rabbit-slide-kou-apache-arrow-tokyo-meetup-2019 2019.12.11.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.rabbit +1 -0
- data/README.rd +44 -0
- data/Rakefile +17 -0
- data/apache-arrow-2019.rab +435 -0
- data/config.yaml +24 -0
- data/images/columnar.svg +641 -0
- data/images/data-processing-system.svg +2498 -0
- data/images/simd-null.svg +286 -0
- data/pdf/apache-arrow-tokyo-meetup-2019-apache-arrow-2019.pdf +0 -0
- data/theme.rb +1 -0
- metadata +82 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: b0bbf924ec8f12659502b6b4b4931691530d489efe10a40d33cf9cadbb5162ee
|
4
|
+
data.tar.gz: 31de59aaef260dc8e7597536eb3827e0929be1a96538d135d97e595d72f9f661
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 2514255bea8bd1702508f1e2a1ead9ea18cd397fed7f349881b5092a31c741aac4bb49e78a3831a75d8fd92829c055e9208ad6ffb7645af7e0d113f5a3cccbb6
|
7
|
+
data.tar.gz: 0d9af4b9f23dd7e8f8336be4430d609ad6c6d12b2f5ea6ccee70adfc77165dc5fa7b90363998cb6898d8c015fe73f149603a8ec8b70263bc205930ae51354343
|
data/.rabbit
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
--size 800,450 apache-arrow-2019.rab
|
data/README.rd
ADDED
@@ -0,0 +1,44 @@
|
|
1
|
+
= Apache Arrow 2019
|
2
|
+
|
3
|
+
2019年12月時点のApache Arrowの最新情報を紹介します。
|
4
|
+
|
5
|
+
== ライセンス
|
6
|
+
|
7
|
+
=== スライド
|
8
|
+
|
9
|
+
CC BY-SA 4.0
|
10
|
+
|
11
|
+
原著作者名は以下の通りです。
|
12
|
+
|
13
|
+
* 須藤功平(またはKouhei Sutou)
|
14
|
+
|
15
|
+
=== 画像
|
16
|
+
|
17
|
+
==== クリアコードのロゴ
|
18
|
+
|
19
|
+
CC BY-SA 4.0
|
20
|
+
|
21
|
+
原著作者:株式会社クリアコード
|
22
|
+
|
23
|
+
ページヘッダーで使っています。
|
24
|
+
|
25
|
+
== 作者向け
|
26
|
+
|
27
|
+
=== 表示
|
28
|
+
|
29
|
+
rake
|
30
|
+
|
31
|
+
=== 公開
|
32
|
+
|
33
|
+
rake publish
|
34
|
+
|
35
|
+
== 閲覧者向け
|
36
|
+
|
37
|
+
=== インストール
|
38
|
+
|
39
|
+
gem install rabbit-slide--apache-arrow-tokyo-meetup-2019
|
40
|
+
|
41
|
+
=== 表示
|
42
|
+
|
43
|
+
rabbit rabbit-slide--apache-arrow-tokyo-meetup-2019.gem
|
44
|
+
|
data/Rakefile
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
require "rabbit/task/slide"
|
2
|
+
|
3
|
+
# Edit ./config.yaml to customize meta data
|
4
|
+
|
5
|
+
spec = nil
|
6
|
+
Rabbit::Task::Slide.new do |task|
|
7
|
+
spec = task.spec
|
8
|
+
# spec.files += Dir.glob("doc/**/*.*")
|
9
|
+
# spec.files -= Dir.glob("private/**/*.*")
|
10
|
+
spec.add_runtime_dependency("rabbit-theme-clear-code")
|
11
|
+
end
|
12
|
+
|
13
|
+
desc "Tag #{spec.version}"
|
14
|
+
task :tag do
|
15
|
+
sh("git", "tag", "-a", spec.version.to_s, "-m", "Publish #{spec.version}")
|
16
|
+
sh("git", "push", "--tags")
|
17
|
+
end
|
@@ -0,0 +1,435 @@
|
|
1
|
+
= Apache Arrow 2019\n#ArrowTokyo
|
2
|
+
|
3
|
+
: author
|
4
|
+
須藤功平
|
5
|
+
: institution
|
6
|
+
株式会社クリアコード
|
7
|
+
: content-source
|
8
|
+
Apache Arrow東京ミートアップ2019
|
9
|
+
: date
|
10
|
+
2019-12-11
|
11
|
+
: start-time
|
12
|
+
2019-12-11T19:05:00+09:00
|
13
|
+
: end-time
|
14
|
+
2019-12-11T19:20:00+09:00
|
15
|
+
: theme
|
16
|
+
.
|
17
|
+
|
18
|
+
= Apache Arrowと私
|
19
|
+
|
20
|
+
* 2016-12-21に最初のコミット
|
21
|
+
* 2017-05-10にコミッター
|
22
|
+
* 2017-09-15にPMCメンバー
|
23
|
+
* 2018-12-06現在コミット数3位(224人中)
|
24
|
+
* 2019-12-09現在コミット数2位(348人中)
|
25
|
+
|
26
|
+
= 今日の目的
|
27
|
+
|
28
|
+
Apache Arrow\n
|
29
|
+
ユーザーを\n
|
30
|
+
増やす
|
31
|
+
|
32
|
+
= 今日のチャレンジ
|
33
|
+
|
34
|
+
(('tag:center'))
|
35
|
+
(('tag:margin-bottom * 5'))
|
36
|
+
こんな人たちもフォローしてユーザーに!
|
37
|
+
|
38
|
+
* 使ってみたい!
|
39
|
+
* でも、自分たちだけじゃ不安…
|
40
|
+
|
41
|
+
= 対策:みんなで力を合わせる!
|
42
|
+
|
43
|
+
(('tag:center'))
|
44
|
+
(('tag:margin-bottom'))
|
45
|
+
こんな布陣ならいけるかも!なら相談して!
|
46
|
+
|
47
|
+
* クリアコード:技術提供(('note:(すごく詳しいよ!)'))
|
48
|
+
* A社:データ提供(('note:(うちのデータでApache Arrowは効くかな?)'))
|
49
|
+
* B社:インフラ提供(('note:(どんな構成が適切かな?)'))
|
50
|
+
* C社:お金・人的リソース提供(('note:(知見を貯めたい)'))
|
51
|
+
* ...
|
52
|
+
|
53
|
+
= Apache Arrow
|
54
|
+
|
55
|
+
各種言語で使える\n
|
56
|
+
インメモリー\n
|
57
|
+
データ処理\n
|
58
|
+
プラットフォーム
|
59
|
+
|
60
|
+
= 実現すること
|
61
|
+
|
62
|
+
データ処理の効率化\n
|
63
|
+
(大量データが対象)
|
64
|
+
|
65
|
+
= 効率化のポイント
|
66
|
+
|
67
|
+
* 速度
|
68
|
+
* 速いほど効率的
|
69
|
+
* 実装コスト
|
70
|
+
* 低いほど効率的
|
71
|
+
|
72
|
+
= 速度向上方法
|
73
|
+
|
74
|
+
* 遅い部分を速く
|
75
|
+
* 高速化できる部分を最適化
|
76
|
+
|
77
|
+
= 遅い部分
|
78
|
+
|
79
|
+
データ交換
|
80
|
+
|
81
|
+
= データ交換
|
82
|
+
|
83
|
+
* データ処理ツール間で必要
|
84
|
+
* データ処理システム
|
85
|
+
* 複数ツールを組み合わせて実現
|
86
|
+
* データ処理システムではデータ交換が必須
|
87
|
+
|
88
|
+
= データ処理システム例
|
89
|
+
|
90
|
+
# img
|
91
|
+
# src = images/data-processing-system.svg
|
92
|
+
# relative_width = 100
|
93
|
+
|
94
|
+
== スライドプロパティー
|
95
|
+
|
96
|
+
: enable-title-on-image
|
97
|
+
false
|
98
|
+
|
99
|
+
= データ交換処理
|
100
|
+
|
101
|
+
(1) シリアライズ\n
|
102
|
+
(('note:データをバイト列へ変換'))
|
103
|
+
(2) 転送\n
|
104
|
+
(('note:バイト列を別ツールに渡す'))
|
105
|
+
(3) デシリアライズ\n
|
106
|
+
(('note:バイト列からデータを復元'))
|
107
|
+
|
108
|
+
= データ交換処理:必要なリソース
|
109
|
+
|
110
|
+
(1) シリアライズ:CPU
|
111
|
+
(2) 転送:I/O(('note:(ネットワーク・ストレージ・メモリー)'))
|
112
|
+
(3) デシリアライズ:CPU
|
113
|
+
|
114
|
+
= データ交換の高速化
|
115
|
+
|
116
|
+
* データ量が増加すると\n
|
117
|
+
シリアライズ・デシリアライズ速度が劣化
|
118
|
+
* 速度劣化を抑えられれば高速化可能
|
119
|
+
|
120
|
+
= Apache Arrowのアプローチ
|
121
|
+
|
122
|
+
(('tag:center'))
|
123
|
+
(('tag:margin-bottom'))
|
124
|
+
なにもしなければ最速!
|
125
|
+
|
126
|
+
* データフォーマットを定義
|
127
|
+
* ほぼパースいらずなので速い!
|
128
|
+
* シリアライズ・デシリアライズが高速化!
|
129
|
+
* このフォーマットの普及
|
130
|
+
* 各種言語で読み書き処理を実装
|
131
|
+
* みんなが使えばフォーマット変換いらずで速い!
|
132
|
+
|
133
|
+
= Apache Sparkでの高速化事例
|
134
|
+
|
135
|
+
* Spark⇔PySpark間でデータ交換
|
136
|
+
* ((<Apache Arrowを使うことで数十倍レベルの高速化|URL:https://arrow.apache.org/blog/2017/07/26/spark-arrow/>))
|
137
|
+
* Spark⇔R間でデータ交換
|
138
|
+
* ((<sparklyrでは10倍以上の高速化|URL:https://arrow.apache.org/blog/2019/01/25/r-spark-improvements/>))
|
139
|
+
* Spark 3.0からはSparkRでも使える
|
140
|
+
|
141
|
+
(('tag:center'))
|
142
|
+
Spark関連は山室さんが紹介!
|
143
|
+
|
144
|
+
= Apache Arrowのさらなるアプローチ
|
145
|
+
|
146
|
+
(1) シリアライズ\n
|
147
|
+
(('note:データをバイト列へ変換'))
|
148
|
+
(2) 転送←ここも高速化\n
|
149
|
+
(('note:バイト列を別ツールに渡す'))
|
150
|
+
(3) デシリアライズ\n
|
151
|
+
(('note:バイト列からデータを復元'))
|
152
|
+
|
153
|
+
= 同一ホスト時のデータ転送の高速化
|
154
|
+
|
155
|
+
* メモリーマップ機能
|
156
|
+
* ファイルの内容をメモリー上のデータのように\n
|
157
|
+
アクセスできる機能
|
158
|
+
* (({read}))せずにデータを使える(データコピー不要)
|
159
|
+
* パース不要+メモリーマップ
|
160
|
+
* デシリアライズ時にメモリー確保不要
|
161
|
+
* 「転送」コスト削減
|
162
|
+
|
163
|
+
= 複数ホスト時のデータ転送の高速化
|
164
|
+
|
165
|
+
* RPCフレームワークを提供
|
166
|
+
* Apache Arrow Flight
|
167
|
+
* gRPCベース
|
168
|
+
* 詳細:((<Apache Arrow Flightの紹介|URL:https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight-japanese/>))
|
169
|
+
|
170
|
+
= 効率的なデータ交換処理のまとめ
|
171
|
+
|
172
|
+
* 高速なデータフォーマット
|
173
|
+
* 効率的なデータ交換処理
|
174
|
+
* ((*同一ホスト内*))での高速なデータ交換
|
175
|
+
* ((*異なるホスト間*))での高速なデータフレーム交換
|
176
|
+
|
177
|
+
= 速度向上方法
|
178
|
+
|
179
|
+
* 遅い部分を速く
|
180
|
+
* ((*データ交換*))を速く
|
181
|
+
* 高速化できる部分を最適化
|
182
|
+
|
183
|
+
= 高速化できる部分
|
184
|
+
|
185
|
+
大量データの計算
|
186
|
+
|
187
|
+
= 大量データの計算の高速化
|
188
|
+
|
189
|
+
* 各データの計算を高速化
|
190
|
+
* まとまったデータの計算を高速化
|
191
|
+
|
192
|
+
= 各データの計算の高速化
|
193
|
+
|
194
|
+
* データを局所化
|
195
|
+
* CPUのキャッシュメモリーを活用できる
|
196
|
+
* 局所化に必要な知識
|
197
|
+
* データの使われ方
|
198
|
+
* 局所化:一緒に使うデータを近くに置く
|
199
|
+
|
200
|
+
= 想定ユースケース
|
201
|
+
|
202
|
+
* OLAP(('note:(OnLine Analytical Processing)'))
|
203
|
+
* データから探索的に知見を探し出すような処理
|
204
|
+
* 列単位の処理が多い
|
205
|
+
* 集計処理・グループ化・ソート…
|
206
|
+
|
207
|
+
= OLAP向きのデータの持ち方
|
208
|
+
|
209
|
+
# img
|
210
|
+
# src = images/columnar.svg
|
211
|
+
# relative_height = 100
|
212
|
+
|
213
|
+
== スライドプロパティー
|
214
|
+
|
215
|
+
: enable-title-on-image
|
216
|
+
false
|
217
|
+
|
218
|
+
= まとまったデータの計算を高速化
|
219
|
+
|
220
|
+
* SIMDを活用\n
|
221
|
+
(('note:Single Instruction Multiple Data'))
|
222
|
+
* スレッドを活用
|
223
|
+
* ストリームで処理
|
224
|
+
|
225
|
+
= SIMDを活用
|
226
|
+
|
227
|
+
* CPU:データをまとめてアライン\n
|
228
|
+
(('note:アライン:データの境界を64の倍数とかに揃える'))
|
229
|
+
* GPUの活用
|
230
|
+
* 条件分岐をなくす
|
231
|
+
* null/NA用の値は用意せずビットマップで表現\n
|
232
|
+
(('note:((<"Is it time to stop using sentinel values for null / NA values?"|URL:http://wesmckinney.com/blog/bitmaps-vs-sentinel-values/>))'))
|
233
|
+
|
234
|
+
= 条件分岐とnull
|
235
|
+
|
236
|
+
# img
|
237
|
+
# src = images/simd-null.svg
|
238
|
+
# relative_height = 100
|
239
|
+
|
240
|
+
== スライドプロパティー
|
241
|
+
|
242
|
+
: enable-title-on-image
|
243
|
+
false
|
244
|
+
|
245
|
+
= スレッド活用時のポイント
|
246
|
+
|
247
|
+
* 競合リソースを作らない
|
248
|
+
* リソースロックのオーバーヘッドで遅くなりがち
|
249
|
+
* アプローチ
|
250
|
+
* リソースを参照するだけ
|
251
|
+
* 各スレッドにコピー
|
252
|
+
|
253
|
+
= Apache Arrowとスレッド
|
254
|
+
|
255
|
+
* データはリードオンリー
|
256
|
+
* スレッド間でオーバーヘッドなしで共有可能
|
257
|
+
* データコピーは極力避けたい
|
258
|
+
* データ交換時もスレッド活用時も
|
259
|
+
|
260
|
+
= ストリームで処理
|
261
|
+
|
262
|
+
* CPUを遊ばせない
|
263
|
+
* データ読み込み中にすでに読んだデータを処理
|
264
|
+
* C++実装:詳細は村田さんが紹介!
|
265
|
+
* ((<Apache Arrow C++ Datasets|URL:https://docs.google.com/document/d/1bVhzifD38qDypnSjtf8exvpP3sSB5x_Kw9m-n66FB2c/edit?usp=sharing>)):データ読み込み
|
266
|
+
* ((<Apache Arrow C++ Query Engine|URL:https://docs.google.com/document/d/10RoUZmiMQRi_J1FcPeVAUAMJ6d_ZuiEbaM2Y33sNPu4/edit?usp=sharing>)):データ処理
|
267
|
+
* ((<Apache Arrow C++ Data Frame|URL:https://docs.google.com/document/d/1XHe_j87n2VHGzEbnLe786GHbbcbrzbjgG8D0IXWAeHg/edit?usp=sharing>)):高レベルAPI
|
268
|
+
* Gandiva:高速な式コンパイラー
|
269
|
+
|
270
|
+
= 高速化のまとめ
|
271
|
+
|
272
|
+
* 速度
|
273
|
+
* 遅い処理(((*データ交換処理*)))を高速化
|
274
|
+
* 速くできる処理(((*大量データの計算*)))を最適化
|
275
|
+
* 実装コスト
|
276
|
+
* 低いほど効率的
|
277
|
+
|
278
|
+
= 実装コストを下げる
|
279
|
+
|
280
|
+
* 共通で使いそうな機能をライブラリー化
|
281
|
+
* メリットを受ける人たちみんなで協力して開発
|
282
|
+
* 最適化もがんばる
|
283
|
+
* Apache Arrowの実装コストは下がらない
|
284
|
+
* Apache Arrowを使うツールの実装コストが下がる\n
|
285
|
+
(('note:実装コストが下がる:ツール開発者のメリット'))
|
286
|
+
|
287
|
+
= 共通で使いそうな機能
|
288
|
+
|
289
|
+
* 高速なデータフォーマット(説明済み)
|
290
|
+
* 効率的なデータ交換処理(説明済み)
|
291
|
+
* 高速なデータ処理ロジック(説明済み)
|
292
|
+
* フォーマット変換機能
|
293
|
+
|
294
|
+
= 実装コストのまとめ
|
295
|
+
|
296
|
+
* 速度
|
297
|
+
* 遅い処理(データ交換処理)を高速化
|
298
|
+
* 速くできる処理(大量データの計算)を最適化
|
299
|
+
* 実装コスト
|
300
|
+
* 共通で使いそうな機能を((*ライブラリー化*))
|
301
|
+
* ((*みんなで協力*))して開発
|
302
|
+
|
303
|
+
= フォーマット変換機能
|
304
|
+
|
305
|
+
* Apache Arrowフォーマット
|
306
|
+
* インメモリー用のフォーマット
|
307
|
+
* データ交換・処理向きで永続化向きではない
|
308
|
+
* 永続化されたデータを使う場合
|
309
|
+
* 永続化に適したフォーマットで保存
|
310
|
+
* 読み込み時にApache Arrowに変換して\n
|
311
|
+
インメモリーでの処理にApache Arrowを使う
|
312
|
+
|
313
|
+
= 対応フォーマット:CSV
|
314
|
+
|
315
|
+
* よく使われているフォーマット
|
316
|
+
* 亜種が多くてパースが大変
|
317
|
+
* C++実装はすごく速い!
|
318
|
+
* ((*CSV読み込みの高速化でも使える!*))
|
319
|
+
|
320
|
+
= 対応フォーマット:Apache Parquet
|
321
|
+
|
322
|
+
* 永続化用フォーマット
|
323
|
+
* 列単位でデータ保存:Apache Arrowと相性がよい
|
324
|
+
* 小さい
|
325
|
+
* 列単位の圧縮をサポート
|
326
|
+
* 速い
|
327
|
+
* 必要な部分のみ読み込める(('note:(I/Oが減る)'))
|
328
|
+
|
329
|
+
= 対応フォーマット:Apache ORC
|
330
|
+
|
331
|
+
* 永続化用フォーマット
|
332
|
+
* 列単位でデータ保存:Apache Arrowと相性がよい
|
333
|
+
* Apache Parquetに似ている
|
334
|
+
* Apache Hive用に開発
|
335
|
+
* 今はHadoopやSparkでも使える
|
336
|
+
|
337
|
+
= 対応フォーマット:Feather
|
338
|
+
|
339
|
+
* 永続化用フォーマット
|
340
|
+
* 列単位でデータ保存:Apache Arrowと相性がよい
|
341
|
+
* データフレームを保存
|
342
|
+
* PythonとR間のデータ交換用
|
343
|
+
* ((*今は非推奨!*))
|
344
|
+
* Apache Arrowを使ってね
|
345
|
+
|
346
|
+
= 豆知識:Feather 2
|
347
|
+
|
348
|
+
* 名前を再利用するかも
|
349
|
+
* ((<[ARROW-5512] Feather V2|URL:https://issues.apache.org/jira/browse/ARROW-5510>))
|
350
|
+
* Feather 2: Apche Arrow IPC File Format
|
351
|
+
* Apache Arrow IPC Format:FileまたはStreaming
|
352
|
+
* Fileの方をFeather 2と呼んじゃう?
|
353
|
+
|
354
|
+
= 対応フォーマット:JSON
|
355
|
+
|
356
|
+
* よく使われているフォーマット
|
357
|
+
* これまではテストのために内部使用
|
358
|
+
* 正式機能になった
|
359
|
+
|
360
|
+
= フォーマット変換機能まとめ
|
361
|
+
|
362
|
+
* 高速なデータフォーマット
|
363
|
+
* 効率的なデータ交換処理
|
364
|
+
* 高速なデータ処理ロジック
|
365
|
+
* フォーマット変換機能
|
366
|
+
* ((*永続化データ*))を処理するために必要
|
367
|
+
|
368
|
+
= 対応言語
|
369
|
+
|
370
|
+
* C, C#, C++, Go, Java, JavaScript, Lua
|
371
|
+
* MATLAB, Python, R, Ruby, Rust
|
372
|
+
|
373
|
+
非公式実装:
|
374
|
+
|
375
|
+
* Julia (((<Arrow.jl|URL:https://github.com/ExpandingMan/Arrow.jl>)))
|
376
|
+
|
377
|
+
= 実装方法
|
378
|
+
|
379
|
+
* ネイティブ実装
|
380
|
+
* C#, C++, Go, Java, JavaScript, Julia, Rust
|
381
|
+
* その言語になじむ
|
382
|
+
* C++バインディング
|
383
|
+
* C, Lua, MATLAB, Python, R, Ruby\n
|
384
|
+
R関連は湯谷さんが紹介!
|
385
|
+
* ホスト言語が遅めでも速い実装になる
|
386
|
+
|
387
|
+
= 各言語のデータ交換対応状況
|
388
|
+
|
389
|
+
* 基本的な型はすべての言語で対応済み
|
390
|
+
* すでに((*データ交換用途に使える*))
|
391
|
+
* 複雑な型は未対応の言語あり\n
|
392
|
+
(('note:List, Structなど'))
|
393
|
+
* 例:C#のList実装は((<網屋|URL:https://www.amiya.co.jp/>))の((<橋田さん|URL:https://github.com/HashidaTKS>))が改良中
|
394
|
+
|
395
|
+
= 各言語のデータ処理対応状況
|
396
|
+
|
397
|
+
* データの高速な計算は一部言語で対応
|
398
|
+
* C++ベース、Java、Rust(DataFusion)、Go
|
399
|
+
* フォーマット変換も各言語の対応は様々
|
400
|
+
|
401
|
+
= ユースケース
|
402
|
+
|
403
|
+
* PostgreSQLの高速化
|
404
|
+
* 海外さんがPG-Stromの事例を紹介!
|
405
|
+
* TensorFlow・BitQuery Storage APIが\n
|
406
|
+
Apache Arrowをサポート
|
407
|
+
* 石崎さんと漆山さんが紹介!
|
408
|
+
* FluentdでログデータをApache Arrow化
|
409
|
+
|
410
|
+
= 今日の目的
|
411
|
+
|
412
|
+
Apache Arrow\n
|
413
|
+
ユーザーを\n
|
414
|
+
増やす
|
415
|
+
|
416
|
+
= 今日のチャレンジ
|
417
|
+
|
418
|
+
(('tag:center'))
|
419
|
+
(('tag:margin-bottom * 5'))
|
420
|
+
こんな人たちもフォローしてユーザーに!
|
421
|
+
|
422
|
+
* 使ってみたい!
|
423
|
+
* でも、自分たちだけじゃ不安…
|
424
|
+
|
425
|
+
= 対策:みんなで力を合わせる!
|
426
|
+
|
427
|
+
(('tag:center'))
|
428
|
+
(('tag:margin-bottom'))
|
429
|
+
こんな布陣ならいけるかも!なら相談して!
|
430
|
+
|
431
|
+
* クリアコード:技術提供(('note:(すごく詳しいよ!)'))
|
432
|
+
* A社:データ提供(('note:(うちのデータでApache Arrowは効くかな?)'))
|
433
|
+
* B社:インフラ提供(('note:(どんな構成が適切かな?)'))
|
434
|
+
* C社:お金・人的リソース提供(('note:(知見を貯めたい)'))
|
435
|
+
* ...
|