double[] prior = new double[k];
|
88
|
+
double weightSum = 0;
|
89
|
+
int[] counts = new int[k];
|
90
|
+
int[] classifications = new int[set.size()];
|
91
|
+
for (int i = 0; i < set.size(); i++) {
|
92
|
+
classifications[i] = kmeans.value(set.get(i)).getDiscrete();
|
93
|
+
counts[classifications[i]]++;
|
94
|
+
prior[classifications[i]] += set.get(i).getWeight();
|
95
|
+
weightSum += set.get(i).getWeight();
|
96
|
+
}
|
97
|
+
// create data sets for each of the classes
|
98
|
+
Instance[][] instances = new Instance[k][];
|
99
|
+
for (int i = 0; i < instances.length; i++) {
|
100
|
+
instances[i] = new Instance[counts[i]];
|
101
|
+
}
|
102
|
+
Arrays.fill(counts, 0);
|
103
|
+
for (int i = 0; i < set.size(); i++) {
|
104
|
+
instances[classifications[i]][counts[classifications[i]]] = set.get(i);
|
105
|
+
counts[classifications[i]]++;
|
106
|
+
}
|
107
|
+
MultivariateGaussian[] initial = new MultivariateGaussian[k];
|
108
|
+
for (int i = 0; i < initial.length; i++) {
|
109
|
+
initial[i] = new MultivariateGaussian();
|
110
|
+
initial[i].setDebug(debug);
|
111
|
+
initial[i].estimate(new DataSet(instances[i]));
|
112
|
+
prior[i] /= weightSum;
|
113
|
+
}
|
114
|
+
mixture = new MixtureDistribution(initial, prior);
|
115
|
+
// reestimate
|
116
|
+
boolean done = false;
|
117
|
+
double lastLogLikelihood = 0;
|
118
|
+
iterations = 0;
|
119
|
+
while (!done) {
|
120
|
+
if (debug) {
|
121
|
+
System.out.println("On iteration " + iterations);
|
122
|
+
System.out.println(mixture);
|
123
|
+
}
|
124
|
+
mixture.estimate(set);
|
125
|
+
double logLikelihood = 0;
|
126
|
+
for (int j = 0; j < set.size(); j++) {
|
127
|
+
logLikelihood += mixture.logp(set.get(j));
|
128
|
+
}
|
129
|
+
logLikelihood /= set.size();
|
130
|
+
done = (iterations > 0 && Math.abs(logLikelihood - lastLogLikelihood) < tolerance)
|
131
|
+
|| (iterations + 1 >= maxIterations);
|
132
|
+
lastLogLikelihood = logLikelihood;
|
133
|
+
iterations++;
|
134
|
+
}
|
135
|
+
}
|
136
|
+
|
137
|
+
/**
|
138
|
+
* @see func.FunctionApproximater#value(shared.Instance)
|
139
|
+
*/
|
140
|
+
public Instance value(Instance i) {
|
141
|
+
return distributionFor(i).mode();
|
142
|
+
}
|
143
|
+
|
144
|
+
/**
|
145
|
+
* Get the number of iterations it took
|
146
|
+
* @return the number
|
147
|
+
*/
|
148
|
+
public int getIterations() {
|
149
|
+
return iterations;
|
150
|
+
}
|
151
|
+
|
152
|
+
/**
|
153
|
+
* Is debug mode on
|
154
|
+
* @return true if it is
|
155
|
+
*/
|
156
|
+
public boolean isDebug() {
|
157
|
+
return debug;
|
158
|
+
}
|
159
|
+
|
160
|
+
/**
|
161
|
+
* Set debug mode on or off
|
162
|
+
* @param b the debug mode
|
163
|
+
*/
|
164
|
+
public void setDebug(boolean b) {
|
165
|
+
debug = b;
|
166
|
+
}
|
167
|
+
|
168
|
+
/**
|
169
|
+
* Get the mixture
|
170
|
+
* @return the mixture
|
171
|
+
*/
|
172
|
+
public MixtureDistribution getMixture() {
|
173
|
+
return mixture;
|
174
|
+
}
|
175
|
+
|
176
|
+
/**
|
177
|
+
* @see java.lang.Object#toString()
|
178
|
+
*/
|
179
|
+
public String toString() {
|
180
|
+
return mixture.toString();
|
181
|
+
}
|
182
|
+
|
183
|
+
}
|
@@ -0,0 +1,27 @@
|
|
1
|
+
module Reem
|
2
|
+
class LowerTriangularMatrix
|
3
|
+
def initialize(matrix)
|
4
|
+
columns, rows = matrix.sizes
|
5
|
+
@ltm = NArray.float(columns, rows)
|
6
|
+
|
7
|
+
(0...columns).each do |i|
|
8
|
+
(0..i).each do |j|
|
9
|
+
@ltm[j,i] = matrix[j,i]
|
10
|
+
end
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
def transpose
|
15
|
+
@transpose ||= begin
|
16
|
+
columns, rows = @ltm.sizes
|
17
|
+
matrix = NArray.float(columns, rows)
|
18
|
+
(0...columns).each do |i|
|
19
|
+
(0...rows).each do |j|
|
20
|
+
matrix[i,j] = @ltm[j,i]
|
21
|
+
end
|
22
|
+
end
|
23
|
+
matrix
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
27
|
+
end
|
data/lib/reem/version.rb
ADDED
data/reem.gemspec
ADDED
@@ -0,0 +1,18 @@
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
2
|
+
require File.expand_path('../lib/reem/version', __FILE__)
|
3
|
+
|
4
|
+
Gem::Specification.new do |gem|
|
5
|
+
gem.authors = ["Matt Kirk"]
|
6
|
+
gem.email = ["matt@matthewkirk.com"]
|
7
|
+
gem.description = gem.summary = "Simple EM Clustering for Ruby"
|
8
|
+
gem.homepage = "http://github.com/hexgnu/reem"
|
9
|
+
gem.license = "MIT"
|
10
|
+
|
11
|
+
gem.files = `git ls-files`.split("\n")
|
12
|
+
gem.test_files = `git ls-files -- test/*`.split("\n")
|
13
|
+
gem.name = "reem"
|
14
|
+
gem.require_paths = ["lib"]
|
15
|
+
gem.version = Reem::VERSION
|
16
|
+
gem.add_dependency 'narray'
|
17
|
+
gem.add_development_dependency 'minitest'
|
18
|
+
end
|
@@ -0,0 +1,20 @@
|
|
1
|
+
require 'helper'
|
2
|
+
|
3
|
+
describe Reem::Clusterer do
|
4
|
+
it 'separates two obvious gaussians into two clusters' do
|
5
|
+
skip
|
6
|
+
mga = MultivariateGaussian.new(Vector[100,100,100], Matrix.identity(3) * 0.01)
|
7
|
+
mba = MultivariateGaussian.new(Vector[-1,-1,-1], Matrix.identity(3) * 10)
|
8
|
+
|
9
|
+
instances = instances.length.times.map do |i|
|
10
|
+
if Distribution.random.next_boolean
|
11
|
+
mga.sample(nil)
|
12
|
+
else
|
13
|
+
mgb.sample(nil)
|
14
|
+
end
|
15
|
+
end
|
16
|
+
set = ::Reem::DataSet.new(instances)
|
17
|
+
em = ::Reem::Clusterer.new
|
18
|
+
puts em.estimate(set)
|
19
|
+
end
|
20
|
+
end
|
data/test/helper.rb
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
require 'helper'
|
2
|
+
|
3
|
+
describe ::Reem::LowerTriangularMatrix do
|
4
|
+
let(:matrix) { NArray[[1,2,3], [4,5,6], [7,8,9]] }
|
5
|
+
let(:lower_triangle) { NArray[[1.0,0.0,0.0], [4.0,5.0,0.0], [7.0,8.0,9.0]] }
|
6
|
+
let(:upper_triangle) { NArray[[1.0, 4.0, 7.0], [0.0, 5.0, 8.0], [0.0, 0.0, 9.0]]}
|
7
|
+
|
8
|
+
it 'should convert to a lower triangular matrix' do
|
9
|
+
ltm = ::Reem::LowerTriangularMatrix.new(matrix)
|
10
|
+
ltm.instance_variable_get("@ltm").must_equal lower_triangle
|
11
|
+
end
|
12
|
+
|
13
|
+
it 'transposes' do
|
14
|
+
ltm = ::Reem::LowerTriangularMatrix.new(matrix)
|
15
|
+
ltm.transpose.must_equal upper_triangle
|
16
|
+
end
|
17
|
+
end
|
@@ -0,0 +1,27 @@
|
|
1
|
+
require 'helper'
|
2
|
+
|
3
|
+
describe ::Reem::MultivariateGaussian do
|
4
|
+
it 'blends' do
|
5
|
+
skip
|
6
|
+
mga = ::Reem::MultivariateGaussian.new(Vector[100,100,100], Matrix.identity(3) * 0.01)
|
7
|
+
|
8
|
+
instances = 20.times.map do |i|
|
9
|
+
mga.sample
|
10
|
+
end
|
11
|
+
|
12
|
+
set = DataSet.new(instances)
|
13
|
+
mg = MultivariateGaussian
|
14
|
+
mg.estimate(set)
|
15
|
+
|
16
|
+
puts mg
|
17
|
+
puts "Most likely #{mg.mode}"
|
18
|
+
|
19
|
+
10.times do |i|
|
20
|
+
puts mg.sample
|
21
|
+
end
|
22
|
+
|
23
|
+
instances.each do |instance|
|
24
|
+
puts "Probability of \n #{instance} \n #{mg.p(instance)}"
|
25
|
+
end
|
26
|
+
end
|
27
|
+
end
|
metadata
ADDED
@@ -0,0 +1,95 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: reem
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Matt Kirk
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2014-03-11 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - '>='
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '0'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - '>='
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '0'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: minitest
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - '>='
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '0'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - '>='
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
description: Simple EM Clustering for Ruby
|
42
|
+
email:
|
43
|
+
- matt@matthewkirk.com
|
44
|
+
executables: []
|
45
|
+
extensions: []
|
46
|
+
extra_rdoc_files: []
|
47
|
+
files:
|
48
|
+
- Changes.md
|
49
|
+
- Gemfile
|
50
|
+
- LICENSE
|
51
|
+
- README.md
|
52
|
+
- Rakefile
|
53
|
+
- lib/reem.rb
|
54
|
+
- lib/reem/.clusterer.rb.swp
|
55
|
+
- lib/reem/cholesky_factorization.rb
|
56
|
+
- lib/reem/clusterer.java
|
57
|
+
- lib/reem/clusterer.rb
|
58
|
+
- lib/reem/lower_triangular_matrix.rb
|
59
|
+
- lib/reem/multivariate_gaussian.rb
|
60
|
+
- lib/reem/version.rb
|
61
|
+
- reem.gemspec
|
62
|
+
- test/clusterer_test.rb
|
63
|
+
- test/helper.rb
|
64
|
+
- test/lower_triangular_matrix_test.rb
|
65
|
+
- test/multivariate_gaussian_test.rb
|
66
|
+
homepage: http://github.com/hexgnu/reem
|
67
|
+
licenses:
|
68
|
+
- MIT
|
69
|
+
metadata: {}
|
70
|
+
post_install_message:
|
71
|
+
rdoc_options: []
|
72
|
+
require_paths:
|
73
|
+
- lib
|
74
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
75
|
+
requirements:
|
76
|
+
- - '>='
|
77
|
+
- !ruby/object:Gem::Version
|
78
|
+
version: '0'
|
79
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
80
|
+
requirements:
|
81
|
+
- - '>='
|
82
|
+
- !ruby/object:Gem::Version
|
83
|
+
version: '0'
|
84
|
+
requirements: []
|
85
|
+
rubyforge_project:
|
86
|
+
rubygems_version: 2.0.2
|
87
|
+
signing_key:
|
88
|
+
specification_version: 4
|
89
|
+
summary: Simple EM Clustering for Ruby
|
90
|
+
test_files:
|
91
|
+
- test/clusterer_test.rb
|
92
|
+
- test/helper.rb
|
93
|
+
- test/lower_triangular_matrix_test.rb
|
94
|
+
- test/multivariate_gaussian_test.rb
|
95
|
+
has_rdoc:
|