perfect-shape 0.5.5 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +8 -0
- data/README.md +10 -6
- data/VERSION +1 -1
- data/lib/perfect_shape/composite_shape.rb +4 -0
- data/lib/perfect_shape/cubic_bezier_curve.rb +4 -4
- data/lib/perfect_shape/line.rb +3 -3
- data/lib/perfect_shape/path.rb +114 -9
- data/lib/perfect_shape/polygon.rb +109 -70
- data/lib/perfect_shape/quadratic_bezier_curve.rb +67 -0
- data/perfect-shape.gemspec +3 -3
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: c200dfc203347661cd329e24cebc75ae038b0b69f6874832cfe8793ae2cbf6e5
|
4
|
+
data.tar.gz: 55cac9b991125bfcf15493eb5e05fecaea618d5d415e9c2b2c9d593efba98be4
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6cd01a66d882fa6af01e3e52e5c37bdc05c8217ae550e1b2e212bce588c7812059af7ff476ede2bd7c873f9e55738aace0386d46d6f06839ee9e50f52bd29d1c
|
7
|
+
data.tar.gz: f69e3ea514b1cf4f071e04fc943ddb814fef3e7d4594e2ffde34d3d570868feb9f642d4705e0639100b23b81202b67cc5c88eab8ef769df91c7acddf60da46e9
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,13 @@
|
|
1
1
|
# Change Log
|
2
2
|
|
3
|
+
## 1.0.0
|
4
|
+
|
5
|
+
- `PerfectShape::Path#intersect?(rectangle)`
|
6
|
+
- `PerfectShape::Polygon#intersect?(rectangle)`
|
7
|
+
- `PerfectShape::CompositeShape#intersect?(rectangle)`
|
8
|
+
- [API Breaking] Change `Path` default `winding_rule` to `:wind_even_odd`
|
9
|
+
- Make `PerfectShape::Polygon` support `:wind_non_zero` `winding_rule` (not just default `:wind_even_odd`)
|
10
|
+
|
3
11
|
## 0.5.5
|
4
12
|
|
5
13
|
- `PerfectShape::Arc#intersect?(rectangle)`
|
data/README.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
# Perfect Shape 0.
|
1
|
+
# Perfect Shape 1.0.0
|
2
2
|
## Geometric Algorithms
|
3
3
|
[![Gem Version](https://badge.fury.io/rb/perfect-shape.svg)](http://badge.fury.io/rb/perfect-shape)
|
4
4
|
[![Test](https://github.com/AndyObtiva/perfect-shape/actions/workflows/ruby.yml/badge.svg)](https://github.com/AndyObtiva/perfect-shape/actions/workflows/ruby.yml)
|
@@ -14,13 +14,13 @@ To ensure high accuracy, this library does all its mathematical operations with
|
|
14
14
|
Run:
|
15
15
|
|
16
16
|
```
|
17
|
-
gem install perfect-shape -v 0.
|
17
|
+
gem install perfect-shape -v 1.0.0
|
18
18
|
```
|
19
19
|
|
20
20
|
Or include in Bundler `Gemfile`:
|
21
21
|
|
22
22
|
```ruby
|
23
|
-
gem 'perfect-shape', '~> 0.
|
23
|
+
gem 'perfect-shape', '~> 1.0.0'
|
24
24
|
```
|
25
25
|
|
26
26
|
And, run:
|
@@ -275,6 +275,7 @@ Includes `PerfectShape::MultiPoint`
|
|
275
275
|
- `#curve_center_y`: point y coordinate at the center of the curve outline (not the center of the bounding box area like `center_x` and `center_y`)
|
276
276
|
- `#subdivisions(level=1)`: subdivides quadratic bezier curve at its center into into 2 quadratic bezier curves by default, or more if `level` of recursion is specified. The resulting number of subdivisions is `2` to the power of `level`.
|
277
277
|
- `#point_distance(x_or_point, y=nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD)`: calculates distance from point to curve segment. It does so by subdividing curve into smaller curves and checking against the curve center points until the distance is less than `minimum_distance_threshold`, to avoid being an overly costly operation.
|
278
|
+
- `#rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0)`: rectangle crossings (adds to crossings arg)
|
278
279
|
|
279
280
|
Example:
|
280
281
|
|
@@ -704,11 +705,11 @@ Extends `PerfectShape::Shape`
|
|
704
705
|
|
705
706
|
Includes `PerfectShape::MultiPoint`
|
706
707
|
|
707
|
-
A polygon can be thought of as a special case of [path](#perfectshapepath)
|
708
|
+
A polygon can be thought of as a special case of [path](#perfectshapepath), consisting of lines only, is closed, and has the [Even-Odd](https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule) winding rule by default.
|
708
709
|
|
709
710
|
![polygon](https://raw.githubusercontent.com/AndyObtiva/perfect-shape/master/images/polygon.png)
|
710
711
|
|
711
|
-
- `::new(points: [])`: constructs a polygon with `points` as `Array` of `Array`s of `[x,y]` pairs or flattened `Array` of alternating x and y coordinates
|
712
|
+
- `::new(points: [], winding_rule: :wind_even_odd)`: constructs a polygon with `points` as `Array` of `Array`s of `[x,y]` pairs or flattened `Array` of alternating x and y coordinates and specified winding rule (`:wind_even_odd` or `:wind_non_zero`)
|
712
713
|
- `#min_x`: min x
|
713
714
|
- `#min_y`: min y
|
714
715
|
- `#max_x`: max x
|
@@ -720,7 +721,8 @@ A polygon can be thought of as a special case of [path](#perfectshapepath) that
|
|
720
721
|
- `#center_y`: center y
|
721
722
|
- `#bounding_box`: bounding box is a rectangle with x = min x, y = min y, and width/height of shape
|
722
723
|
- `#==(other)`: Returns `true` if equal to `other` or `false` otherwise
|
723
|
-
- `#contain?(x_or_point, y=nil, outline: false, distance_tolerance: 0)`: When `outline` is `false`, it checks if point is inside using the [Ray Casting Algorithm](https://en.wikipedia.org/wiki/Point_in_polygon) (aka [Even-Odd Rule](https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule)). Otherwise, when `outline` is `true`, it checks if point is on the outline. `distance_tolerance` can be used as a fuzz factor when `outline` is `true`, for example, to help GUI users mouse-click-select a polygon shape from its outline more successfully
|
724
|
+
- `#contain?(x_or_point, y=nil, outline: false, distance_tolerance: 0)`: When `outline` is `false`, it checks if point is inside using either the [Ray Casting Algorithm](https://en.wikipedia.org/wiki/Point_in_polygon) (aka [Even-Odd Rule](https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule)) or [Winding Number Algorithm](https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm) (aka [Nonzero-Rule](https://en.wikipedia.org/wiki/Nonzero-rule)). Otherwise, when `outline` is `true`, it checks if point is on the outline. `distance_tolerance` can be used as a fuzz factor when `outline` is `true`, for example, to help GUI users mouse-click-select a polygon shape from its outline more successfully
|
725
|
+
- `#intersect?(rectangle)`: Returns `true` if intersecting with interior of rectangle or `false` otherwise. This is useful for GUI optimization checks of whether a shape appears in a GUI viewport rectangle and needs redrawing
|
724
726
|
- `#edges`: edges of polygon as `PerfectShape::Line` objects
|
725
727
|
|
726
728
|
Example:
|
@@ -769,6 +771,7 @@ Includes `PerfectShape::MultiPoint`
|
|
769
771
|
- `#bounding_box`: bounding box is a rectangle with x = min x, y = min y, and width/height of shape (bounding box only guarantees that the shape is within it, but it might be bigger than the shape)
|
770
772
|
- `#==(other)`: Returns `true` if equal to `other` or `false` otherwise
|
771
773
|
- `#contain?(x_or_point, y=nil, outline: false, distance_tolerance: 0)`: When `outline` is `false`, it checks if point is inside path utilizing the configured winding rule, which can be the [Nonzero-Rule](https://en.wikipedia.org/wiki/Nonzero-rule) (aka [Winding Number Algorithm](https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm)) or the [Even-Odd Rule](https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule) (aka [Ray Casting Algorithm](https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm)). Otherwise, when `outline` is `true`, it checks if point is on the outline. `distance_tolerance` can be used as a fuzz factor when `outline` is `true`, for example, to help GUI users mouse-click-select a path shape from its outline more successfully
|
774
|
+
- `#intersect?(rectangle)`: Returns `true` if intersecting with interior of rectangle or `false` otherwise. This is useful for GUI optimization checks of whether a shape appears in a GUI viewport rectangle and needs redrawing
|
772
775
|
- `#point_crossings(x_or_point, y=nil)`: calculates the number of times the given path crosses the ray extending to the right from (x,y)
|
773
776
|
- `#disconnected_shapes`: Disconnected shapes have their start point filled in so that each shape does not depend on the previous shape to determine its start point. Also, if a point is followed by a non-point shape, it is removed since it is augmented to the following shape as its start point. Lastly, if the path is closed, an extra shape is added to represent the line connecting the last point to the first
|
774
777
|
|
@@ -821,6 +824,7 @@ A composite shape is simply an aggregate of multiple shapes (e.g. square and pol
|
|
821
824
|
- `#bounding_box`: bounding box is a rectangle with x = min x, y = min y, and width/height of shape (bounding box only guarantees that the shape is within it, but it might be bigger than the shape)
|
822
825
|
- `#==(other)`: Returns `true` if equal to `other` or `false` otherwise
|
823
826
|
- `#contain?(x_or_point, y=nil, outline: false, distance_tolerance: 0)`: When `outline` is `false`, it checks if point is inside any of the shapes owned by the composite shape. Otherwise, when `outline` is `true`, it checks if point is on the outline of any of the shapes owned by the composite shape. `distance_tolerance` can be used as a fuzz factor when `outline` is `true`, for example, to help GUI users mouse-click-select a composite shape from its outline more successfully
|
827
|
+
- `#intersect?(rectangle)`: Returns `true` if intersecting with interior of rectangle or `false` otherwise. This is useful for GUI optimization checks of whether a shape appears in a GUI viewport rectangle and needs redrawing
|
824
828
|
|
825
829
|
Example:
|
826
830
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.
|
1
|
+
1.0.0
|
@@ -223,7 +223,7 @@ module PerfectShape
|
|
223
223
|
|
224
224
|
num_crossings = rectangle_crossings(rectangle)
|
225
225
|
# the intended return value is
|
226
|
-
# num_crossings != 0 || num_crossings == Rectangle::RECT_INTERSECTS
|
226
|
+
# num_crossings != 0 || num_crossings == PerfectShape::Rectangle::RECT_INTERSECTS
|
227
227
|
# but if (num_crossings != 0) num_crossings == INTERSECTS won't matter
|
228
228
|
# and if !(num_crossings != 0) then num_crossings == 0, so
|
229
229
|
# num_crossings != RECT_INTERSECT
|
@@ -244,7 +244,7 @@ module PerfectShape
|
|
244
244
|
if !(x1 == x2 && y1 == y2)
|
245
245
|
line = PerfectShape::Line.new(points: [[x1, y1], [x2, y2]])
|
246
246
|
crossings = line.rect_crossings(x, y, x+w, y+h, crossings)
|
247
|
-
return crossings if crossings == Rectangle::RECT_INTERSECTS
|
247
|
+
return crossings if crossings == PerfectShape::Rectangle::RECT_INTERSECTS
|
248
248
|
end
|
249
249
|
# we call this with the curve's direction reversed, because we wanted
|
250
250
|
# to call rectCrossingsForLine first, because it's cheaper.
|
@@ -294,7 +294,7 @@ module PerfectShape
|
|
294
294
|
# The intersection of ranges is more complicated
|
295
295
|
# First do trivial INTERSECTS rejection of the cases
|
296
296
|
# where one of the endpoints is inside the rectangle.
|
297
|
-
return Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) ||
|
297
|
+
return PerfectShape::Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) ||
|
298
298
|
(x1 > rxmin && x1 < rxmax && y1 > rymin && y1 < rymax))
|
299
299
|
|
300
300
|
# Otherwise, subdivide and look for one of the cases above.
|
@@ -318,7 +318,7 @@ module PerfectShape
|
|
318
318
|
return 0 if xmid.nan? || ymid.nan?
|
319
319
|
cubic1 = CubicBezierCurve.new(points: [[x0, y0], [xc0, yc0], [xc0m, yc0m], [xmid, ymid]])
|
320
320
|
crossings = cubic1.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings)
|
321
|
-
if crossings != Rectangle::RECT_INTERSECTS
|
321
|
+
if crossings != PerfectShape::Rectangle::RECT_INTERSECTS
|
322
322
|
cubic2 = CubicBezierCurve.new(points: [[xmid, ymid], [xmc1, ymc1], [xc1, yc1], [x1, y1]])
|
323
323
|
crossings = cubic2.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings)
|
324
324
|
end
|
data/lib/perfect_shape/line.rb
CHANGED
@@ -244,7 +244,7 @@ module PerfectShape
|
|
244
244
|
|
245
245
|
# Accumulate the number of times the line crosses the shadow
|
246
246
|
# extending to the right of the rectangle. See the comment
|
247
|
-
# for the Rectangle::RECT_INTERSECTS constant for more complete details.
|
247
|
+
# for the PerfectShape::Rectangle::RECT_INTERSECTS constant for more complete details.
|
248
248
|
#
|
249
249
|
# crossings arg is the initial crossings value to add to (useful
|
250
250
|
# in cases where you want to accumulate crossings from multiple
|
@@ -280,7 +280,7 @@ module PerfectShape
|
|
280
280
|
# Both x and y ranges overlap by a non-empty amount
|
281
281
|
# First do trivial INTERSECTS rejection of the cases
|
282
282
|
# where one of the endpoints is inside the rectangle.
|
283
|
-
return Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) ||
|
283
|
+
return PerfectShape::Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) ||
|
284
284
|
(x1 > rxmin && x1 < rxmax && y1 > rymin && y1 < rymax))
|
285
285
|
# Otherwise calculate the y intercepts and see where
|
286
286
|
# they fall with respect to the rectangle
|
@@ -311,7 +311,7 @@ module PerfectShape
|
|
311
311
|
end
|
312
312
|
return crossings
|
313
313
|
end
|
314
|
-
Rectangle::RECT_INTERSECTS
|
314
|
+
PerfectShape::Rectangle::RECT_INTERSECTS
|
315
315
|
end
|
316
316
|
|
317
317
|
def intersect?(rectangle)
|
data/lib/perfect_shape/path.rb
CHANGED
@@ -35,7 +35,7 @@ module PerfectShape
|
|
35
35
|
SHAPE_TYPES = [Array, PerfectShape::Point, PerfectShape::Line, PerfectShape::QuadraticBezierCurve, PerfectShape::CubicBezierCurve]
|
36
36
|
|
37
37
|
# Available winding rules
|
38
|
-
WINDING_RULES = [:
|
38
|
+
WINDING_RULES = [:wind_even_odd, :wind_non_zero]
|
39
39
|
|
40
40
|
attr_reader :winding_rule
|
41
41
|
attr_accessor :shapes, :closed
|
@@ -45,7 +45,7 @@ module PerfectShape
|
|
45
45
|
# Shape class types can be any of SHAPE_TYPES: Array (x,y coordinates), PerfectShape::Point, PerfectShape::Line, PerfectShape::QuadraticBezierCurve, or PerfectShape::CubicBezierCurve
|
46
46
|
# winding_rule can be any of WINDING_RULES: :wind_non_zero (default) or :wind_even_odd
|
47
47
|
# closed can be true or false
|
48
|
-
def initialize(shapes: [], closed: false, winding_rule: :
|
48
|
+
def initialize(shapes: [], closed: false, winding_rule: :wind_even_odd)
|
49
49
|
self.closed = closed
|
50
50
|
self.winding_rule = winding_rule
|
51
51
|
self.shapes = shapes
|
@@ -99,7 +99,7 @@ module PerfectShape
|
|
99
99
|
end
|
100
100
|
|
101
101
|
def winding_rule=(value)
|
102
|
-
raise "Invalid winding rule: #{value}" unless WINDING_RULES.include?(value.to_s.to_sym)
|
102
|
+
raise "Invalid winding rule: #{value} (must be one of #{WINDING_RULES})" unless WINDING_RULES.include?(value.to_s.to_sym)
|
103
103
|
@winding_rule = value
|
104
104
|
end
|
105
105
|
|
@@ -175,8 +175,8 @@ module PerfectShape
|
|
175
175
|
ci += 1
|
176
176
|
line = PerfectShape::Line.new(points: [[curx, cury], [endx, endy]])
|
177
177
|
crossings += line.point_crossings(x, y)
|
178
|
-
curx = endx
|
179
|
-
cury = endy
|
178
|
+
curx = endx
|
179
|
+
cury = endy
|
180
180
|
when :quad_to
|
181
181
|
quad_ctrlx = coords[ci]
|
182
182
|
ci += 1
|
@@ -188,8 +188,8 @@ module PerfectShape
|
|
188
188
|
ci += 1
|
189
189
|
quad = PerfectShape::QuadraticBezierCurve.new(points: [[curx, cury], [quad_ctrlx, quad_ctrly], [endx, endy]])
|
190
190
|
crossings += quad.point_crossings(x, y)
|
191
|
-
curx = endx
|
192
|
-
cury = endy
|
191
|
+
curx = endx
|
192
|
+
cury = endy
|
193
193
|
when :cubic_to
|
194
194
|
cubic_ctrl1x = coords[ci]
|
195
195
|
ci += 1
|
@@ -205,8 +205,8 @@ module PerfectShape
|
|
205
205
|
ci += 1
|
206
206
|
cubic = PerfectShape::CubicBezierCurve.new(points: [[curx, cury], [cubic_ctrl1x, cubic_ctrl1y], [cubic_ctrl2x, cubic_ctrl2y], [endx, endy]])
|
207
207
|
crossings += cubic.point_crossings(x, y)
|
208
|
-
curx = endx
|
209
|
-
cury = endy
|
208
|
+
curx = endx
|
209
|
+
cury = endy
|
210
210
|
when :close
|
211
211
|
if cury != movy
|
212
212
|
line = PerfectShape::Line.new(points: [[curx, cury], [movx, movy]])
|
@@ -267,5 +267,110 @@ module PerfectShape
|
|
267
267
|
the_disconnected_shapes << Line.new(points: [final_point, initial_point]) if closed?
|
268
268
|
the_disconnected_shapes.compact
|
269
269
|
end
|
270
|
+
|
271
|
+
def intersect?(rectangle)
|
272
|
+
x = rectangle.x
|
273
|
+
y = rectangle.y
|
274
|
+
w = rectangle.width
|
275
|
+
h = rectangle.height
|
276
|
+
# [xy]+[wh] is NaN if any of those values are NaN,
|
277
|
+
# or if adding the two together would produce NaN
|
278
|
+
# by virtue of adding opposing Infinte values.
|
279
|
+
# Since we need to add them below, their sum must
|
280
|
+
# not be NaN.
|
281
|
+
# We return false because NaN always produces a
|
282
|
+
# negative response to tests
|
283
|
+
return false if (x+w).nan? || (y+h).nan?
|
284
|
+
return false if w <= 0 || h <= 0
|
285
|
+
mask = winding_rule == :wind_non_zero ? -1 : 2
|
286
|
+
crossings = rect_crossings(x, y, x+w, y+h)
|
287
|
+
crossings == PerfectShape::Rectangle::RECT_INTERSECTS ||
|
288
|
+
(crossings & mask) != 0
|
289
|
+
end
|
290
|
+
|
291
|
+
def rect_crossings(rxmin, rymin, rxmax, rymax)
|
292
|
+
numTypes = drawing_types.count
|
293
|
+
return 0 if numTypes == 0
|
294
|
+
coords = points.flatten
|
295
|
+
curx = cury = movx = movy = endx = endy = nil
|
296
|
+
curx = movx = coords[0]
|
297
|
+
cury = movy = coords[1]
|
298
|
+
crossings = 0
|
299
|
+
ci = 2
|
300
|
+
i = 1
|
301
|
+
|
302
|
+
while crossings != PerfectShape::Rectangle::RECT_INTERSECTS && i < numTypes
|
303
|
+
case drawing_types[i]
|
304
|
+
when :move_to
|
305
|
+
if curx != movx || cury != movy
|
306
|
+
line = PerfectShape::Line.new(points: [curx, cury, movx, movy])
|
307
|
+
crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
|
308
|
+
end
|
309
|
+
# Count should always be a multiple of 2 here.
|
310
|
+
# assert((crossings & 1) != 0)
|
311
|
+
movx = curx = coords[ci]
|
312
|
+
ci += 1
|
313
|
+
movy = cury = coords[ci]
|
314
|
+
ci += 1
|
315
|
+
when :line_to
|
316
|
+
endx = coords[ci]
|
317
|
+
ci += 1
|
318
|
+
endy = coords[ci]
|
319
|
+
ci += 1
|
320
|
+
line = PerfectShape::Line.new(points: [curx, cury, endx, endy])
|
321
|
+
crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
|
322
|
+
curx = endx
|
323
|
+
cury = endy
|
324
|
+
when :quad_to
|
325
|
+
cx = coords[ci]
|
326
|
+
ci += 1
|
327
|
+
cy = coords[ci]
|
328
|
+
ci += 1
|
329
|
+
endx = coords[ci]
|
330
|
+
ci += 1
|
331
|
+
endy = coords[ci]
|
332
|
+
ci += 1
|
333
|
+
quadratic_bezier_curve = PerfectShape::QuadraticBezierCurve.new(points: [curx, cury, cx, cy, endx, endy])
|
334
|
+
crossings = quadratic_bezier_curve.rect_crossings(rxmin, rymin, rxmax, rymax, 0, crossings)
|
335
|
+
curx = endx
|
336
|
+
cury = endy
|
337
|
+
when :cubic_to
|
338
|
+
c1x = coords[ci]
|
339
|
+
ci += 1
|
340
|
+
c1y = coords[ci]
|
341
|
+
ci += 1
|
342
|
+
c2x = coords[ci]
|
343
|
+
ci += 1
|
344
|
+
c2y = coords[ci]
|
345
|
+
ci += 1
|
346
|
+
endx = coords[ci]
|
347
|
+
ci += 1
|
348
|
+
endy = coords[ci]
|
349
|
+
ci += 1
|
350
|
+
cubic_bezier_curve = PerfectShape::CubicBezierCurve.new(points: [curx, cury, c1x, c1y, c2x, c2y, endx, endy])
|
351
|
+
crossings = cubic_bezier_curve.rect_crossings(rxmin, rymin, rxmax, rymax, 0, crossings)
|
352
|
+
curx = endx
|
353
|
+
cury = endy
|
354
|
+
when :close
|
355
|
+
if curx != movx || cury != movy
|
356
|
+
line = PerfectShape::Line.new(points: [curx, cury, movx, movy])
|
357
|
+
crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
|
358
|
+
end
|
359
|
+
curx = movx
|
360
|
+
cury = movy
|
361
|
+
# Count should always be a multiple of 2 here.
|
362
|
+
# assert((crossings & 1) != 0)
|
363
|
+
end
|
364
|
+
i += 1
|
365
|
+
end
|
366
|
+
if crossings != PerfectShape::Rectangle::RECT_INTERSECTS &&
|
367
|
+
(curx != movx || cury != movy)
|
368
|
+
line = PerfectShape::Line.new(points: [curx, cury, movx, movy])
|
369
|
+
crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
|
370
|
+
end
|
371
|
+
# Count should always be a multiple of 2 here.
|
372
|
+
# assert((crossings & 1) != 0)
|
373
|
+
crossings
|
374
|
+
end
|
270
375
|
end
|
271
376
|
end
|
@@ -22,14 +22,31 @@
|
|
22
22
|
require 'perfect_shape/shape'
|
23
23
|
require 'perfect_shape/point'
|
24
24
|
require 'perfect_shape/multi_point'
|
25
|
+
require 'perfect_shape/path'
|
25
26
|
|
26
27
|
module PerfectShape
|
27
28
|
class Polygon < Shape
|
28
29
|
include MultiPoint
|
29
30
|
include Equalizer.new(:points)
|
30
31
|
|
32
|
+
WINDING_RULES = PerfectShape::Path::WINDING_RULES
|
33
|
+
|
34
|
+
attr_reader :winding_rule
|
35
|
+
|
36
|
+
def initialize(points: [], winding_rule: :wind_even_odd)
|
37
|
+
super(points: points)
|
38
|
+
self.winding_rule = winding_rule
|
39
|
+
end
|
40
|
+
|
41
|
+
def winding_rule=(value)
|
42
|
+
raise "Invalid winding rule: #{value} (must be one of #{WINDING_RULES})" unless WINDING_RULES.include?(value.to_s.to_sym)
|
43
|
+
@winding_rule = value
|
44
|
+
end
|
45
|
+
|
31
46
|
# Checks if polygon contains point (two-number Array or x, y args)
|
32
|
-
# using the Ray Casting Algorithm (aka Even-Odd Rule)
|
47
|
+
# using the Ray Casting Algorithm (aka Even-Odd Rule)
|
48
|
+
# or Winding Number Algorithm (aka Nonzero Rule)
|
49
|
+
# Details: https://en.wikipedia.org/wiki/Point_in_polygon
|
33
50
|
#
|
34
51
|
# @param x The X coordinate of the point to test.
|
35
52
|
# @param y The Y coordinate of the point to test.
|
@@ -43,76 +60,11 @@ module PerfectShape
|
|
43
60
|
if outline
|
44
61
|
edges.any? { |edge| edge.contain?(x, y, distance_tolerance: distance_tolerance) }
|
45
62
|
else
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
hits = 0
|
51
|
-
|
52
|
-
lastx = xpoints[npoints - 1]
|
53
|
-
lasty = ypoints[npoints - 1]
|
54
|
-
|
55
|
-
# Walk the edges of the polygon
|
56
|
-
npoints.times do |i|
|
57
|
-
curx = xpoints[i]
|
58
|
-
cury = ypoints[i]
|
59
|
-
|
60
|
-
if cury == lasty
|
61
|
-
lastx = curx
|
62
|
-
lasty = cury
|
63
|
-
next
|
64
|
-
end
|
65
|
-
|
66
|
-
if curx < lastx
|
67
|
-
if x >= lastx
|
68
|
-
lastx = curx
|
69
|
-
lasty = cury
|
70
|
-
next
|
71
|
-
end
|
72
|
-
leftx = curx
|
73
|
-
else
|
74
|
-
if x >= curx
|
75
|
-
lastx = curx
|
76
|
-
lasty = cury
|
77
|
-
next
|
78
|
-
end
|
79
|
-
leftx = lastx
|
80
|
-
end
|
81
|
-
|
82
|
-
if cury < lasty
|
83
|
-
if y < cury || y >= lasty
|
84
|
-
lastx = curx
|
85
|
-
lasty = cury
|
86
|
-
next
|
87
|
-
end
|
88
|
-
if x < leftx
|
89
|
-
hits += 1
|
90
|
-
lastx = curx
|
91
|
-
lasty = cury
|
92
|
-
next
|
93
|
-
end
|
94
|
-
test1 = x - curx
|
95
|
-
test2 = y - cury
|
96
|
-
else
|
97
|
-
if y < lasty || y >= cury
|
98
|
-
lastx = curx
|
99
|
-
lasty = cury
|
100
|
-
next
|
101
|
-
end
|
102
|
-
if x < leftx
|
103
|
-
hits += 1
|
104
|
-
lastx = curx
|
105
|
-
lasty = cury
|
106
|
-
next
|
107
|
-
end
|
108
|
-
test1 = x - lastx
|
109
|
-
test2 = y - lasty
|
110
|
-
end
|
111
|
-
|
112
|
-
hits += 1 if (test1 < (test2 / (lasty - cury) * (lastx - curx)))
|
63
|
+
if winding_rule == :wind_even_odd
|
64
|
+
wind_even_odd_contain?(x, y)
|
65
|
+
else
|
66
|
+
path.contain?(x, y)
|
113
67
|
end
|
114
|
-
|
115
|
-
(hits & 1) != 0
|
116
68
|
end
|
117
69
|
end
|
118
70
|
|
@@ -121,5 +73,92 @@ module PerfectShape
|
|
121
73
|
Line.new(points: [[point1.first, point1.last], [point2.first, point2.last]])
|
122
74
|
end
|
123
75
|
end
|
76
|
+
|
77
|
+
def path
|
78
|
+
path_shapes = []
|
79
|
+
path_shapes << PerfectShape::Point.new(points[0])
|
80
|
+
path_shapes += points[1..-1].map { |point| PerfectShape::Line.new(points: [point]) }
|
81
|
+
PerfectShape::Path.new(shapes: path_shapes, closed: true, winding_rule: winding_rule)
|
82
|
+
end
|
83
|
+
|
84
|
+
def intersect?(rectangle)
|
85
|
+
path.intersect?(rectangle)
|
86
|
+
end
|
87
|
+
|
88
|
+
private
|
89
|
+
|
90
|
+
# optimized even-odd rule point in polygon algorithm (uses less memory than PerfectShape::Path algorithms)
|
91
|
+
def wind_even_odd_contain?(x, y)
|
92
|
+
npoints = points.count
|
93
|
+
xpoints = points.map(&:first)
|
94
|
+
ypoints = points.map(&:last)
|
95
|
+
return false if npoints <= 2 || !bounding_box.contain?(x, y)
|
96
|
+
hits = 0
|
97
|
+
|
98
|
+
lastx = xpoints[npoints - 1]
|
99
|
+
lasty = ypoints[npoints - 1]
|
100
|
+
|
101
|
+
# Walk the edges of the polygon
|
102
|
+
npoints.times do |i|
|
103
|
+
curx = xpoints[i]
|
104
|
+
cury = ypoints[i]
|
105
|
+
|
106
|
+
if cury == lasty
|
107
|
+
lastx = curx
|
108
|
+
lasty = cury
|
109
|
+
next
|
110
|
+
end
|
111
|
+
|
112
|
+
if curx < lastx
|
113
|
+
if x >= lastx
|
114
|
+
lastx = curx
|
115
|
+
lasty = cury
|
116
|
+
next
|
117
|
+
end
|
118
|
+
leftx = curx
|
119
|
+
else
|
120
|
+
if x >= curx
|
121
|
+
lastx = curx
|
122
|
+
lasty = cury
|
123
|
+
next
|
124
|
+
end
|
125
|
+
leftx = lastx
|
126
|
+
end
|
127
|
+
|
128
|
+
if cury < lasty
|
129
|
+
if y < cury || y >= lasty
|
130
|
+
lastx = curx
|
131
|
+
lasty = cury
|
132
|
+
next
|
133
|
+
end
|
134
|
+
if x < leftx
|
135
|
+
hits += 1
|
136
|
+
lastx = curx
|
137
|
+
lasty = cury
|
138
|
+
next
|
139
|
+
end
|
140
|
+
test1 = x - curx
|
141
|
+
test2 = y - cury
|
142
|
+
else
|
143
|
+
if y < lasty || y >= cury
|
144
|
+
lastx = curx
|
145
|
+
lasty = cury
|
146
|
+
next
|
147
|
+
end
|
148
|
+
if x < leftx
|
149
|
+
hits += 1
|
150
|
+
lastx = curx
|
151
|
+
lasty = cury
|
152
|
+
next
|
153
|
+
end
|
154
|
+
test1 = x - lastx
|
155
|
+
test2 = y - lasty
|
156
|
+
end
|
157
|
+
|
158
|
+
hits += 1 if (test1 < (test2 / (lasty - cury) * (lastx - curx)))
|
159
|
+
end
|
160
|
+
|
161
|
+
(hits & 1) != 0
|
162
|
+
end
|
124
163
|
end
|
125
164
|
end
|
@@ -545,5 +545,72 @@ module PerfectShape
|
|
545
545
|
# overlap the Y range of the rectangle.
|
546
546
|
c1tag * c2tag <= 0
|
547
547
|
end
|
548
|
+
|
549
|
+
# Accumulate the number of times the quad crosses the shadow
|
550
|
+
# extending to the right of the rectangle. See the comment
|
551
|
+
# for the RECT_INTERSECTS constant for more complete details.
|
552
|
+
#
|
553
|
+
# crossings arg is the initial crossings value to add to (useful
|
554
|
+
# in cases where you want to accumulate crossings from multiple
|
555
|
+
# shapes)
|
556
|
+
def rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0)
|
557
|
+
x0 = points[0][0]
|
558
|
+
y0 = points[0][1]
|
559
|
+
xc = points[1][0]
|
560
|
+
yc = points[1][1]
|
561
|
+
x1 = points[2][0]
|
562
|
+
y1 = points[2][1]
|
563
|
+
return crossings if y0 >= rymax && yc >= rymax && y1 >= rymax
|
564
|
+
return crossings if y0 <= rymin && yc <= rymin && y1 <= rymin
|
565
|
+
return crossings if x0 <= rxmin && xc <= rxmin && x1 <= rxmin
|
566
|
+
if x0 >= rxmax && xc >= rxmax && x1 >= rxmax
|
567
|
+
# Quad is entirely to the right of the rect
|
568
|
+
# and the vertical range of the 3 Y coordinates of the quad
|
569
|
+
# overlaps the vertical range of the rect by a non-empty amount
|
570
|
+
# We now judge the crossings solely based on the line segment
|
571
|
+
# connecting the endpoints of the quad.
|
572
|
+
# Note that we may have 0, 1, or 2 crossings as the control
|
573
|
+
# point may be causing the Y range intersection while the
|
574
|
+
# two endpoints are entirely above or below.
|
575
|
+
if y0 < y1
|
576
|
+
# y-increasing line segment...
|
577
|
+
crossings += 1 if y0 <= rymin && y1 > rymin
|
578
|
+
crossings += 1 if y0 < rymax && y1 >= rymax
|
579
|
+
elsif y1 < y0
|
580
|
+
# y-decreasing line segment...
|
581
|
+
crossings -= 1 if y1 <= rymin && y0 > rymin
|
582
|
+
crossings -= 1 if y1 < rymax && y0 >= rymax
|
583
|
+
end
|
584
|
+
return crossings
|
585
|
+
end
|
586
|
+
# The intersection of ranges is more complicated
|
587
|
+
# First do trivial INTERSECTS rejection of the cases
|
588
|
+
# where one of the endpoints is inside the rectangle.
|
589
|
+
return PerfectShape::Rectangle::RECT_INTERSECTS if (x0 < rxmax && x0 > rxmin && y0 < rymax && y0 > rymin) ||
|
590
|
+
(x1 < rxmax && x1 > rxmin && y1 < rymax && y1 > rymin)
|
591
|
+
# Otherwise, subdivide and look for one of the cases above.
|
592
|
+
# double precision only has 52 bits of mantissa
|
593
|
+
if level > 52
|
594
|
+
line = PerfectShape::Line.new(points: [x0, y0, x1, y1])
|
595
|
+
return line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
|
596
|
+
end
|
597
|
+
x0c = BigDecimal((x0 + xc).to_s) / 2
|
598
|
+
y0c = BigDecimal((y0 + yc).to_s) / 2
|
599
|
+
xc1 = BigDecimal((xc + x1).to_s) / 2
|
600
|
+
yc1 = BigDecimal((yc + y1).to_s) / 2
|
601
|
+
xc = BigDecimal((x0c + xc1).to_s) / 2
|
602
|
+
yc = BigDecimal((y0c + yc1).to_s) / 2
|
603
|
+
# [xy]c are NaN if any of [xy]0c or [xy]c1 are NaN
|
604
|
+
# [xy]0c or [xy]c1 are NaN if any of [xy][0c1] are NaN
|
605
|
+
# These values are also NaN if opposing infinities are added
|
606
|
+
return 0 if xc.nan? || yc.nan?
|
607
|
+
quad1 = QuadraticBezierCurve.new(points: [x0, y0, x0c, y0c, xc, yc])
|
608
|
+
crossings = quad1.rect_crossings(rxmin, rymin, rxmax, rymax, level+1, crossings)
|
609
|
+
if crossings != PerfectShape::Rectangle::RECT_INTERSECTS
|
610
|
+
quad2 = QuadraticBezierCurve.new(points: [xc, yc, xc1, yc1, x1, y1])
|
611
|
+
crossings = quad2.rect_crossings(rxmin, rymin, rxmax, rymax, level+1, crossings)
|
612
|
+
end
|
613
|
+
crossings
|
614
|
+
end
|
548
615
|
end
|
549
616
|
end
|
data/perfect-shape.gemspec
CHANGED
@@ -2,16 +2,16 @@
|
|
2
2
|
# DO NOT EDIT THIS FILE DIRECTLY
|
3
3
|
# Instead, edit Juwelier::Tasks in Rakefile, and run 'rake gemspec'
|
4
4
|
# -*- encoding: utf-8 -*-
|
5
|
-
# stub: perfect-shape 0.
|
5
|
+
# stub: perfect-shape 1.0.0 ruby lib
|
6
6
|
|
7
7
|
Gem::Specification.new do |s|
|
8
8
|
s.name = "perfect-shape".freeze
|
9
|
-
s.version = "0.
|
9
|
+
s.version = "1.0.0"
|
10
10
|
|
11
11
|
s.required_rubygems_version = Gem::Requirement.new(">= 0".freeze) if s.respond_to? :required_rubygems_version=
|
12
12
|
s.require_paths = ["lib".freeze]
|
13
13
|
s.authors = ["Andy Maleh".freeze]
|
14
|
-
s.date = "2022-01-
|
14
|
+
s.date = "2022-01-23"
|
15
15
|
s.description = "Perfect Shape is a collection of pure Ruby geometric algorithms that are mostly useful for GUI manipulation like checking viewport rectangle intersection or containment of a mouse click point in popular geometry shapes such as rectangle, square, arc (open, chord, and pie), ellipse, circle, polygon, and paths containing lines, quadratic b\u00E9zier curves, and cubic bezier curves, potentially with affine transforms applied like translation, scale, rotation, shear/skew, and inversion (including both Ray Casting Algorithm, aka Even-odd Rule, and Winding Number Algorithm, aka Nonzero Rule). Additionally, it contains some purely mathematical algorithms like IEEEremainder (also known as IEEE-754 remainder).".freeze
|
16
16
|
s.email = "andy.am@gmail.com".freeze
|
17
17
|
s.extra_rdoc_files = [
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: perfect-shape
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 1.0.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andy Maleh
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-01-
|
11
|
+
date: 2022-01-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: equalizer
|