pycall 0.1.0.alpha → 0.1.0.alpha.20170224
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.travis.yml +15 -1
- data/Gemfile +5 -0
- data/Guardfile +1 -0
- data/README.md +4 -2
- data/bin/guard +17 -0
- data/bin/rspec +17 -0
- data/config/Guardfile +30 -0
- data/examples/classifier_comparison.rb +130 -0
- data/examples/hist.rb +27 -0
- data/examples/plot_forest_importances_faces.rb +41 -0
- data/examples/sum_benchmarking.rb +48 -0
- data/lib/pycall.rb +14 -4
- data/lib/pycall/conversion.rb +120 -0
- data/lib/pycall/dict.rb +90 -0
- data/lib/pycall/eval.rb +39 -0
- data/lib/pycall/import.rb +74 -0
- data/lib/pycall/init.rb +16 -0
- data/lib/pycall/libpython.rb +331 -0
- data/lib/pycall/list.rb +65 -0
- data/lib/pycall/pyerror.rb +25 -0
- data/lib/pycall/pyobject.rb +185 -0
- data/lib/pycall/pyobject_wrapper.rb +48 -0
- data/lib/pycall/python/investigator.py +6 -0
- data/lib/pycall/set.rb +17 -0
- data/lib/pycall/slice.rb +27 -0
- data/lib/pycall/tuple.rb +54 -0
- data/lib/pycall/types.rb +15 -0
- data/lib/pycall/utils.rb +33 -0
- data/lib/pycall/version.rb +2 -2
- data/pycall.gemspec +3 -1
- metadata +41 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 6d6ddea53f723b45bf9207c52746afaa083fba57
|
4
|
+
data.tar.gz: 1739c9f4e3a5d72503427540708f435694dea5aa
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: '08a91ee3157d872d18725d57ace058d991feb1855250307d9b9cd17feab5081a96ed03ab05941ecec073c22c3a63b2ed8c8c777c83735459e9e7b8e10e7220d7'
|
7
|
+
data.tar.gz: 2359c6d09f3bc687466e41c0e0de2287a89bd4b11587e3384d4a41dd0eb737cf75af387d149efbb8322baa69136d4483f3901728e6b2b36545a9dbc5e6fe8d35
|
data/.travis.yml
CHANGED
@@ -1,5 +1,19 @@
|
|
1
1
|
sudo: false
|
2
2
|
language: ruby
|
3
|
+
|
3
4
|
rvm:
|
5
|
+
- 2.1.10
|
6
|
+
- 2.2.5
|
4
7
|
- 2.3.1
|
5
|
-
|
8
|
+
- ruby-head
|
9
|
+
|
10
|
+
addons:
|
11
|
+
apt:
|
12
|
+
packages:
|
13
|
+
- python3
|
14
|
+
- python3-dev
|
15
|
+
- python3-all
|
16
|
+
|
17
|
+
before_install:
|
18
|
+
- gem update --system
|
19
|
+
- gem update bundler
|
data/Gemfile
CHANGED
data/Guardfile
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
./config/Guardfile
|
data/README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1
|
-
#
|
1
|
+
# PyCall
|
2
|
+
|
3
|
+
[](https://travis-ci.org/mrkn/pycall)
|
2
4
|
|
3
5
|
Welcome to your new gem! In this directory, you'll find the files you need to be able to package up your Ruby library into a gem. Put your Ruby code in the file `lib/pycall`. To experiment with that code, run `bin/console` for an interactive prompt.
|
4
6
|
|
@@ -32,7 +34,7 @@ To install this gem onto your local machine, run `bundle exec rake install`. To
|
|
32
34
|
|
33
35
|
## Contributing
|
34
36
|
|
35
|
-
Bug reports and pull requests are welcome on GitHub at https://github.com/
|
37
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/mrkn/pycall.
|
36
38
|
|
37
39
|
|
38
40
|
## License
|
data/bin/guard
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# frozen_string_literal: true
|
3
|
+
#
|
4
|
+
# This file was generated by Bundler.
|
5
|
+
#
|
6
|
+
# The application 'guard' is installed as part of a gem, and
|
7
|
+
# this file is here to facilitate running it.
|
8
|
+
#
|
9
|
+
|
10
|
+
require "pathname"
|
11
|
+
ENV["BUNDLE_GEMFILE"] ||= File.expand_path("../../Gemfile",
|
12
|
+
Pathname.new(__FILE__).realpath)
|
13
|
+
|
14
|
+
require "rubygems"
|
15
|
+
require "bundler/setup"
|
16
|
+
|
17
|
+
load Gem.bin_path("guard", "guard")
|
data/bin/rspec
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# frozen_string_literal: true
|
3
|
+
#
|
4
|
+
# This file was generated by Bundler.
|
5
|
+
#
|
6
|
+
# The application 'rspec' is installed as part of a gem, and
|
7
|
+
# this file is here to facilitate running it.
|
8
|
+
#
|
9
|
+
|
10
|
+
require "pathname"
|
11
|
+
ENV["BUNDLE_GEMFILE"] ||= File.expand_path("../../Gemfile",
|
12
|
+
Pathname.new(__FILE__).realpath)
|
13
|
+
|
14
|
+
require "rubygems"
|
15
|
+
require "bundler/setup"
|
16
|
+
|
17
|
+
load Gem.bin_path("rspec-core", "rspec")
|
data/config/Guardfile
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
# More info at https://github.com/guard/guard#readme
|
2
|
+
|
3
|
+
if RUBY_PLATFORM =~ /darwin/
|
4
|
+
notification :terminal_notifier, app_name: 'pycall.gem ::', activate: 'com.googlecode.iTerm2'
|
5
|
+
end
|
6
|
+
|
7
|
+
directories %w(config lib spec).select { |d|
|
8
|
+
Dir.exists?(d) ? d : UI.warning("Directory #{d} does not exist")
|
9
|
+
}
|
10
|
+
|
11
|
+
watch('config/Guardfile') do
|
12
|
+
UI.info "Exiting guard because config changed"
|
13
|
+
exit 0
|
14
|
+
end
|
15
|
+
|
16
|
+
guard :rspec, cmd: 'bin/rspec' do
|
17
|
+
require "guard/rspec/dsl"
|
18
|
+
dsl = Guard::RSpec::Dsl.new(self)
|
19
|
+
|
20
|
+
# RSpec files
|
21
|
+
rspec = dsl.rspec
|
22
|
+
watch(rspec.spec_helper) { rspec.spec_dir }
|
23
|
+
watch(rspec.spec_support) { rspec.spec_dir }
|
24
|
+
watch(rspec.spec_files)
|
25
|
+
|
26
|
+
# Ruby files
|
27
|
+
ruby = dsl.ruby
|
28
|
+
dsl.watch_spec_files_for(ruby.lib_files)
|
29
|
+
watch('lib/pycall/libpython.rb') { 'spec' }
|
30
|
+
end
|
@@ -0,0 +1,130 @@
|
|
1
|
+
require 'pycall/import'
|
2
|
+
include PyCall::Import
|
3
|
+
|
4
|
+
pyimport 'numpy', as: :np
|
5
|
+
pyimport 'matplotlib.pyplot', as: :plt
|
6
|
+
pyimport 'matplotlib.colors', as: :mplc
|
7
|
+
pyfrom 'sklearn.cross_validation', import: :train_test_split
|
8
|
+
pyfrom 'sklearn.preprocessing', import: :StandardScaler
|
9
|
+
pyfrom 'sklearn.datasets', import: %i(make_moons make_circles make_classification)
|
10
|
+
pyfrom 'sklearn.neighbors', import: :KNeighborsClassifier
|
11
|
+
pyfrom 'sklearn.svm', import: :SVC
|
12
|
+
pyfrom 'sklearn.tree', import: :DecisionTreeClassifier
|
13
|
+
pyfrom 'sklearn.ensemble', import: %i(RandomForestClassifier AdaBoostClassifier)
|
14
|
+
pyfrom 'sklearn.naive_bayes', import: :GaussianNB
|
15
|
+
pyfrom 'sklearn.discriminant_analysis', import: %i(LinearDiscriminantAnalysis QuadraticDiscriminantAnalysis)
|
16
|
+
|
17
|
+
h = 0.02 # step size in the mesh
|
18
|
+
|
19
|
+
names = [
|
20
|
+
'Nearest Neighbors',
|
21
|
+
'Linear SVM',
|
22
|
+
'RBF SVM',
|
23
|
+
'Decision Tree',
|
24
|
+
'Random Forest',
|
25
|
+
'AdaBoost',
|
26
|
+
'Naive Bayes',
|
27
|
+
'Linear Discriminant Analysis',
|
28
|
+
'Quadratic Discriminant Analysis'
|
29
|
+
]
|
30
|
+
|
31
|
+
classifiers = [
|
32
|
+
KNeighborsClassifier.(3),
|
33
|
+
SVC.(kernel: 'linear', C: 0.025),
|
34
|
+
SVC.(gamma: 2, C: 1),
|
35
|
+
DecisionTreeClassifier.(max_depth: 5),
|
36
|
+
RandomForestClassifier.(max_depth: 5, n_estimators: 10, max_features: 1),
|
37
|
+
AdaBoostClassifier.(),
|
38
|
+
GaussianNB.(),
|
39
|
+
LinearDiscriminantAnalysis.(),
|
40
|
+
QuadraticDiscriminantAnalysis.()
|
41
|
+
]
|
42
|
+
|
43
|
+
x, y = make_classification.(
|
44
|
+
n_features: 2,
|
45
|
+
n_redundant: 0,
|
46
|
+
n_informative: 2,
|
47
|
+
random_state: 1,
|
48
|
+
n_clusters_per_class: 1
|
49
|
+
)
|
50
|
+
|
51
|
+
np.random.seed.(42)
|
52
|
+
x += 2 * np.random.random_sample.(x.shape)
|
53
|
+
linearly_separable = PyCall.tuple(x, y)
|
54
|
+
|
55
|
+
datasets = [
|
56
|
+
make_moons.(noise: 0.3, random_state: 0),
|
57
|
+
make_circles.(noise: 0.2, factor: 0.5, random_state: 1),
|
58
|
+
linearly_separable
|
59
|
+
]
|
60
|
+
|
61
|
+
fig = plt.figure.(figsize: PyCall.tuple(27, 9))
|
62
|
+
i = 1
|
63
|
+
all = PyCall.slice(nil)
|
64
|
+
datasets.each do |ds|
|
65
|
+
x, y = ds
|
66
|
+
x = StandardScaler.().fit_transform.(x)
|
67
|
+
x_train, x_test, y_train, y_test = train_test_split.(x, y, test_size: 0.4)
|
68
|
+
|
69
|
+
x_min, x_max = np.min.(x[all, 0]) - 0.5, np.max.(x[all, 0]) + 0.5
|
70
|
+
y_min, y_max = np.min.(x[all, 1]) - 0.5, np.max.(x[all, 1]) + 0.5
|
71
|
+
|
72
|
+
xx, yy = np.meshgrid.(
|
73
|
+
np.linspace.(x_min, x_max, ((x_max - x_min)/h).round),
|
74
|
+
np.linspace.(y_min, y_max, ((y_max - y_min)/h).round),
|
75
|
+
)
|
76
|
+
mesh_points = np.dstack.(PyCall.tuple(xx.ravel.(), yy.ravel.()))[0, all, all]
|
77
|
+
|
78
|
+
# just plot the dataset first
|
79
|
+
cm = plt.cm.RdBu
|
80
|
+
cm_bright = mplc.ListedColormap.(["#FF0000", "#0000FF"])
|
81
|
+
ax = plt.subplot.(datasets.length, classifiers.length + 1, i)
|
82
|
+
# plot the training points
|
83
|
+
ax.scatter.(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
|
84
|
+
# and testing points
|
85
|
+
ax.scatter.(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
|
86
|
+
|
87
|
+
ax.set_xlim.(np.min.(xx), np.max.(xx))
|
88
|
+
ax.set_ylim.(np.min.(yy), np.max.(yy))
|
89
|
+
ax.set_xticks.(PyCall.tuple())
|
90
|
+
ax.set_yticks.(PyCall.tuple())
|
91
|
+
i += 1
|
92
|
+
|
93
|
+
# iterate over classifiers
|
94
|
+
names.zip(classifiers).each do |name, clf|
|
95
|
+
ax = plt.subplot.(datasets.length, classifiers.length + 1, i)
|
96
|
+
clf.fit.(x_train, y_train)
|
97
|
+
scor = clf.score.(x_test, y_test)
|
98
|
+
|
99
|
+
# Plot the decision boundary. For that, we will assign a color to each
|
100
|
+
# point in the mesh [x_min, x_max]x[y_min, y_max]
|
101
|
+
begin
|
102
|
+
# not implemented for some
|
103
|
+
z = clf.decision_function.(mesh_points)
|
104
|
+
rescue
|
105
|
+
z = clf.predict_proba.(mesh_points)[all, 1]
|
106
|
+
end
|
107
|
+
|
108
|
+
# Put the result into a color plot
|
109
|
+
z = z.reshape.(xx.shape)
|
110
|
+
ax.contourf.(xx, yy, z, cmap: cm, alpha: 0.8)
|
111
|
+
|
112
|
+
# Plot also the training points
|
113
|
+
ax.scatter.(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
|
114
|
+
# and testing points
|
115
|
+
ax.scatter.(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
|
116
|
+
|
117
|
+
ax.set_xlim.(np.min.(xx), np.max.(xx))
|
118
|
+
ax.set_ylim.(np.min.(yy), np.max.(yy))
|
119
|
+
ax.set_xticks.(PyCall.tuple())
|
120
|
+
ax.set_yticks.(PyCall.tuple())
|
121
|
+
ax.set_title.(name)
|
122
|
+
|
123
|
+
ax.text.(np.max.(xx) - 0.3, np.min.(yy) + 0.3, "%.2f" % scor, size: 15, horizontalalignment: 'right')
|
124
|
+
|
125
|
+
i += 1
|
126
|
+
end
|
127
|
+
end
|
128
|
+
|
129
|
+
fig.subplots_adjust.(left: 0.02, right: 0.98)
|
130
|
+
plt.show.()
|
data/examples/hist.rb
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
require 'pycall/import'
|
2
|
+
include PyCall::Import
|
3
|
+
|
4
|
+
pyimport 'numpy', as: 'np'
|
5
|
+
pyimport 'matplotlib.mlab', as: 'mlab'
|
6
|
+
pyimport 'matplotlib.pyplot', as: 'plt'
|
7
|
+
|
8
|
+
np.random.seed.(0)
|
9
|
+
|
10
|
+
mu = 100
|
11
|
+
sigma = 15
|
12
|
+
x = mu + sigma * np.random.randn.(437)
|
13
|
+
|
14
|
+
num_bins = 50
|
15
|
+
|
16
|
+
fig, ax = plt.subplots.()
|
17
|
+
|
18
|
+
n, bins, patches = ax.hist.(x, num_bins, normed: 1)
|
19
|
+
|
20
|
+
y = mlab.normpdf.(bins, mu, sigma)
|
21
|
+
ax.plot.(bins, y, '--')
|
22
|
+
ax.set_xlabel.('Smarts')
|
23
|
+
ax.set_ylabel.('Probability density')
|
24
|
+
ax.set_title.('Histogram of IQ: $\mu=100$, $\sigma=15$')
|
25
|
+
|
26
|
+
fig.tight_layout.()
|
27
|
+
plt.show.()
|
@@ -0,0 +1,41 @@
|
|
1
|
+
require 'pycall/import'
|
2
|
+
|
3
|
+
include PyCall::Import
|
4
|
+
|
5
|
+
pyimport 'numpy', as: 'np'
|
6
|
+
pyimport 'matplotlib.pyplot', as: 'plt'
|
7
|
+
|
8
|
+
pyfrom 'sklearn.datasets', import: 'fetch_olivetti_faces'
|
9
|
+
pyfrom 'sklearn.ensemble', import: 'ExtraTreesClassifier'
|
10
|
+
|
11
|
+
# Number of cores to use to perform parallel fitting of the forest model
|
12
|
+
n_jobs = 1
|
13
|
+
|
14
|
+
# Load the faces datasets
|
15
|
+
data = fetch_olivetti_faces.()
|
16
|
+
x = data.images.reshape.(PyCall.tuple(PyCall.len(data.images), -1))
|
17
|
+
y = data.target
|
18
|
+
|
19
|
+
mask = y < 5 # Limit to 5 classes
|
20
|
+
x = x[mask]
|
21
|
+
y = y[mask]
|
22
|
+
|
23
|
+
# Build a forest and compute the pixel importances
|
24
|
+
puts "Fitting ExtraTreesClassifier on faces data with #{n_jobs} cores..."
|
25
|
+
t0 = Time.now
|
26
|
+
forest = ExtraTreesClassifier.(
|
27
|
+
n_estimators: 1_000,
|
28
|
+
max_features: 128,
|
29
|
+
n_jobs: n_jobs,
|
30
|
+
random_state: 0
|
31
|
+
)
|
32
|
+
|
33
|
+
forest = forest.fit.(x, y)
|
34
|
+
puts "done in %0.3fs" % (Time.now - t0)
|
35
|
+
importances = forest.feature_importances_
|
36
|
+
importances = importances.reshape.(data.images[0].shape)
|
37
|
+
|
38
|
+
# Plot pixel importances
|
39
|
+
plt.matshow.(importances, cmap: plt.cm.hot)
|
40
|
+
plt.title.("Pixel importances with forests of trees")
|
41
|
+
plt.show.()
|
@@ -0,0 +1,48 @@
|
|
1
|
+
require 'pycall/import'
|
2
|
+
include PyCall::Import
|
3
|
+
|
4
|
+
require 'benchmark'
|
5
|
+
pyimport :pandas, as: :pd
|
6
|
+
pyimport :seaborn, as: :sns
|
7
|
+
pyimport 'matplotlib.pyplot', as: :plt
|
8
|
+
|
9
|
+
array = Array.new(100_000) { rand }
|
10
|
+
|
11
|
+
trials = 100
|
12
|
+
results = { method: [], runtime: [] }
|
13
|
+
|
14
|
+
# Array#sum
|
15
|
+
trials.times do
|
16
|
+
results[:method] << 'sum'
|
17
|
+
results[:runtime] << Benchmark.realtime { array.sum }
|
18
|
+
end
|
19
|
+
|
20
|
+
# Array#inject(:+)
|
21
|
+
trials.times do
|
22
|
+
results[:method] << 'inject'
|
23
|
+
results[:runtime] << Benchmark.realtime { array.inject(:+) }
|
24
|
+
end
|
25
|
+
|
26
|
+
# while
|
27
|
+
def while_sum(ary)
|
28
|
+
sum, i, n = 0, 0, ary.length
|
29
|
+
while i < n
|
30
|
+
sum += ary[i]
|
31
|
+
i += 1
|
32
|
+
end
|
33
|
+
sum
|
34
|
+
end
|
35
|
+
|
36
|
+
trials.times do
|
37
|
+
results[:method] << 'while'
|
38
|
+
results[:runtime] << Benchmark.realtime { while_sum(array) }
|
39
|
+
end
|
40
|
+
|
41
|
+
# visualization
|
42
|
+
|
43
|
+
df = pd.DataFrame.(PyCall::Dict.new(results))
|
44
|
+
sns.barplot.(x: 'method', y: 'runtime', data: df)
|
45
|
+
plt.title.("Array summation benchmark (#{trials} trials)")
|
46
|
+
plt.xlabel.('Summation method')
|
47
|
+
plt.ylabel.('Average runtime [sec]')
|
48
|
+
plt.show.()
|
data/lib/pycall.rb
CHANGED
@@ -1,5 +1,15 @@
|
|
1
1
|
require "pycall/version"
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
2
|
+
require "pycall/libpython"
|
3
|
+
require "pycall/pyobject"
|
4
|
+
require "pycall/pyerror"
|
5
|
+
require "pycall/eval"
|
6
|
+
require "pycall/types"
|
7
|
+
require "pycall/conversion"
|
8
|
+
require "pycall/pyobject_wrapper"
|
9
|
+
require "pycall/tuple"
|
10
|
+
require "pycall/list"
|
11
|
+
require "pycall/dict"
|
12
|
+
require "pycall/set"
|
13
|
+
require "pycall/slice"
|
14
|
+
require "pycall/utils"
|
15
|
+
require "pycall/init"
|
@@ -0,0 +1,120 @@
|
|
1
|
+
module PyCall
|
2
|
+
module Conversions
|
3
|
+
def self.from_ruby(obj)
|
4
|
+
case obj
|
5
|
+
when PyObject
|
6
|
+
obj
|
7
|
+
when PyObjectWrapper
|
8
|
+
obj.__pyobj__
|
9
|
+
when TrueClass, FalseClass
|
10
|
+
LibPython.PyBool_FromLong(obj ? 1 : 0)
|
11
|
+
when Integer
|
12
|
+
LibPython.PyInt_FromSsize_t(obj)
|
13
|
+
when Float
|
14
|
+
LibPython.PyFloat_FromDouble(obj)
|
15
|
+
when String
|
16
|
+
case obj.encoding
|
17
|
+
when Encoding::US_ASCII, Encoding::BINARY
|
18
|
+
LibPython.PyString_FromStringAndSize(obj, obj.bytesize)
|
19
|
+
else
|
20
|
+
obj = obj.encode(Encoding::UTF_8)
|
21
|
+
LibPython.PyUnicode_DecodeUTF8(obj, obj.bytesize, nil)
|
22
|
+
end
|
23
|
+
when Symbol
|
24
|
+
from_ruby(obj.to_s)
|
25
|
+
when Array
|
26
|
+
PyCall::List.new(obj).__pyobj__
|
27
|
+
else
|
28
|
+
LibPython.Py_None
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
def self.convert_to_boolean(py_obj)
|
33
|
+
0 != LibPython.PyInt_AsSsize_t(py_obj)
|
34
|
+
end
|
35
|
+
|
36
|
+
def self.convert_to_integer(py_obj)
|
37
|
+
LibPython.PyInt_AsSsize_t(py_obj)
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.convert_to_float(py_obj)
|
41
|
+
LibPython.PyFloat_AsDouble(py_obj)
|
42
|
+
end
|
43
|
+
|
44
|
+
def self.convert_to_complex(py_obj)
|
45
|
+
real = LibPython.PyComplex_RealAsDouble(py_obj)
|
46
|
+
imag = LibPython.PyComplex_ImagAsDouble(py_obj)
|
47
|
+
Complex(real, imag)
|
48
|
+
end
|
49
|
+
|
50
|
+
def self.convert_to_string(py_obj)
|
51
|
+
FFI::MemoryPointer.new(:string) do |str_ptr|
|
52
|
+
FFI::MemoryPointer.new(:int) do |len_ptr|
|
53
|
+
res = LibPython.PyString_AsStringAndSize(py_obj, str_ptr, len_ptr)
|
54
|
+
return nil if res == -1 # FIXME: error
|
55
|
+
|
56
|
+
len = len_ptr.get(:int, 0)
|
57
|
+
return str_ptr.get_pointer(0).read_string(len)
|
58
|
+
end
|
59
|
+
end
|
60
|
+
end
|
61
|
+
|
62
|
+
def self.convert_to_array(py_obj, force_list: true, array_class: Array)
|
63
|
+
case
|
64
|
+
when force_list || py_obj.kind_of?(LibPython.PyList_Type)
|
65
|
+
len = LibPython.PySequence_Size(py_obj)
|
66
|
+
array_class.new(len) do |i|
|
67
|
+
LibPython.PySequence_GetItem(py_obj, i).to_ruby
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
def self.convert_to_tuple(py_obj)
|
73
|
+
PyCall::Tuple.new(py_obj)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
class PyObject
|
78
|
+
def to_ruby
|
79
|
+
return nil if self.null? || self.py_none?
|
80
|
+
|
81
|
+
case self
|
82
|
+
when LibPython.PyBool_Type
|
83
|
+
return Conversions.convert_to_boolean(self)
|
84
|
+
|
85
|
+
when LibPython.PyInt_Type
|
86
|
+
return Conversions.convert_to_integer(self)
|
87
|
+
|
88
|
+
when LibPython.PyLong_Type
|
89
|
+
# TODO: should make Bignum
|
90
|
+
|
91
|
+
when LibPython.PyFloat_Type
|
92
|
+
return Conversions.convert_to_float(self)
|
93
|
+
|
94
|
+
when LibPython.PyComplex_Type
|
95
|
+
return Conversions.convert_to_complex(self)
|
96
|
+
|
97
|
+
when LibPython.PyString_Type
|
98
|
+
return Conversions.convert_to_string(self)
|
99
|
+
|
100
|
+
when LibPython.PyUnicode_Type
|
101
|
+
py_str_ptr = LibPython.PyUnicode_AsUTF8String(self)
|
102
|
+
return Conversions.convert_to_string(py_str_ptr).force_encoding(Encoding::UTF_8)
|
103
|
+
|
104
|
+
when LibPython.PyList_Type
|
105
|
+
return Conversions.convert_to_array(self)
|
106
|
+
|
107
|
+
when LibPython.PyTuple_Type
|
108
|
+
return Conversions.convert_to_tuple(self)
|
109
|
+
|
110
|
+
when LibPython.PyDict_Type
|
111
|
+
return PyCall::Dict.new(self)
|
112
|
+
|
113
|
+
when LibPython.PySet_Type
|
114
|
+
return PyCall::Set.new(self)
|
115
|
+
end
|
116
|
+
|
117
|
+
self
|
118
|
+
end
|
119
|
+
end
|
120
|
+
end
|