number 0.9.4 → 0.9.5
Sign up to get free protection for your applications and to get access to all the features.
- data/ext/bounds.c +7 -6
- data/ext/compare.c +5 -5
- data/ext/complex.c +182 -162
- data/ext/interval.c +1 -1
- data/ext/number.c +3 -2
- data/ext/number.h +2 -0
- data/ext/real.c +11 -5
- metadata +2 -3
- data/README +0 -13
data/ext/bounds.c
CHANGED
@@ -29,8 +29,7 @@ void bounds_free (Bounds* bounds)
|
|
29
29
|
}
|
30
30
|
}
|
31
31
|
|
32
|
-
|
33
|
-
void bounds_update_re (Bounds* bounds, mpfr_t num, int re_closed)
|
32
|
+
void bounds_update_re (Bounds* bounds, mpfr_t num, int re_closed, int exact)
|
34
33
|
{
|
35
34
|
int min_cmp;
|
36
35
|
int max_cmp;
|
@@ -47,11 +46,12 @@ void bounds_update_re (Bounds* bounds, mpfr_t num, int re_closed)
|
|
47
46
|
if (max_cmp != 1)
|
48
47
|
{
|
49
48
|
mpfr_set(bounds->re_max, num, MPFR_RNDN);
|
49
|
+
bounds->re_max_exact = exact;
|
50
50
|
bounds->re_max_closed = (max_cmp) ? re_closed : bounds->re_max_closed || re_closed;
|
51
51
|
}
|
52
52
|
}
|
53
53
|
|
54
|
-
void bounds_update_im (Bounds* bounds, mpfr_t num, int im_closed)
|
54
|
+
void bounds_update_im (Bounds* bounds, mpfr_t num, int im_closed, int exact)
|
55
55
|
{
|
56
56
|
int min_cmp;
|
57
57
|
int max_cmp;
|
@@ -68,11 +68,12 @@ void bounds_update_im (Bounds* bounds, mpfr_t num, int im_closed)
|
|
68
68
|
if (max_cmp != 1)
|
69
69
|
{
|
70
70
|
mpfr_set(bounds->im_max, num, MPFR_RNDN);
|
71
|
+
bounds->im_max_exact = exact;
|
71
72
|
bounds->im_max_closed = (max_cmp) ? im_closed : bounds->im_max_closed || im_closed;
|
72
73
|
}
|
73
74
|
}
|
74
75
|
|
75
|
-
void bounds_update (Bounds* bounds, mpc_t num, int re_closed, int im_closed)
|
76
|
+
void bounds_update (Bounds* bounds, mpc_t num, int re_closed, int im_closed, int mpc_inex)
|
76
77
|
{
|
77
78
|
mpfr_t re;
|
78
79
|
mpfr_t im;
|
@@ -83,8 +84,8 @@ void bounds_update (Bounds* bounds, mpc_t num, int re_closed, int im_closed)
|
|
83
84
|
mpc_real(re, num, MPFR_RNDN);
|
84
85
|
mpc_imag(im, num, MPFR_RNDN);
|
85
86
|
|
86
|
-
bounds_update_re(bounds, re, re_closed);
|
87
|
-
bounds_update_im(bounds, im, im_closed);
|
87
|
+
bounds_update_re(bounds, re, re_closed, MPC_INEX_RE(mpc_inex) == 0);
|
88
|
+
bounds_update_im(bounds, im, im_closed, MPC_INEX_IM(mpc_inex) == 0);
|
88
89
|
|
89
90
|
mpfr_clear(re);
|
90
91
|
mpfr_clear(im);
|
data/ext/compare.c
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
#include "number.h"
|
2
2
|
|
3
|
-
int
|
3
|
+
int complex_re_enclose_p (Complex* a, Complex* b)
|
4
4
|
{
|
5
5
|
return interval_span_p(a->re, b->re->l) && interval_span_p(a->re, b->re->u);
|
6
6
|
}
|
@@ -355,7 +355,7 @@ int complex_im_contain_zero_p (Complex* complex)
|
|
355
355
|
return interval_span_zero_p(complex->im);
|
356
356
|
}
|
357
357
|
|
358
|
-
int
|
358
|
+
int complex_im_enclose_p (Complex* a, Complex* b)
|
359
359
|
{
|
360
360
|
return interval_span_p(a->im, b->im->l) && interval_span_p(a->im, b->im->u);
|
361
361
|
}
|
@@ -620,9 +620,9 @@ int complex_im_u_le_u_p (Complex* a, Complex* b)
|
|
620
620
|
return real_le_p(a->im->u, b->im->u);
|
621
621
|
}
|
622
622
|
|
623
|
-
int
|
623
|
+
int complex_enclose_p (Complex* a, Complex* b)
|
624
624
|
{
|
625
|
-
return
|
625
|
+
return complex_re_enclose_p(a, b) && complex_im_enclose_p(a, b);
|
626
626
|
}
|
627
627
|
|
628
628
|
int complex_contain_ll_p (Complex* a, Complex* b)
|
@@ -657,7 +657,7 @@ int complex_contain_zero_p (Complex* complex)
|
|
657
657
|
|
658
658
|
int complex_intersect_p (Complex* a, Complex* b)
|
659
659
|
{
|
660
|
-
return (complex_re_intersect_p(a, b) && complex_im_intersect_p(a, b)) || complex_contain_ll_p(a, b) || complex_contain_lu_p(a, b) || complex_contain_ul_p(a, b) || complex_contain_uu_p(a, b) || (
|
660
|
+
return (complex_re_intersect_p(a, b) && complex_im_intersect_p(a, b)) || complex_contain_ll_p(a, b) || complex_contain_lu_p(a, b) || complex_contain_ul_p(a, b) || complex_contain_uu_p(a, b) || (complex_re_enclose_p(a, b) && complex_im_enclose_p(b, a) || (complex_im_enclose_p(a, b) && complex_re_enclose_p(b, a)));
|
661
661
|
}
|
662
662
|
|
663
663
|
int complex_disjoint_p (Complex* a, Complex* b)
|
data/ext/complex.c
CHANGED
@@ -1,9 +1,73 @@
|
|
1
1
|
#include "number.h"
|
2
2
|
|
3
|
+
mpfr_t tmp_complex_from_float_str,
|
4
|
+
tmp_divide_re,
|
5
|
+
tmp_divide_im,
|
6
|
+
tmp_abs_n_re,
|
7
|
+
tmp_abs_ll_re,
|
8
|
+
tmp_abs_lu_re,
|
9
|
+
tmp_abs_ul_re,
|
10
|
+
tmp_abs_uu_re,
|
11
|
+
tmp_abs_re_abs,
|
12
|
+
tmp_abs_im_abs,
|
13
|
+
tmp_abs_zero,
|
14
|
+
tmp_diagonal,
|
15
|
+
tmp_sqrt_n_re,
|
16
|
+
tmp_sqrt_n_im;
|
17
|
+
|
18
|
+
mpc_t tmp_divide_numerator,
|
19
|
+
tmp_divide_denominator,
|
20
|
+
tmp_divide_quotient,
|
21
|
+
tmp_abs_n,
|
22
|
+
tmp_abs_ll,
|
23
|
+
tmp_abs_lu,
|
24
|
+
tmp_abs_ul,
|
25
|
+
tmp_abs_uu,
|
26
|
+
tmp_sqrt_n,
|
27
|
+
tmp_sqrt_ll,
|
28
|
+
tmp_sqrt_lu,
|
29
|
+
tmp_sqrt_ul,
|
30
|
+
tmp_sqrt_uu,
|
31
|
+
tmp_sqrt_re_sqrt;
|
32
|
+
|
33
|
+
void init_complex_tmp_nums ()
|
34
|
+
{
|
35
|
+
mpfr_init2(tmp_complex_from_float_str, PREC);
|
36
|
+
mpfr_init2(tmp_divide_re, PREC);
|
37
|
+
mpfr_init2(tmp_divide_im, PREC);
|
38
|
+
mpfr_init2(tmp_abs_ll_re, PREC);
|
39
|
+
mpfr_init2(tmp_abs_n_re, PREC);
|
40
|
+
mpfr_init2(tmp_abs_ll_re, PREC);
|
41
|
+
mpfr_init2(tmp_abs_lu_re, PREC);
|
42
|
+
mpfr_init2(tmp_abs_ul_re, PREC);
|
43
|
+
mpfr_init2(tmp_abs_uu_re, PREC);
|
44
|
+
mpfr_init2(tmp_abs_re_abs, PREC);
|
45
|
+
mpfr_init2(tmp_abs_im_abs, PREC);
|
46
|
+
mpfr_init2(tmp_abs_zero, PREC);
|
47
|
+
mpfr_init2(tmp_diagonal, PREC);
|
48
|
+
mpfr_init2(tmp_sqrt_n_re, PREC);
|
49
|
+
mpfr_init2(tmp_sqrt_n_im, PREC);
|
50
|
+
|
51
|
+
mpc_init2(tmp_divide_numerator, PREC);
|
52
|
+
mpc_init2(tmp_divide_denominator, PREC);
|
53
|
+
mpc_init2(tmp_divide_quotient, PREC);
|
54
|
+
mpc_init2(tmp_abs_n, PREC);
|
55
|
+
mpc_init2(tmp_abs_ll, PREC);
|
56
|
+
mpc_init2(tmp_abs_lu, PREC);
|
57
|
+
mpc_init2(tmp_abs_ul, PREC);
|
58
|
+
mpc_init2(tmp_abs_uu, PREC);
|
59
|
+
mpc_init2(tmp_sqrt_n, PREC);
|
60
|
+
mpc_init2(tmp_sqrt_ll, PREC);
|
61
|
+
mpc_init2(tmp_sqrt_lu, PREC);
|
62
|
+
mpc_init2(tmp_sqrt_ul, PREC);
|
63
|
+
mpc_init2(tmp_sqrt_uu, PREC);
|
64
|
+
mpc_init2(tmp_sqrt_re_sqrt, PREC);
|
65
|
+
}
|
66
|
+
|
3
67
|
/*
|
4
68
|
* Sets the value of num to the complex value represented by re and im.
|
5
69
|
*/
|
6
|
-
void
|
70
|
+
void mpc_set_r_r (mpc_t num, Real* re, Real* im)
|
7
71
|
{
|
8
72
|
char buf[10000];
|
9
73
|
char tmp_re_buf[10000];
|
@@ -21,7 +85,11 @@ void mpc_init_set_r_r (mpc_t num, Real* re, Real* im)
|
|
21
85
|
sprintf(re_buf, "%s", NaN(re) ? "@nan@" : POS_INF(re) ? "@inf@" : "-@inf@");
|
22
86
|
}
|
23
87
|
|
24
|
-
if (
|
88
|
+
if (!im)
|
89
|
+
{
|
90
|
+
sprintf(im_buf, "0");
|
91
|
+
}
|
92
|
+
else if (REAL(im))
|
25
93
|
{
|
26
94
|
gmp_sprintf(tmp_im_buf, "%+Zd", im->num);
|
27
95
|
sprintf(im_buf, "%c0.%se%ld", *tmp_im_buf, tmp_im_buf + 1, im->exp);
|
@@ -32,15 +100,13 @@ void mpc_init_set_r_r (mpc_t num, Real* re, Real* im)
|
|
32
100
|
}
|
33
101
|
|
34
102
|
sprintf(buf, "(%s %s)", re_buf, im_buf);
|
35
|
-
|
36
|
-
mpc_init2(num, PREC);
|
37
103
|
mpc_set_str(num, buf, 10, MPC_RNDNN);
|
38
104
|
}
|
39
105
|
|
40
106
|
/*
|
41
107
|
* Sets the value of num to the floating point value represented by real.
|
42
108
|
*/
|
43
|
-
void
|
109
|
+
void mpfr_set_r (mpfr_t num, Real* real)
|
44
110
|
{
|
45
111
|
char sign;
|
46
112
|
char buf[10000];
|
@@ -56,7 +122,6 @@ void mpfr_init_set_r (mpfr_t num, Real* real)
|
|
56
122
|
sprintf(buf, "%s", NaN(real) ? "@nan@" : POS_INF(real) ? "@inf@" : "-@inf@");
|
57
123
|
}
|
58
124
|
|
59
|
-
mpfr_init2(num, PREC);
|
60
125
|
mpfr_set_str(num, buf, 10, MPFR_RNDN);
|
61
126
|
}
|
62
127
|
|
@@ -171,17 +236,14 @@ Complex* complex_from_int_str (char* buf)
|
|
171
236
|
*/
|
172
237
|
Complex* complex_from_float_str (char* buf)
|
173
238
|
{
|
174
|
-
mpfr_t num;
|
175
239
|
Real* real;
|
176
240
|
Complex* result;
|
177
241
|
|
178
|
-
|
179
|
-
mpfr_set_str(num, buf, 10, MPFR_RNDN);
|
242
|
+
mpfr_set_str(tmp_complex_from_float_str, buf, 10, MPFR_RNDN);
|
180
243
|
|
181
|
-
real = (Real*)real_from_mpfr(
|
244
|
+
real = (Real*)real_from_mpfr(tmp_complex_from_float_str, ROUND_NEAREST);
|
182
245
|
result = (Complex*)complex_from_real(real);
|
183
246
|
|
184
|
-
mpfr_clear(num);
|
185
247
|
real_free(real);
|
186
248
|
|
187
249
|
return result;
|
@@ -323,11 +385,6 @@ Complex* complex_multiply (Complex* a, Complex* b)
|
|
323
385
|
*/
|
324
386
|
Complex* complex_divide (Complex* a, Complex* b)
|
325
387
|
{
|
326
|
-
mpc_t num_numerator;
|
327
|
-
mpc_t num_denominator;
|
328
|
-
mpc_t num_quotient;
|
329
|
-
mpfr_t num_re;
|
330
|
-
mpfr_t num_im;
|
331
388
|
Interval* denominator_re;
|
332
389
|
Interval* denominator_im;
|
333
390
|
Interval* denominator;
|
@@ -346,26 +403,22 @@ Complex* complex_divide (Complex* a, Complex* b)
|
|
346
403
|
|
347
404
|
if (real_zero_p(denominator->l) || real_zero_p(denominator->u) || interval_span_zero_p(denominator))
|
348
405
|
{
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
mpc_init_set_r_r(num_denominator, b->re->n, b->im->n);
|
406
|
+
mpfr_set_prec(tmp_divide_re, PREC);
|
407
|
+
mpfr_set_prec(tmp_divide_im, PREC);
|
408
|
+
mpc_set_prec(tmp_divide_quotient, PREC);
|
409
|
+
mpc_set_prec(tmp_divide_numerator, PREC);
|
410
|
+
mpc_set_prec(tmp_divide_denominator, PREC);
|
355
411
|
|
356
|
-
|
412
|
+
mpc_set_r_r(tmp_divide_numerator, a->re->n, a->im->n);
|
413
|
+
mpc_set_r_r(tmp_divide_denominator, b->re->n, b->im->n);
|
357
414
|
|
358
|
-
|
359
|
-
mpc_imag(num_im, num_quotient, MPFR_RNDN);
|
415
|
+
mpc_div(tmp_divide_quotient, tmp_divide_numerator, tmp_divide_denominator, MPC_RNDNN);
|
360
416
|
|
361
|
-
|
362
|
-
|
417
|
+
mpc_real(tmp_divide_re, tmp_divide_quotient, MPFR_RNDN);
|
418
|
+
mpc_imag(tmp_divide_im, tmp_divide_quotient, MPFR_RNDN);
|
363
419
|
|
364
|
-
|
365
|
-
|
366
|
-
mpc_clear(num_quotient);
|
367
|
-
mpfr_clear(num_re);
|
368
|
-
mpfr_clear(num_im);
|
420
|
+
re = (Interval*)interval_new((Real*)real_neg_inf(), true, (Real*)real_from_mpfr(tmp_divide_re, ROUND_NEAREST), true, (Real*)real_pos_inf());
|
421
|
+
im = (Interval*)interval_new((Real*)real_neg_inf(), true, (Real*)real_from_mpfr(tmp_divide_im, ROUND_NEAREST), true, (Real*)real_pos_inf());
|
369
422
|
}
|
370
423
|
else
|
371
424
|
{
|
@@ -415,102 +468,83 @@ Complex* complex_modulo (Complex* a, Complex* b)
|
|
415
468
|
*/
|
416
469
|
Complex* complex_abs (Complex* complex)
|
417
470
|
{
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
mpfr_t num_im_abs;
|
425
|
-
mpc_t num_n;
|
426
|
-
mpc_t num_ll;
|
427
|
-
mpc_t num_lu;
|
428
|
-
mpc_t num_ul;
|
429
|
-
mpc_t num_uu;
|
430
|
-
Real* re_l_abs;
|
431
|
-
Real* re_u_abs;
|
432
|
-
Real* im_l_abs;
|
433
|
-
Real* im_u_abs;
|
434
|
-
|
471
|
+
int ll_mpc_ternary;
|
472
|
+
int lu_mpc_ternary;
|
473
|
+
int ul_mpc_ternary;
|
474
|
+
int uu_mpc_ternary;
|
475
|
+
Real* l_abs;
|
476
|
+
Real* u_abs;
|
435
477
|
Bounds* bounds;
|
436
478
|
Interval* re;
|
437
479
|
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
mpc_abs(
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
480
|
+
mpfr_set_prec(tmp_abs_n_re, PREC);
|
481
|
+
mpfr_set_prec(tmp_abs_ll_re, PREC);
|
482
|
+
mpfr_set_prec(tmp_abs_lu_re, PREC);
|
483
|
+
mpfr_set_prec(tmp_abs_ul_re, PREC);
|
484
|
+
mpfr_set_prec(tmp_abs_uu_re, PREC);
|
485
|
+
mpfr_set_prec(tmp_abs_re_abs, PREC);
|
486
|
+
mpfr_set_prec(tmp_abs_im_abs, PREC);
|
487
|
+
mpfr_set_prec(tmp_abs_zero, PREC);
|
488
|
+
mpc_set_prec(tmp_abs_n, PREC);
|
489
|
+
mpc_set_prec(tmp_abs_ll, PREC);
|
490
|
+
mpc_set_prec(tmp_abs_lu, PREC);
|
491
|
+
mpc_set_prec(tmp_abs_ul, PREC);
|
492
|
+
mpc_set_prec(tmp_abs_uu, PREC);
|
493
|
+
|
494
|
+
mpc_set_r_r(tmp_abs_n, complex->re->n, complex->im->n);
|
495
|
+
mpc_abs(tmp_abs_n_re, tmp_abs_n, MPC_RNDNN);
|
496
|
+
|
497
|
+
mpc_set_r_r(tmp_abs_ll, complex->re->l, complex->im->l);
|
498
|
+
mpc_set_r_r(tmp_abs_lu, complex->re->l, complex->im->u);
|
499
|
+
mpc_set_r_r(tmp_abs_ul, complex->re->u, complex->im->l);
|
500
|
+
mpc_set_r_r(tmp_abs_uu, complex->re->u, complex->im->u);
|
501
|
+
|
502
|
+
ll_mpc_ternary = mpc_abs(tmp_abs_ll_re, tmp_abs_ll, MPC_RNDDD);
|
503
|
+
lu_mpc_ternary = mpc_abs(tmp_abs_lu_re, tmp_abs_lu, MPC_RNDDU);
|
504
|
+
ul_mpc_ternary = mpc_abs(tmp_abs_ul_re, tmp_abs_ul, MPC_RNDUD);
|
505
|
+
uu_mpc_ternary = mpc_abs(tmp_abs_uu_re, tmp_abs_uu, MPC_RNDUU);
|
462
506
|
|
463
507
|
bounds = (Bounds*)bounds_new();
|
464
|
-
bounds_update_re(bounds,
|
465
|
-
bounds_update_re(bounds,
|
466
|
-
bounds_update_re(bounds,
|
467
|
-
bounds_update_re(bounds,
|
508
|
+
bounds_update_re(bounds, tmp_abs_ll_re, complex->re->L, MPC_INEX_RE(ll_mpc_ternary) == 0);
|
509
|
+
bounds_update_re(bounds, tmp_abs_lu_re, complex->re->L, MPC_INEX_RE(lu_mpc_ternary) == 0);
|
510
|
+
bounds_update_re(bounds, tmp_abs_ul_re, complex->re->R, MPC_INEX_RE(ul_mpc_ternary) == 0);
|
511
|
+
bounds_update_re(bounds, tmp_abs_uu_re, complex->re->R, MPC_INEX_RE(uu_mpc_ternary) == 0);
|
468
512
|
|
469
513
|
if (interval_span_zero_p(complex->im))
|
470
514
|
{
|
471
|
-
|
472
|
-
|
515
|
+
l_abs = (Real*)real_abs(complex->re->l);
|
516
|
+
u_abs = (Real*)real_abs(complex->re->u);
|
473
517
|
|
474
|
-
|
475
|
-
bounds_update_re(bounds,
|
518
|
+
mpfr_set_r(tmp_abs_re_abs, real_lt_p(l_abs, u_abs) ? l_abs : u_abs);
|
519
|
+
bounds_update_re(bounds, tmp_abs_re_abs, true, true);
|
476
520
|
|
477
|
-
real_free(
|
478
|
-
real_free(
|
479
|
-
|
480
|
-
mpfr_clear(num_re_abs);
|
521
|
+
real_free(l_abs);
|
522
|
+
real_free(u_abs);
|
481
523
|
}
|
482
524
|
|
483
525
|
if (interval_span_zero_p(complex->re))
|
484
526
|
{
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
mpfr_init_set_r(num_im_abs, real_lt_p(im_l_abs, im_u_abs) ? im_l_abs : im_u_abs);
|
489
|
-
bounds_update_re(bounds, num_im_abs, true);
|
527
|
+
l_abs = (Real*)real_abs(complex->im->l);
|
528
|
+
u_abs = (Real*)real_abs(complex->im->u);
|
490
529
|
|
491
|
-
|
492
|
-
|
530
|
+
mpfr_set_r(tmp_abs_im_abs, real_lt_p(l_abs, u_abs) ? l_abs : u_abs);
|
531
|
+
bounds_update_re(bounds, tmp_abs_im_abs, true, true);
|
493
532
|
|
494
|
-
|
533
|
+
real_free(l_abs);
|
534
|
+
real_free(u_abs);
|
495
535
|
}
|
496
536
|
|
497
537
|
if (interval_span_zero_p(complex->re) && interval_span_zero_p(complex->im))
|
498
538
|
{
|
499
|
-
mpfr_set_zero(
|
500
|
-
bounds_update_re(bounds,
|
539
|
+
mpfr_set_zero(tmp_abs_zero, 1);
|
540
|
+
bounds_update_re(bounds, tmp_abs_zero, true, true);
|
501
541
|
}
|
502
542
|
|
503
|
-
re = (Interval*)interval_new(real_from_mpfr(bounds->re_min, ROUND_DOWN), bounds->re_min_closed, real_from_mpfr(
|
543
|
+
re = (Interval*)interval_new(real_from_mpfr(bounds->re_min, ROUND_DOWN), bounds->re_min_closed, real_from_mpfr(tmp_abs_n_re, ROUND_NEAREST), bounds->re_max_closed, real_from_mpfr(bounds->re_max, bounds->re_max_exact ? ROUND_UP : ROUND_UP1));
|
504
544
|
|
505
545
|
bounds_free(bounds);
|
506
546
|
|
507
|
-
|
508
|
-
mpfr_clear(num_ll_re);
|
509
|
-
mpfr_clear(num_lu_re);
|
510
|
-
mpfr_clear(num_ul_re);
|
511
|
-
mpfr_clear(num_uu_re);
|
512
|
-
|
513
|
-
return complex_new(re, (Interval*)interval_zero());
|
547
|
+
return (Complex*)complex_new(re, (Interval*)interval_zero());
|
514
548
|
}
|
515
549
|
|
516
550
|
/*
|
@@ -542,7 +576,7 @@ Complex* complex_area (Complex* complex)
|
|
542
576
|
*/
|
543
577
|
Complex* complex_diagonal (Complex* complex)
|
544
578
|
{
|
545
|
-
|
579
|
+
int mpfr_ternary;
|
546
580
|
Real* re_width;
|
547
581
|
Real* im_width;
|
548
582
|
Real* re_width2;
|
@@ -559,10 +593,10 @@ Complex* complex_diagonal (Complex* complex)
|
|
559
593
|
|
560
594
|
diag2 = (Real*)real_add(re_width2, im_width2);
|
561
595
|
|
562
|
-
|
563
|
-
mpfr_sqrt(
|
596
|
+
mpfr_set_r(tmp_diagonal, diag2);
|
597
|
+
mpfr_ternary = mpfr_sqrt(tmp_diagonal, tmp_diagonal, MPFR_RNDN);
|
564
598
|
|
565
|
-
re = (Interval*)interval_new((Real*)real_from_mpfr(
|
599
|
+
re = (Interval*)interval_new((Real*)real_from_mpfr(tmp_diagonal, ROUND_DOWN), true, (Real*)real_from_mpfr(tmp_diagonal, ROUND_NEAREST), true, (Real*)real_from_mpfr(tmp_diagonal, (mpfr_ternary == 0) ? ROUND_UP : ROUND_UP1));
|
566
600
|
|
567
601
|
real_free(re_width);
|
568
602
|
real_free(im_width);
|
@@ -570,8 +604,6 @@ Complex* complex_diagonal (Complex* complex)
|
|
570
604
|
real_free(im_width2);
|
571
605
|
real_free(diag2);
|
572
606
|
|
573
|
-
mpfr_clear(num_diag);
|
574
|
-
|
575
607
|
return (Complex*)complex_new(re, (Interval*)interval_zero());
|
576
608
|
}
|
577
609
|
|
@@ -581,7 +613,7 @@ Complex* complex_diagonal (Complex* complex)
|
|
581
613
|
*/
|
582
614
|
Complex* complex_conjugate (Complex* complex)
|
583
615
|
{
|
584
|
-
return complex_new((Interval*)interval_dup(complex->re), (Interval*)interval_negate(complex->im));
|
616
|
+
return (Complex*)complex_new((Interval*)interval_dup(complex->re), (Interval*)interval_negate(complex->im));
|
585
617
|
}
|
586
618
|
|
587
619
|
/*
|
@@ -589,7 +621,7 @@ Complex* complex_conjugate (Complex* complex)
|
|
589
621
|
*/
|
590
622
|
Complex* complex_negate (Complex* complex)
|
591
623
|
{
|
592
|
-
return complex_new((Interval*)interval_negate(complex->re), (Interval*)interval_negate(complex->im));
|
624
|
+
return (Complex*)complex_new((Interval*)interval_negate(complex->re), (Interval*)interval_negate(complex->im));
|
593
625
|
}
|
594
626
|
|
595
627
|
/*
|
@@ -598,7 +630,7 @@ Complex* complex_negate (Complex* complex)
|
|
598
630
|
*/
|
599
631
|
Complex* complex_reflect (Complex* complex)
|
600
632
|
{
|
601
|
-
return complex_new((Interval*)interval_dup(complex->im), (Interval*)interval_dup(complex->re));
|
633
|
+
return (Complex*)complex_new((Interval*)interval_dup(complex->im), (Interval*)interval_dup(complex->re));
|
602
634
|
}
|
603
635
|
|
604
636
|
/*
|
@@ -606,69 +638,57 @@ Complex* complex_reflect (Complex* complex)
|
|
606
638
|
*/
|
607
639
|
Complex* complex_sqrt (Complex* complex)
|
608
640
|
{
|
609
|
-
|
610
|
-
|
611
|
-
|
612
|
-
|
613
|
-
|
614
|
-
mpc_t num_ul;
|
615
|
-
mpc_t num_uu;
|
616
|
-
mpc_t num_re_sqrt;
|
617
|
-
Real* zero;
|
641
|
+
int ll_mpc_ternary;
|
642
|
+
int lu_mpc_ternary;
|
643
|
+
int ul_mpc_ternary;
|
644
|
+
int uu_mpc_ternary;
|
645
|
+
int re_sqrt_mpc_ternary;
|
618
646
|
Bounds* bounds;
|
619
647
|
Interval* re;
|
620
648
|
Interval* im;
|
621
649
|
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
650
|
+
mpfr_set_prec(tmp_sqrt_n_re, PREC);
|
651
|
+
mpfr_set_prec(tmp_sqrt_n_im, PREC);
|
652
|
+
mpc_set_prec(tmp_sqrt_n, PREC);
|
653
|
+
mpc_set_prec(tmp_sqrt_ll, PREC);
|
654
|
+
mpc_set_prec(tmp_sqrt_lu, PREC);
|
655
|
+
mpc_set_prec(tmp_sqrt_ul, PREC);
|
656
|
+
mpc_set_prec(tmp_sqrt_uu, PREC);
|
657
|
+
mpc_set_prec(tmp_sqrt_re_sqrt, PREC);
|
658
|
+
|
659
|
+
mpc_set_r_r(tmp_sqrt_n, complex->re->n, complex->im->n);
|
660
|
+
mpc_sqrt(tmp_sqrt_n, tmp_sqrt_n, MPC_RNDNN);
|
661
|
+
mpc_real(tmp_sqrt_n_re, tmp_sqrt_n, MPFR_RNDN);
|
662
|
+
mpc_imag(tmp_sqrt_n_im, tmp_sqrt_n, MPFR_RNDN);
|
663
|
+
|
664
|
+
mpc_set_r_r(tmp_sqrt_ll, complex->re->l, complex->im->l);
|
665
|
+
mpc_set_r_r(tmp_sqrt_lu, complex->re->l, complex->im->u);
|
666
|
+
mpc_set_r_r(tmp_sqrt_ul, complex->re->u, complex->im->l);
|
667
|
+
mpc_set_r_r(tmp_sqrt_uu, complex->re->u, complex->im->u);
|
668
|
+
|
669
|
+
ll_mpc_ternary = mpc_sqrt(tmp_sqrt_ll, tmp_sqrt_ll, MPC_RNDDD);
|
670
|
+
lu_mpc_ternary = mpc_sqrt(tmp_sqrt_lu, tmp_sqrt_lu, MPC_RNDDU);
|
671
|
+
ul_mpc_ternary = mpc_sqrt(tmp_sqrt_ul, tmp_sqrt_ul, MPC_RNDUD);
|
672
|
+
uu_mpc_ternary = mpc_sqrt(tmp_sqrt_uu, tmp_sqrt_uu, MPC_RNDUU);
|
639
673
|
|
640
674
|
bounds = (Bounds*)bounds_new();
|
641
|
-
bounds_update(bounds,
|
642
|
-
bounds_update(bounds,
|
643
|
-
bounds_update(bounds,
|
644
|
-
bounds_update(bounds,
|
675
|
+
bounds_update(bounds, tmp_sqrt_ll, complex->re->L, complex->im->L, ll_mpc_ternary);
|
676
|
+
bounds_update(bounds, tmp_sqrt_lu, complex->re->L, complex->im->R, lu_mpc_ternary);
|
677
|
+
bounds_update(bounds, tmp_sqrt_ul, complex->re->R, complex->im->L, ul_mpc_ternary);
|
678
|
+
bounds_update(bounds, tmp_sqrt_uu, complex->re->R, complex->im->R, uu_mpc_ternary);
|
645
679
|
|
646
680
|
if (interval_span_zero_p(complex->im))
|
647
681
|
{
|
648
|
-
|
649
|
-
|
650
|
-
mpc_init_set_r_r(num_re_sqrt, complex->re->l, zero);
|
651
|
-
mpc_sqrt(num_re_sqrt, num_re_sqrt, MPC_RNDDD);
|
682
|
+
mpc_set_r_r(tmp_sqrt_re_sqrt, complex->re->l, 0);
|
683
|
+
re_sqrt_mpc_ternary = mpc_sqrt(tmp_sqrt_re_sqrt, tmp_sqrt_re_sqrt, MPC_RNDDD);
|
652
684
|
|
653
|
-
bounds_update(bounds,
|
654
|
-
|
655
|
-
real_free(zero);
|
656
|
-
mpc_clear(num_re_sqrt);
|
685
|
+
bounds_update(bounds, tmp_sqrt_re_sqrt, complex->re->L, true, re_sqrt_mpc_ternary);
|
657
686
|
}
|
658
687
|
|
659
|
-
re = (Interval*)interval_new(real_from_mpfr(bounds->re_min, ROUND_DOWN), bounds->re_min_closed, real_from_mpfr(
|
660
|
-
im = (Interval*)interval_new(real_from_mpfr(bounds->im_min, ROUND_DOWN), bounds->im_min_closed, real_from_mpfr(
|
688
|
+
re = (Interval*)interval_new((Real*)real_from_mpfr(bounds->re_min, ROUND_DOWN), bounds->re_min_closed, (Real*)real_from_mpfr(tmp_sqrt_n_re, ROUND_NEAREST), bounds->re_max_closed, (Real*)real_from_mpfr(bounds->re_max, bounds->re_max_exact ? ROUND_UP : ROUND_UP1));
|
689
|
+
im = (Interval*)interval_new((Real*)real_from_mpfr(bounds->im_min, ROUND_DOWN), bounds->im_min_closed, (Real*)real_from_mpfr(tmp_sqrt_n_im, ROUND_NEAREST), bounds->im_max_closed, (Real*)real_from_mpfr(bounds->im_max, bounds->im_max_exact ? ROUND_UP : ROUND_UP1));
|
661
690
|
|
662
691
|
bounds_free(bounds);
|
663
692
|
|
664
|
-
|
665
|
-
mpfr_clear(num_n_im);
|
666
|
-
|
667
|
-
mpc_clear(num_n);
|
668
|
-
mpc_clear(num_ll);
|
669
|
-
mpc_clear(num_lu);
|
670
|
-
mpc_clear(num_ul);
|
671
|
-
mpc_clear(num_uu);
|
672
|
-
|
673
|
-
return complex_new(re, im);
|
693
|
+
return (Complex*)complex_new(re, im);
|
674
694
|
}
|
data/ext/interval.c
CHANGED
@@ -335,7 +335,7 @@ Interval* interval_divide (Interval* a, Interval* b)
|
|
335
335
|
L = bounds->min_closed;
|
336
336
|
R = bounds->max_closed;
|
337
337
|
|
338
|
-
n = (Real*)real_divide(a->n, b->n);
|
338
|
+
n = (Real*)real_divide(a->n, b->n, ROUND_NEAREST);
|
339
339
|
l = (Real*)real_dup(bounds->min);
|
340
340
|
u = (Real*)real_dup(bounds->max);
|
341
341
|
|
data/ext/number.c
CHANGED
@@ -1351,10 +1351,11 @@ VALUE rb_Number_complex_bounds_eq_p (VALUE a, VALUE b)
|
|
1351
1351
|
|
1352
1352
|
void Init_number ()
|
1353
1353
|
{
|
1354
|
-
init_tmp_nums();
|
1355
|
-
|
1356
1354
|
digs = 17;
|
1357
1355
|
|
1356
|
+
init_real_tmp_nums();
|
1357
|
+
init_complex_tmp_nums();
|
1358
|
+
|
1358
1359
|
rb_define_method(rb_cString, "to_number", rb_String_to_number, 0);
|
1359
1360
|
rb_define_method(rb_cInteger, "to_number", rb_Integer_to_number, 0);
|
1360
1361
|
rb_define_method(rb_cFloat, "to_number", rb_Float_to_number, 0);
|
data/ext/number.h
CHANGED
data/ext/real.c
CHANGED
@@ -26,7 +26,7 @@ mpz_t a_tmp,
|
|
26
26
|
/*
|
27
27
|
* Initializes mpz_t variables for use in Real functions.
|
28
28
|
*/
|
29
|
-
void
|
29
|
+
void init_real_tmp_nums ()
|
30
30
|
{
|
31
31
|
mpz_init(a_tmp);
|
32
32
|
mpz_init(b_tmp);
|
@@ -796,22 +796,28 @@ Real* real_divide (Real* a, Real* b, int round_mode)
|
|
796
796
|
mpfr_t a_num;
|
797
797
|
mpfr_t b_num;
|
798
798
|
mpfr_t num;
|
799
|
+
Real* result;
|
799
800
|
|
800
801
|
if (!REAL(a) || !REAL(b))
|
801
802
|
{
|
802
803
|
return (NaN(a) || NaN(b) || (!REAL(a) && !REAL(b))) ? real_nan() : !REAL(b) ? real_zero() : (POS(a) && POS(b)) ? real_pos_inf() : real_neg_inf();
|
803
804
|
}
|
804
805
|
|
805
|
-
mpfr_init2(
|
806
|
-
|
807
|
-
|
806
|
+
mpfr_init2(a_num, PREC);
|
807
|
+
mpfr_init2(b_num, PREC);
|
808
|
+
mpfr_set_r(a_num, a);
|
809
|
+
mpfr_set_r(b_num, b);
|
808
810
|
|
811
|
+
mpfr_init2(num, PREC);
|
809
812
|
mpfr_div(num, a_num, b_num, MPFR_RNDN);
|
810
813
|
|
814
|
+
result = (Real*)real_from_mpfr(num, round_mode);
|
815
|
+
|
811
816
|
mpfr_clear(a_num);
|
812
817
|
mpfr_clear(b_num);
|
818
|
+
mpfr_clear(num);
|
813
819
|
|
814
|
-
return
|
820
|
+
return result;
|
815
821
|
}
|
816
822
|
|
817
823
|
//{
|
metadata
CHANGED
@@ -2,7 +2,7 @@
|
|
2
2
|
name: number
|
3
3
|
version: !ruby/object:Gem::Version
|
4
4
|
prerelease:
|
5
|
-
version: 0.9.
|
5
|
+
version: 0.9.5
|
6
6
|
platform: ruby
|
7
7
|
authors:
|
8
8
|
- Jesse Sielaff
|
@@ -12,7 +12,7 @@ autorequire:
|
|
12
12
|
bindir: bin
|
13
13
|
cert_chain: []
|
14
14
|
|
15
|
-
date: 2011-07-
|
15
|
+
date: 2011-07-17 00:00:00 Z
|
16
16
|
dependencies: []
|
17
17
|
|
18
18
|
description: The Number gem is intended to be a drop-in replacement for Ruby's Numeric classes when arbitrary-precision complex interval calculations are warranted. The basis of the arbitrary-precision calculations is the GNU MP, MPFR, and MPC libraries.
|
@@ -24,7 +24,6 @@ extensions:
|
|
24
24
|
extra_rdoc_files: []
|
25
25
|
|
26
26
|
files:
|
27
|
-
- README
|
28
27
|
- ext/bounds.c
|
29
28
|
- ext/compare.c
|
30
29
|
- ext/complex.c
|
data/README
DELETED
@@ -1,13 +0,0 @@
|
|
1
|
-
Use the global function Number() to create Number objects.
|
2
|
-
|
3
|
-
Number(1)
|
4
|
-
Number(1,2)
|
5
|
-
Number(1,2,3)
|
6
|
-
Number(Number(1,2,3), Number(4,5,6))
|
7
|
-
|
8
|
-
Number objects coerce Numeric objects into Number objects.
|
9
|
-
|
10
|
-
Number(1) + 1
|
11
|
-
5 / Number(1,2,3)
|
12
|
-
|
13
|
-
Stay tuned. More documentation to come.
|