numo-random 0.4.0 → 0.5.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +13 -0
- data/README.md +26 -0
- data/ext/numo/random/ext.cpp +4 -1
- data/ext/numo/random/ext.hpp +140 -84
- data/lib/numo/random/generator.rb +15 -4
- data/lib/numo/random/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d9c0d26c2b1751451a84c8b53c6e38b9257a82ff7d2c3479bd94d7311cfb1628
|
4
|
+
data.tar.gz: ae9262ff84d81abb58af7d4856e0936160c33f3a824818515878ae97ce3c9ea0
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f153a0090d65b3ee39d5f8cde36a3669e0d12b6e4f84c56045156c42c2f5fe7dfe3de7b6d649c994bafec730ff8bbcaff09e9befa6aba04e9b5fd0d77dae8d91
|
7
|
+
data.tar.gz: 27af398428b05b955c690f36d948112329484f47146631b2a4f58ef60551a84039144c387e96ad49ee0d13815225930100659823ece1040fb59898e73c13dc0d
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,16 @@
|
|
1
|
+
## [0.5.0]
|
2
|
+
- Support 32-bit PCG and Mersenne Twister.
|
3
|
+
|
4
|
+
```ruby
|
5
|
+
require 'numo/random'
|
6
|
+
|
7
|
+
# specify the pseudo random number generation algorithm by setting the algorithm argument of constructor.
|
8
|
+
rng = Numo::Random::Generator.new(algorithm: 'pcg32')
|
9
|
+
rng = Numo::Random::Generator.new(algorithm: 'pcg64') # default
|
10
|
+
rng = Numo::Random::Generator.new(algorithm: 'mt32')
|
11
|
+
rng = Numo::Random::Generator.new(algorithm: 'mt64')
|
12
|
+
```
|
13
|
+
|
1
14
|
## [0.4.0]
|
2
15
|
- Add method for random number generation with bernoulli distribution: bernoulli, binomial, negative_binomial, and geometric.
|
3
16
|
|
data/README.md
CHANGED
@@ -50,6 +50,32 @@ end
|
|
50
50
|

|
51
51
|
|
52
52
|
|
53
|
+
An example of generating random numbers according to the Poisson distribution:
|
54
|
+
|
55
|
+
```ruby
|
56
|
+
require 'numo/narray'
|
57
|
+
require 'numo/gnuplot'
|
58
|
+
|
59
|
+
require 'numo/random'
|
60
|
+
|
61
|
+
# Creating random number generator.
|
62
|
+
rng = Numo::Random::Generator.new(seed: 9)
|
63
|
+
|
64
|
+
# Generating random numbers with Poisson distribution.
|
65
|
+
x = rng.poisson(shape: 10000, mean: 12)
|
66
|
+
|
67
|
+
# Plotting the generated result.
|
68
|
+
h = x.bincount
|
69
|
+
|
70
|
+
Numo.gnuplot do
|
71
|
+
set(terminal: 'png')
|
72
|
+
set(output: 'poisson2d.png')
|
73
|
+
plot(h, with: 'boxes')
|
74
|
+
end
|
75
|
+
```
|
76
|
+
|
77
|
+

|
78
|
+
|
53
79
|
## Contributing
|
54
80
|
|
55
81
|
Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/numo-random.
|
data/ext/numo/random/ext.cpp
CHANGED
@@ -22,5 +22,8 @@ extern "C" void Init_ext(void) {
|
|
22
22
|
rb_require("numo/narray");
|
23
23
|
|
24
24
|
VALUE rb_mNumoRandom = rb_define_module_under(mNumo, "Random");
|
25
|
-
|
25
|
+
RbNumoRandomPCG32::define_class(rb_mNumoRandom, "PCG32");
|
26
|
+
RbNumoRandomPCG64::define_class(rb_mNumoRandom, "PCG64");
|
27
|
+
RbNumoRandomMT32::define_class(rb_mNumoRandom, "MT32");
|
28
|
+
RbNumoRandomMT64::define_class(rb_mNumoRandom, "MT64");
|
26
29
|
}
|
data/ext/numo/random/ext.hpp
CHANGED
@@ -28,74 +28,74 @@
|
|
28
28
|
|
29
29
|
#include <pcg_random.hpp>
|
30
30
|
|
31
|
-
class
|
31
|
+
template<class Rng, class Impl> class RbNumoRandom {
|
32
32
|
public:
|
33
|
-
static
|
34
|
-
|
35
|
-
|
36
|
-
|
33
|
+
// static const rb_data_type_t rng_type;
|
34
|
+
|
35
|
+
static VALUE numo_random_alloc(VALUE self) {
|
36
|
+
Rng* ptr = (Rng*)ruby_xmalloc(sizeof(Rng));
|
37
|
+
new (ptr) Rng();
|
38
|
+
return TypedData_Wrap_Struct(self, &Impl::rng_type, ptr);
|
37
39
|
}
|
38
40
|
|
39
|
-
static void
|
40
|
-
((
|
41
|
+
static void numo_random_free(void* ptr) {
|
42
|
+
((Rng*)ptr)->~Rng();
|
41
43
|
ruby_xfree(ptr);
|
42
44
|
}
|
43
45
|
|
44
|
-
static size_t
|
45
|
-
return sizeof(*((
|
46
|
+
static size_t numo_random_size(const void* ptr) {
|
47
|
+
return sizeof(*((Rng*)ptr));
|
46
48
|
}
|
47
49
|
|
48
|
-
static
|
49
|
-
|
50
|
-
TypedData_Get_Struct(self,
|
50
|
+
static Rng* get_rng(VALUE self) {
|
51
|
+
Rng* ptr;
|
52
|
+
TypedData_Get_Struct(self, Rng, &Impl::rng_type, ptr);
|
51
53
|
return ptr;
|
52
54
|
}
|
53
55
|
|
54
|
-
static VALUE define_class(VALUE rb_mNumoRandom) {
|
55
|
-
VALUE
|
56
|
-
rb_define_alloc_func(
|
57
|
-
rb_define_method(
|
58
|
-
rb_define_method(
|
59
|
-
rb_define_method(
|
60
|
-
rb_define_method(
|
61
|
-
rb_define_method(
|
62
|
-
rb_define_method(
|
63
|
-
rb_define_method(
|
64
|
-
rb_define_method(
|
65
|
-
rb_define_method(
|
66
|
-
rb_define_method(
|
67
|
-
rb_define_method(
|
68
|
-
rb_define_method(
|
69
|
-
rb_define_method(
|
70
|
-
rb_define_method(
|
71
|
-
rb_define_method(
|
72
|
-
rb_define_method(
|
73
|
-
rb_define_method(
|
74
|
-
rb_define_method(
|
75
|
-
rb_define_method(
|
76
|
-
rb_define_method(
|
77
|
-
return
|
56
|
+
static VALUE define_class(VALUE rb_mNumoRandom, const char* class_name) {
|
57
|
+
VALUE rb_cRng = rb_define_class_under(rb_mNumoRandom, class_name, rb_cObject);
|
58
|
+
rb_define_alloc_func(rb_cRng, numo_random_alloc);
|
59
|
+
rb_define_method(rb_cRng, "initialize", RUBY_METHOD_FUNC(_numo_random_init), -1);
|
60
|
+
rb_define_method(rb_cRng, "seed=", RUBY_METHOD_FUNC(_numo_random_set_seed), 1);
|
61
|
+
rb_define_method(rb_cRng, "seed", RUBY_METHOD_FUNC(_numo_random_get_seed), 0);
|
62
|
+
rb_define_method(rb_cRng, "random", RUBY_METHOD_FUNC(_numo_random_random), 0);
|
63
|
+
rb_define_method(rb_cRng, "binomial", RUBY_METHOD_FUNC(_numo_random_binomial), -1);
|
64
|
+
rb_define_method(rb_cRng, "negative_binomial", RUBY_METHOD_FUNC(_numo_random_negative_binomial), -1);
|
65
|
+
rb_define_method(rb_cRng, "geometric", RUBY_METHOD_FUNC(_numo_random_geometric), -1);
|
66
|
+
rb_define_method(rb_cRng, "exponential", RUBY_METHOD_FUNC(_numo_random_exponential), -1);
|
67
|
+
rb_define_method(rb_cRng, "gamma", RUBY_METHOD_FUNC(_numo_random_gamma), -1);
|
68
|
+
rb_define_method(rb_cRng, "gumbel", RUBY_METHOD_FUNC(_numo_random_gumbel), -1);
|
69
|
+
rb_define_method(rb_cRng, "poisson", RUBY_METHOD_FUNC(_numo_random_poisson), -1);
|
70
|
+
rb_define_method(rb_cRng, "weibull", RUBY_METHOD_FUNC(_numo_random_weibull), -1);
|
71
|
+
rb_define_method(rb_cRng, "discrete", RUBY_METHOD_FUNC(_numo_random_discrete), -1);
|
72
|
+
rb_define_method(rb_cRng, "uniform", RUBY_METHOD_FUNC(_numo_random_uniform), -1);
|
73
|
+
rb_define_method(rb_cRng, "cauchy", RUBY_METHOD_FUNC(_numo_random_cauchy), -1);
|
74
|
+
rb_define_method(rb_cRng, "chisquare", RUBY_METHOD_FUNC(_numo_random_chisquare), -1);
|
75
|
+
rb_define_method(rb_cRng, "f", RUBY_METHOD_FUNC(_numo_random_f), -1);
|
76
|
+
rb_define_method(rb_cRng, "normal", RUBY_METHOD_FUNC(_numo_random_normal), -1);
|
77
|
+
rb_define_method(rb_cRng, "lognormal", RUBY_METHOD_FUNC(_numo_random_lognormal), -1);
|
78
|
+
rb_define_method(rb_cRng, "standard_t", RUBY_METHOD_FUNC(_numo_random_standard_t), -1);
|
79
|
+
return rb_cRng;
|
78
80
|
}
|
79
81
|
|
80
82
|
private:
|
81
|
-
static const rb_data_type_t pcg64_type;
|
82
|
-
|
83
83
|
// #initialize
|
84
84
|
|
85
|
-
static VALUE
|
85
|
+
static VALUE _numo_random_init(int argc, VALUE* argv, VALUE self) {
|
86
86
|
VALUE kw_args = Qnil;
|
87
87
|
ID kw_table[1] = { rb_intern("seed") };
|
88
88
|
VALUE kw_values[1] = { Qundef };
|
89
89
|
rb_scan_args(argc, argv, ":", &kw_args);
|
90
90
|
rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);
|
91
|
-
|
91
|
+
Rng* ptr = get_rng(self);
|
92
92
|
if (kw_values[0] == Qundef || NIL_P(kw_values[0])) {
|
93
93
|
std::random_device rd;
|
94
94
|
const unsigned int seed = rd();
|
95
|
-
new (ptr)
|
95
|
+
new (ptr) Rng(seed);
|
96
96
|
rb_iv_set(self, "seed", UINT2NUM(seed));
|
97
97
|
} else {
|
98
|
-
new (ptr)
|
98
|
+
new (ptr) Rng(NUM2LONG(kw_values[0]));
|
99
99
|
rb_iv_set(self, "seed", kw_values[0]);
|
100
100
|
}
|
101
101
|
return Qnil;
|
@@ -103,23 +103,23 @@ private:
|
|
103
103
|
|
104
104
|
// #seed=
|
105
105
|
|
106
|
-
static VALUE
|
107
|
-
|
106
|
+
static VALUE _numo_random_set_seed(VALUE self, VALUE seed) {
|
107
|
+
get_rng(self)->seed(NUM2LONG(seed));
|
108
108
|
rb_iv_set(self, "seed", seed);
|
109
109
|
return Qnil;
|
110
110
|
}
|
111
111
|
|
112
112
|
// #seed
|
113
113
|
|
114
|
-
static VALUE
|
114
|
+
static VALUE _numo_random_get_seed(VALUE self) {
|
115
115
|
return rb_iv_get(self, "seed");
|
116
116
|
}
|
117
117
|
|
118
118
|
// #random
|
119
119
|
|
120
|
-
static VALUE
|
120
|
+
static VALUE _numo_random_random(VALUE self) {
|
121
121
|
std::uniform_real_distribution<double> uniform_dist(0, 1);
|
122
|
-
|
122
|
+
Rng* ptr = get_rng(self);
|
123
123
|
const double x = uniform_dist(*ptr);
|
124
124
|
return DBL2NUM(x);
|
125
125
|
}
|
@@ -128,7 +128,7 @@ private:
|
|
128
128
|
|
129
129
|
template<class D> struct rand_opt_t {
|
130
130
|
D dist;
|
131
|
-
|
131
|
+
Rng* rnd;
|
132
132
|
};
|
133
133
|
|
134
134
|
template<class D, typename T> static void _iter_rand(na_loop_t* const lp) {
|
@@ -155,7 +155,7 @@ private:
|
|
155
155
|
// #binomial
|
156
156
|
|
157
157
|
template<typename T> static void _rand_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
|
158
|
-
|
158
|
+
Rng* ptr = get_rng(self);
|
159
159
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
160
160
|
std::binomial_distribution<T> binomial_dist(n, p);
|
161
161
|
ndfunc_t ndf = { _iter_rand<std::binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -163,7 +163,7 @@ private:
|
|
163
163
|
na_ndloop3(&ndf, &opt, 1, x);
|
164
164
|
}
|
165
165
|
|
166
|
-
static VALUE
|
166
|
+
static VALUE _numo_random_binomial(int argc, VALUE* argv, VALUE self) {
|
167
167
|
VALUE x = Qnil;
|
168
168
|
VALUE kw_args = Qnil;
|
169
169
|
ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
|
@@ -206,7 +206,7 @@ private:
|
|
206
206
|
// #negative_binomial
|
207
207
|
|
208
208
|
template<typename T> static void _rand_negative_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
|
209
|
-
|
209
|
+
Rng* ptr = get_rng(self);
|
210
210
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
211
211
|
std::negative_binomial_distribution<T> negative_binomial_dist(n, p);
|
212
212
|
ndfunc_t ndf = { _iter_rand<std::negative_binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -214,7 +214,7 @@ private:
|
|
214
214
|
na_ndloop3(&ndf, &opt, 1, x);
|
215
215
|
}
|
216
216
|
|
217
|
-
static VALUE
|
217
|
+
static VALUE _numo_random_negative_binomial(int argc, VALUE* argv, VALUE self) {
|
218
218
|
VALUE x = Qnil;
|
219
219
|
VALUE kw_args = Qnil;
|
220
220
|
ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
|
@@ -257,7 +257,7 @@ private:
|
|
257
257
|
// #geometric
|
258
258
|
|
259
259
|
template<typename T> static void _rand_geometric(VALUE& self, VALUE& x, const double& p) {
|
260
|
-
|
260
|
+
Rng* ptr = get_rng(self);
|
261
261
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
262
262
|
std::geometric_distribution<T> geometric_dist(p);
|
263
263
|
ndfunc_t ndf = { _iter_rand<std::geometric_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -265,7 +265,7 @@ private:
|
|
265
265
|
na_ndloop3(&ndf, &opt, 1, x);
|
266
266
|
}
|
267
267
|
|
268
|
-
static VALUE
|
268
|
+
static VALUE _numo_random_geometric(int argc, VALUE* argv, VALUE self) {
|
269
269
|
VALUE x = Qnil;
|
270
270
|
VALUE kw_args = Qnil;
|
271
271
|
ID kw_table[1] = { rb_intern("p") };
|
@@ -306,7 +306,7 @@ private:
|
|
306
306
|
// #exponential
|
307
307
|
|
308
308
|
template<typename T> static void _rand_exponential(VALUE& self, VALUE& x, const double& lam) {
|
309
|
-
|
309
|
+
Rng* ptr = get_rng(self);
|
310
310
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
311
311
|
std::exponential_distribution<T> exponential_dist(lam);
|
312
312
|
ndfunc_t ndf = { _iter_rand<std::exponential_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -314,7 +314,7 @@ private:
|
|
314
314
|
na_ndloop3(&ndf, &opt, 1, x);
|
315
315
|
}
|
316
316
|
|
317
|
-
static VALUE
|
317
|
+
static VALUE _numo_random_exponential(int argc, VALUE* argv, VALUE self) {
|
318
318
|
VALUE x = Qnil;
|
319
319
|
VALUE kw_args = Qnil;
|
320
320
|
ID kw_table[1] = { rb_intern("scale") };
|
@@ -342,7 +342,7 @@ private:
|
|
342
342
|
// #gamma
|
343
343
|
|
344
344
|
template<typename T> static void _rand_gamma(VALUE& self, VALUE& x, const double& k, const double&scale) {
|
345
|
-
|
345
|
+
Rng* ptr = get_rng(self);
|
346
346
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
347
347
|
std::gamma_distribution<T> gamma_dist(k, scale);
|
348
348
|
ndfunc_t ndf = { _iter_rand<std::gamma_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -350,7 +350,7 @@ private:
|
|
350
350
|
na_ndloop3(&ndf, &opt, 1, x);
|
351
351
|
}
|
352
352
|
|
353
|
-
static VALUE
|
353
|
+
static VALUE _numo_random_gamma(int argc, VALUE* argv, VALUE self) {
|
354
354
|
VALUE x = Qnil;
|
355
355
|
VALUE kw_args = Qnil;
|
356
356
|
ID kw_table[2] = { rb_intern("k"), rb_intern("scale") };
|
@@ -379,7 +379,7 @@ private:
|
|
379
379
|
// #gumbel
|
380
380
|
|
381
381
|
template<typename T> static void _rand_gumbel(VALUE& self, VALUE& x, const double& loc, const double&scale) {
|
382
|
-
|
382
|
+
Rng* ptr = get_rng(self);
|
383
383
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
384
384
|
std::extreme_value_distribution<T> extreme_value_dist(loc, scale);
|
385
385
|
ndfunc_t ndf = { _iter_rand<std::extreme_value_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -387,7 +387,7 @@ private:
|
|
387
387
|
na_ndloop3(&ndf, &opt, 1, x);
|
388
388
|
}
|
389
389
|
|
390
|
-
static VALUE
|
390
|
+
static VALUE _numo_random_gumbel(int argc, VALUE* argv, VALUE self) {
|
391
391
|
VALUE x = Qnil;
|
392
392
|
VALUE kw_args = Qnil;
|
393
393
|
ID kw_table[2] = { rb_intern("loc"), rb_intern("scale") };
|
@@ -415,7 +415,7 @@ private:
|
|
415
415
|
// #poisson
|
416
416
|
|
417
417
|
template<typename T> static void _rand_poisson(VALUE& self, VALUE& x, const double& mean) {
|
418
|
-
|
418
|
+
Rng* ptr = get_rng(self);
|
419
419
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
420
420
|
std::poisson_distribution<T> poisson_dist(mean);
|
421
421
|
ndfunc_t ndf = { _iter_rand<std::poisson_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -423,7 +423,7 @@ private:
|
|
423
423
|
na_ndloop3(&ndf, &opt, 1, x);
|
424
424
|
}
|
425
425
|
|
426
|
-
static VALUE
|
426
|
+
static VALUE _numo_random_poisson(int argc, VALUE* argv, VALUE self) {
|
427
427
|
VALUE x = Qnil;
|
428
428
|
VALUE kw_args = Qnil;
|
429
429
|
ID kw_table[1] = { rb_intern("mean") };
|
@@ -464,7 +464,7 @@ private:
|
|
464
464
|
// #weibull
|
465
465
|
|
466
466
|
template<typename T> static void _rand_weibull(VALUE& self, VALUE& x, const double& k, const double&scale) {
|
467
|
-
|
467
|
+
Rng* ptr = get_rng(self);
|
468
468
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
469
469
|
std::weibull_distribution<T> weibull_dist(k, scale);
|
470
470
|
ndfunc_t ndf = { _iter_rand<std::weibull_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -472,7 +472,7 @@ private:
|
|
472
472
|
na_ndloop3(&ndf, &opt, 1, x);
|
473
473
|
}
|
474
474
|
|
475
|
-
static VALUE
|
475
|
+
static VALUE _numo_random_weibull(int argc, VALUE* argv, VALUE self) {
|
476
476
|
VALUE x = Qnil;
|
477
477
|
VALUE kw_args = Qnil;
|
478
478
|
ID kw_table[2] = { rb_intern("k"), rb_intern("scale") };
|
@@ -501,7 +501,7 @@ private:
|
|
501
501
|
// #discrete
|
502
502
|
|
503
503
|
template<typename T, typename P> static void _rand_discrete(VALUE& self, VALUE& x, const std::vector<P>& weight) {
|
504
|
-
|
504
|
+
Rng* ptr = get_rng(self);
|
505
505
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
506
506
|
std::discrete_distribution<T> discrete_dist(weight.begin(), weight.end());
|
507
507
|
ndfunc_t ndf = { _iter_rand<std::discrete_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -509,7 +509,7 @@ private:
|
|
509
509
|
na_ndloop3(&ndf, &opt, 1, x);
|
510
510
|
}
|
511
511
|
|
512
|
-
static VALUE
|
512
|
+
static VALUE _numo_random_discrete(int argc, VALUE* argv, VALUE self) {
|
513
513
|
VALUE x = Qnil;
|
514
514
|
VALUE kw_args = Qnil;
|
515
515
|
ID kw_table[1] = { rb_intern("weight") };
|
@@ -584,7 +584,7 @@ private:
|
|
584
584
|
// #uniform
|
585
585
|
|
586
586
|
template<typename T> static void _rand_uniform(VALUE& self, VALUE& x, const double& low, const double& high) {
|
587
|
-
|
587
|
+
Rng* ptr = get_rng(self);
|
588
588
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
589
589
|
std::uniform_real_distribution<T> uniform_dist(low, high);
|
590
590
|
ndfunc_t ndf = { _iter_rand<std::uniform_real_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -592,7 +592,7 @@ private:
|
|
592
592
|
na_ndloop3(&ndf, &opt, 1, x);
|
593
593
|
}
|
594
594
|
|
595
|
-
static VALUE
|
595
|
+
static VALUE _numo_random_uniform(int argc, VALUE* argv, VALUE self) {
|
596
596
|
VALUE x = Qnil;
|
597
597
|
VALUE kw_args = Qnil;
|
598
598
|
ID kw_table[2] = { rb_intern("low"), rb_intern("high") };
|
@@ -620,7 +620,7 @@ private:
|
|
620
620
|
// #cauchy
|
621
621
|
|
622
622
|
template<typename T> static void _rand_cauchy(VALUE& self, VALUE& x, const double& loc, const double& scale) {
|
623
|
-
|
623
|
+
Rng* ptr = get_rng(self);
|
624
624
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
625
625
|
std::cauchy_distribution<T> cauchy_dist(loc, scale);
|
626
626
|
ndfunc_t ndf = { _iter_rand<std::cauchy_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -628,7 +628,7 @@ private:
|
|
628
628
|
na_ndloop3(&ndf, &opt, 1, x);
|
629
629
|
}
|
630
630
|
|
631
|
-
static VALUE
|
631
|
+
static VALUE _numo_random_cauchy(int argc, VALUE* argv, VALUE self) {
|
632
632
|
VALUE x = Qnil;
|
633
633
|
VALUE kw_args = Qnil;
|
634
634
|
ID kw_table[2] = { rb_intern("loc"), rb_intern("scale") };
|
@@ -656,7 +656,7 @@ private:
|
|
656
656
|
// #chisqure
|
657
657
|
|
658
658
|
template<typename T> static void _rand_chisquare(VALUE& self, VALUE& x, const double& df) {
|
659
|
-
|
659
|
+
Rng* ptr = get_rng(self);
|
660
660
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
661
661
|
std::chi_squared_distribution<T> chisquare_dist(df);
|
662
662
|
ndfunc_t ndf = { _iter_rand<std::chi_squared_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -664,7 +664,7 @@ private:
|
|
664
664
|
na_ndloop3(&ndf, &opt, 1, x);
|
665
665
|
}
|
666
666
|
|
667
|
-
static VALUE
|
667
|
+
static VALUE _numo_random_chisquare(int argc, VALUE* argv, VALUE self) {
|
668
668
|
VALUE x = Qnil;
|
669
669
|
VALUE kw_args = Qnil;
|
670
670
|
ID kw_table[1] = { rb_intern("df") };
|
@@ -691,7 +691,7 @@ private:
|
|
691
691
|
// #f
|
692
692
|
|
693
693
|
template<typename T> static void _rand_f(VALUE& self, VALUE& x, const double& dfnum, const double& dfden) {
|
694
|
-
|
694
|
+
Rng* ptr = get_rng(self);
|
695
695
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
696
696
|
std::fisher_f_distribution<T> f_dist(dfnum, dfden);
|
697
697
|
ndfunc_t ndf = { _iter_rand<std::fisher_f_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -699,7 +699,7 @@ private:
|
|
699
699
|
na_ndloop3(&ndf, &opt, 1, x);
|
700
700
|
}
|
701
701
|
|
702
|
-
static VALUE
|
702
|
+
static VALUE _numo_random_f(int argc, VALUE* argv, VALUE self) {
|
703
703
|
VALUE x = Qnil;
|
704
704
|
VALUE kw_args = Qnil;
|
705
705
|
ID kw_table[2] = { rb_intern("dfnum"), rb_intern("dfden") };
|
@@ -728,7 +728,7 @@ private:
|
|
728
728
|
// #normal
|
729
729
|
|
730
730
|
template<typename T> static void _rand_normal(VALUE& self, VALUE& x, const double& loc, const double& scale) {
|
731
|
-
|
731
|
+
Rng* ptr = get_rng(self);
|
732
732
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
733
733
|
std::normal_distribution<T> normal_dist(loc, scale);
|
734
734
|
ndfunc_t ndf = { _iter_rand<std::normal_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -736,7 +736,7 @@ private:
|
|
736
736
|
na_ndloop3(&ndf, &opt, 1, x);
|
737
737
|
}
|
738
738
|
|
739
|
-
static VALUE
|
739
|
+
static VALUE _numo_random_normal(int argc, VALUE* argv, VALUE self) {
|
740
740
|
VALUE x = Qnil;
|
741
741
|
VALUE kw_args = Qnil;
|
742
742
|
ID kw_table[2] = { rb_intern("loc"), rb_intern("scale") };
|
@@ -764,7 +764,7 @@ private:
|
|
764
764
|
// #lognormal
|
765
765
|
|
766
766
|
template<typename T> static void _rand_lognormal(VALUE& self, VALUE& x, const double& mean, const double& sigma) {
|
767
|
-
|
767
|
+
Rng* ptr = get_rng(self);
|
768
768
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
769
769
|
std::lognormal_distribution<T> lognormal_dist(mean, sigma);
|
770
770
|
ndfunc_t ndf = { _iter_rand<std::lognormal_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -772,7 +772,7 @@ private:
|
|
772
772
|
na_ndloop3(&ndf, &opt, 1, x);
|
773
773
|
}
|
774
774
|
|
775
|
-
static VALUE
|
775
|
+
static VALUE _numo_random_lognormal(int argc, VALUE* argv, VALUE self) {
|
776
776
|
VALUE x = Qnil;
|
777
777
|
VALUE kw_args = Qnil;
|
778
778
|
ID kw_table[2] = { rb_intern("mean"), rb_intern("sigma") };
|
@@ -800,7 +800,7 @@ private:
|
|
800
800
|
// #standard_t
|
801
801
|
|
802
802
|
template<typename T> static void _rand_t(VALUE& self, VALUE& x, const double& df) {
|
803
|
-
|
803
|
+
Rng* ptr = get_rng(self);
|
804
804
|
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
805
805
|
std::student_t_distribution<T> t_dist(df);
|
806
806
|
ndfunc_t ndf = { _iter_rand<std::student_t_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
@@ -808,7 +808,7 @@ private:
|
|
808
808
|
na_ndloop3(&ndf, &opt, 1, x);
|
809
809
|
}
|
810
810
|
|
811
|
-
static VALUE
|
811
|
+
static VALUE _numo_random_standard_t(int argc, VALUE* argv, VALUE self) {
|
812
812
|
VALUE x = Qnil;
|
813
813
|
VALUE kw_args = Qnil;
|
814
814
|
ID kw_table[1] = { rb_intern("df") };
|
@@ -833,16 +833,72 @@ private:
|
|
833
833
|
}
|
834
834
|
};
|
835
835
|
|
836
|
-
|
836
|
+
class RbNumoRandomPCG32 : public RbNumoRandom<pcg32, RbNumoRandomPCG32> {
|
837
|
+
public:
|
838
|
+
static const rb_data_type_t rng_type;
|
839
|
+
};
|
840
|
+
|
841
|
+
const rb_data_type_t RbNumoRandomPCG32::rng_type = {
|
842
|
+
"RbNumoRandomPCG32",
|
843
|
+
{
|
844
|
+
NULL,
|
845
|
+
RbNumoRandomPCG32::numo_random_free,
|
846
|
+
RbNumoRandomPCG32::numo_random_size
|
847
|
+
},
|
848
|
+
NULL,
|
849
|
+
NULL,
|
850
|
+
0
|
851
|
+
};
|
852
|
+
|
853
|
+
class RbNumoRandomPCG64 : public RbNumoRandom<pcg64, RbNumoRandomPCG64> {
|
854
|
+
public:
|
855
|
+
static const rb_data_type_t rng_type;
|
856
|
+
};
|
857
|
+
|
858
|
+
const rb_data_type_t RbNumoRandomPCG64::rng_type = {
|
837
859
|
"RbNumoRandomPCG64",
|
838
860
|
{
|
839
861
|
NULL,
|
840
|
-
RbNumoRandomPCG64::
|
841
|
-
RbNumoRandomPCG64::
|
862
|
+
RbNumoRandomPCG64::numo_random_free,
|
863
|
+
RbNumoRandomPCG64::numo_random_size
|
864
|
+
},
|
865
|
+
NULL,
|
866
|
+
NULL,
|
867
|
+
0
|
868
|
+
};
|
869
|
+
|
870
|
+
class RbNumoRandomMT32 : public RbNumoRandom<std::mt19937, RbNumoRandomMT32> {
|
871
|
+
public:
|
872
|
+
static const rb_data_type_t rng_type;
|
873
|
+
};
|
874
|
+
|
875
|
+
const rb_data_type_t RbNumoRandomMT32::rng_type = {
|
876
|
+
"RbNumoRandomMT32",
|
877
|
+
{
|
878
|
+
NULL,
|
879
|
+
RbNumoRandomMT32::numo_random_free,
|
880
|
+
RbNumoRandomMT32::numo_random_size
|
881
|
+
},
|
882
|
+
NULL,
|
883
|
+
NULL,
|
884
|
+
0
|
885
|
+
};
|
886
|
+
|
887
|
+
class RbNumoRandomMT64 : public RbNumoRandom<std::mt19937_64, RbNumoRandomMT64> {
|
888
|
+
public:
|
889
|
+
static const rb_data_type_t rng_type;
|
890
|
+
};
|
891
|
+
|
892
|
+
const rb_data_type_t RbNumoRandomMT64::rng_type = {
|
893
|
+
"RbNumoRandomMT64",
|
894
|
+
{
|
895
|
+
NULL,
|
896
|
+
RbNumoRandomMT64::numo_random_free,
|
897
|
+
RbNumoRandomMT64::numo_random_size
|
842
898
|
},
|
843
899
|
NULL,
|
844
900
|
NULL,
|
845
|
-
|
901
|
+
0
|
846
902
|
};
|
847
903
|
|
848
904
|
#endif /* NUMO_RANDOM_EXT_HPP */
|
@@ -24,10 +24,21 @@ module Numo
|
|
24
24
|
# Creates a new random number generator.
|
25
25
|
#
|
26
26
|
# @param seed [Integer] random seed used to initialize the random number generator.
|
27
|
-
# @param algorithm [String] random number generation algorithm.
|
28
|
-
def initialize(seed: nil, algorithm: 'pcg64') # rubocop:disable
|
29
|
-
@algorithm =
|
30
|
-
@rng =
|
27
|
+
# @param algorithm [String] random number generation algorithm ('mt32', 'mt64', 'pcg32', and 'pcg64').
|
28
|
+
def initialize(seed: nil, algorithm: 'pcg64') # rubocop:disable Metrics/MethodLength
|
29
|
+
@algorithm = algorithm.to_s
|
30
|
+
@rng = case @algorithm
|
31
|
+
when 'mt32'
|
32
|
+
MT32.new(seed: seed)
|
33
|
+
when 'mt64'
|
34
|
+
MT64.new(seed: seed)
|
35
|
+
when 'pcg32'
|
36
|
+
PCG32.new(seed: seed)
|
37
|
+
when 'pcg64'
|
38
|
+
PCG64.new(seed: seed)
|
39
|
+
else
|
40
|
+
raise ArgumentError, "Numo::Random::Generator does not support '#{@algorithm}' algorithm"
|
41
|
+
end
|
31
42
|
end
|
32
43
|
|
33
44
|
# Returns the seed of random number generator.
|
data/lib/numo/random/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: numo-random
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.5.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-11-
|
11
|
+
date: 2022-11-20 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|