num4regana 0.0.5-java → 0.0.6-java

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: a35c59c0d504b97992d42739340fb1370e5fd80fc547987bb4d0a138f628b284
4
- data.tar.gz: fec825eed34dd9c230fed6065accc753e3539bd5af5bb9b8a697c1a3752c06c6
3
+ metadata.gz: 07475023e86feba9a9a2013d572cdc433753da1cb570aa60fb3eb3662b09f3eb
4
+ data.tar.gz: 24a67fb47fe74071f39ae3d9d078071c1de5fce5b15afb74625354b34777b6be
5
5
  SHA512:
6
- metadata.gz: 10a7cbe03f96c05fc5995b696e6946fbc222d6b5a6b0f8b487cd5c50dfccca9d931d9312d5ab3589473b2589f6887885a142e6fcb467aa526499fb6812248368
7
- data.tar.gz: 97009fb18fcb77dd771b6290eea892092710bf49d647e451cb720d94f2ead2a07826657b139e9842fc14d8c6b3aa3ac3fd938819bea090faa403bfe43384fb8e
6
+ metadata.gz: '058141be9257a86bc72b745402956142d015041e8812886a83ce2c49ac64993bc9fb1c864e2c7a093d0e42ba69f4dc45305f1eabb4fcffc4c0bc32d73333afb8'
7
+ data.tar.gz: db0acabd519684c4db318051df5467f50b0879aabdff44c426ff2c6e96559f762d286d1f8f7642052ff2dffa75847dc6f315610cad6c1d8fe268e14a251e6d22
data/CHANGELOG.md CHANGED
@@ -2,6 +2,11 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.6] - 2024-10-04
6
+
7
+ ### chg
8
+ - chg Hierarchical Bayesian models at EM algorithm
9
+
5
10
  ## [0.0.5] - 2024-09-27
6
11
 
7
12
  ### add
@@ -32,9 +32,7 @@ abstract class AbstractGLM {
32
32
  for(int i = 0; i < yi.length; i++) {
33
33
  xi[0] = 1.0;
34
34
  System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
35
-
36
- double q = regression(b, xi);
37
- double p = linkFunc(q);
35
+ double p = linkFunc(regression(b, xi));
38
36
 
39
37
  for(int j = 0; j < xi.length; j++) {
40
38
  ei[j] += (p - yi[i]) * xi[j];
@@ -52,12 +50,11 @@ abstract class AbstractGLM {
52
50
  xi[0] = 1.0;
53
51
  System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
54
52
 
55
- double q = regression(b, xi);
56
- double p = linkFunc(q);
53
+ double p = linkFunc(regression(b, xi));
57
54
 
58
55
  l += Math.log(p);
59
56
  }
60
57
  return l;
61
- }
58
+ }
62
59
  }
63
60
 
@@ -10,28 +10,17 @@ abstract class AbstractGLMM {
10
10
  // (メトロポリス法,ギブスサンプリング)
11
11
  protected double[] mcmcGS(double[] yi, double[] b, double[][] xij) {
12
12
  BetaDistribution beDist = new BetaDistribution(50, 50);
13
- BetaDistribution beDist2 = new BetaDistribution(1, 1); // 確率用
14
13
  double[] newB = new double[b.length];
15
- double oldL = 0.0;
16
- double newL = 0.0;
17
14
 
18
15
  for(int i = 0; i < b.length; i++) {
19
16
  newB = Arrays.copyOf(b, b.length);
20
- oldL = calcLx(b,xij);
21
17
  newB[i] = beDist.sample();
22
- newL = calcLx(newB,xij);
23
18
 
24
- double r = newL / oldL;
25
- if (r > 1.0) {
26
- b[i] = newB[i];
27
- }
28
- else {
29
- double r2 = beDist2.sample();
30
-
31
- if (r2 < (1.0 - r)) {
32
- b[i] = newB[i];
33
- }
34
- }
19
+ b[i] = mcmcSample(
20
+ calcLx(b,xij), // oldL
21
+ calcLx(newB,xij), // newL
22
+ new double[] {b[i], newB[i]} // bTbl: [0]=> oldB, [1]=> newB
23
+ );
35
24
  }
36
25
  return b;
37
26
  }
@@ -47,16 +36,94 @@ abstract class AbstractGLMM {
47
36
  // EMアルゴリズム
48
37
  protected double[] mcmcEM(double[] yi, double[] b, double[][] xij) {
49
38
  double[] newB = new double[b.length];
50
-
51
- double[] bE = calcEStep(yi, b);
39
+ double[][] bE = calcEStep(yi, b, xij);
52
40
  double[] bM = calcMStep(yi, bE, xij);
53
41
 
54
42
  for(int i = 0; i < newB.length; i++) {
55
- newB[i] = b[i] + bM[i];
43
+ newB[i] = bM[i];
56
44
  }
57
45
  return newB;
58
46
  }
47
+ /*********************************/
48
+ /* interface define */
49
+ /*********************************/
50
+ /*********************************/
51
+ /* class define */
52
+ /*********************************/
53
+ private static class ArraysFillEx {
54
+ public static void fill(Object array, Object value) {
55
+ // 第一引数が配列か判定
56
+ Class<?> type = array.getClass();
57
+ if (!type.isArray()) {
58
+ throw new IllegalArgumentException("not array");
59
+ }
60
+
61
+ // クラスの型を判定
62
+ String arrayClassName = array.getClass().getSimpleName()
63
+ .replace("[]", "")
64
+ .toLowerCase();
65
+ String valueClassName = value.getClass().getSimpleName()
66
+ .toLowerCase()
67
+ .replace("character", "char")
68
+ .replace("integer", "int");
69
+ if (!arrayClassName.equals(valueClassName)) {
70
+ throw new IllegalArgumentException("does not matc");
71
+ }
72
+
73
+ // 処理
74
+ if (type.getComponentType().isArray()) {
75
+ for(Object o: (Object[])array) {
76
+ fill(o, value);
77
+ }
78
+ }
79
+ else if (array instanceof boolean[]) {
80
+ Arrays.fill((boolean[])array, (boolean)value);
81
+ }
82
+ else if (array instanceof char[]) {
83
+ Arrays.fill((char[])array, (char)value);
84
+ }
85
+ else if (array instanceof byte[]) {
86
+ Arrays.fill((byte[])array, (byte)value);
87
+ }
88
+ else if (array instanceof short[]) {
89
+ Arrays.fill((short[])array, (short)value);
90
+ }
91
+ else if (array instanceof int[]) {
92
+ Arrays.fill((int[])array, (int)value);
93
+ }
94
+ else if (array instanceof long[]) {
95
+ Arrays.fill((long[])array, (long)value);
96
+ }
97
+ else if (array instanceof float[]) {
98
+ Arrays.fill((float[])array, (float)value);
99
+ }
100
+ else if (array instanceof double[]) {
101
+ Arrays.fill((double[])array, (double)value);
102
+ }
103
+ else {
104
+ Arrays.fill((Object[])array, value);
105
+ }
106
+ }
107
+ }
59
108
  /* ------------------------------------------------------------------ */
109
+ private double mcmcSample(double oldL, double newL, double[] bTbl) {
110
+ double r = newL / oldL;
111
+ BetaDistribution beDist2 = new BetaDistribution(1, 1); // 確率用
112
+ double b;
113
+
114
+ b = bTbl[0];
115
+ if (r > 1.0) {
116
+ b = bTbl[1];
117
+ }
118
+ else {
119
+ double r2 = beDist2.sample();
120
+
121
+ if (r2 < (1.0 - r)) {
122
+ b = bTbl[1];
123
+ }
124
+ }
125
+ return b;
126
+ }
60
127
  // 尤度計算(パラメータ)
61
128
  private double calcLx(double[] b, double[][] xij) {
62
129
  double l = 1.0;
@@ -65,10 +132,11 @@ abstract class AbstractGLMM {
65
132
  for(int i = 0; i < xij.length; i++) {
66
133
  xi[0] = 1.0;
67
134
  System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
68
- double q = regression(b, xi, nDist.sample());
69
- double p = linkFunc(q);
135
+ double q = linkFunc(
136
+ regression(b, xi, nDist.sample())
137
+ );
70
138
 
71
- l *= p;
139
+ l *= q;
72
140
  }
73
141
  return l;
74
142
  }
@@ -80,46 +148,51 @@ abstract class AbstractGLMM {
80
148
  for(int i = 0; i < xij.length; i++) {
81
149
  xi[0] = 1.0;
82
150
  System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
83
- double q = regression(b, xi, nDist.sample());
84
- double p = linkFunc(q);
151
+ double q = linkFunc(
152
+ regression(b, xi, nDist.sample())
153
+ );
85
154
 
86
- l += Math.log(p);
155
+ l += Math.log(q);
87
156
  }
88
157
  return l;
89
158
  }
90
159
  // E-Step
91
- // (自己エントロピー)
92
- private double[] calcEStep(double[] yi, double[] b) {
93
- double[] bh = new double[b.length];
160
+ // (Expetation:自己エントロピー)
161
+ private double[][] calcEStep(double[] yi, double[] b, double[][] xij) {
162
+ double[][] bh = new double[yi.length][b.length];
163
+ double[] xi = new double[b.length];
94
164
 
95
- Arrays.fill(bh, 0.0);
96
- for(int j = 0; j < b.length; j++) {
97
- for(int i = 0; i < yi.length; i++) {
98
- double p = linkFunc(yi[i]);
165
+ ArraysFillEx.fill(bh, 0.0);
166
+ for(int i = 0; i < yi.length; i++) {
167
+ xi[0] = 1.0;
168
+ System.arraycopy(xij[i], 0, xi, 1, xij[i].length);
169
+ double p = yi[i];
170
+ double q = linkFunc(regression(b, xi, nDist.sample()));
99
171
 
100
- bh[j] += p * Math.log(p);
172
+ for(int j = 0; j < b.length; j++) {
173
+ bh[i][j] =
174
+ Math.log(p * xi[j]) - q * (Math.log(q) - Math.log(p * xi[j]));
101
175
  }
102
- bh[j] *= -1;
103
176
  }
104
177
  return bh;
105
178
  }
106
179
  // M-Step
107
- // (KLダイバージェンス)
108
- private double[] calcMStep(double[] yi, double[] b, double[][] xij) {
109
- double[] xi = new double[b.length];
110
- double[] ei = new double[b.length];
180
+ // (Maximiation:KLダイバージェンス)
181
+ private double[] calcMStep(double[] yi, double[][] q, double[][] xij) {
182
+ double[] xi = new double[1 + xij[0].length];
183
+ double[] ei = new double[1 + xij[0].length];
111
184
 
112
185
  Arrays.fill(ei, 0.0);
113
- for(int j = 0; j < b.length; j++) {
186
+ for(int j = 0; j < xi.length; j++) {
114
187
  for(int i = 0; i < xij.length; i++) {
115
188
  xi[0] = 1.0;
116
189
  System.arraycopy(xij[i], 0, xi, 1, xij[0].length);
117
190
 
118
- double q = linkFunc(yi[i]);
119
- double p = linkFunc(regression(b, xi, 0));
191
+ double p = yi[i];
120
192
 
121
- ei[j] += q * (Math.log(q) - Math.log(p)) * xi[j];
122
- }
193
+ ei[j] += q[i][j] * (Math.log(p * xi[j]) - Math.log(q[i][j]));
194
+ }
195
+ ei[j] = -1 * ei[j];
123
196
  }
124
197
  return ei;
125
198
  }
@@ -45,14 +45,15 @@ public class LogitBayesRegAna extends AbstractGLMM {
45
45
  }
46
46
  return meanB;
47
47
  }
48
- // q = b0 + b1 * x0
48
+ // q = b0 + b1 * x0 + r
49
+ // (ランダム切片モデル)
49
50
  double regression(double[] b, double[] xi, double r) {
50
51
  double ret = 0.0;
51
52
 
52
53
  for(int i = 0; i < xi.length; i++) {
53
54
  ret += b[i] * xi[i];
54
55
  }
55
- return ret;
56
+ return ret + r;
56
57
  }
57
58
  // p = 1 / (1 + exp( -q))
58
59
  double linkFunc(double q) {
@@ -33,14 +33,15 @@ public class PoissonBayesRegAna extends AbstractGLMM {
33
33
  }
34
34
  return b;
35
35
  }
36
- // q = b0 + b1 * x0
36
+ // q = b0 + b1 * x0 + r
37
+ // (ランダム切片モデル)
37
38
  double regression(double[] b, double[] xi, double r) {
38
39
  double ret = 0.0;
39
40
 
40
41
  for(int i = 0; i < xi.length; i++) {
41
42
  ret += b[i] * xi[i];
42
43
  }
43
- return ret;
44
+ return ret + r;
44
45
  }
45
46
  // p = exp(q)
46
47
  double linkFunc(double q) {
@@ -12,28 +12,24 @@ public class PoissonHierBayesRegAna extends AbstractGLMM {
12
12
  double[] b = initB(xij[0].length);
13
13
 
14
14
  for (int i = 0; i < NUM; i++) {
15
- b = mcmcGS(yi, b, xij);
15
+ b = mcmcEM(yi, b, xij);
16
16
  }
17
17
  return new LineReg(b);
18
18
  }
19
19
  private double[] initB(int xsie) {
20
20
  double[] b = new double[1 + xsie];
21
- BetaDistribution beDist = new BetaDistribution(50, 50);
22
21
 
23
- for(int i = 0; i < b.length; i++) {
24
- b[i] = beDist.sample();
25
- }
22
+ Arrays.fill(b, 0.0);
26
23
  return b;
27
24
  }
28
- // q = b0 + b1 * x0 + r
29
- // (ランダム切片モデル)
25
+ // q = b0 + b1 * x0
30
26
  double regression(double[] b, double[] xi, double r) {
31
27
  double ret = 0.0;
32
28
 
33
29
  for(int i = 0; i < xi.length; i++) {
34
30
  ret += b[i] * xi[i];
35
31
  }
36
- return ret + r;
32
+ return ret;
37
33
  }
38
34
  // p = exp(q)
39
35
  double linkFunc(double q) {
@@ -71,7 +71,7 @@ module Num4GLMMRegAnaLib
71
71
  # @overload get_bic(regcoe, xij)
72
72
  # @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
73
73
  # @param [Array] xij xの値(double[][])
74
- # @return double AIC
74
+ # @return double BIC
75
75
  # @example
76
76
  # reg = {
77
77
  # :intercept=> -6.2313, # 定数項
@@ -154,7 +154,7 @@ module Num4GLMMRegAnaLib
154
154
  # @overload get_bic(regcoe, xij)
155
155
  # @param [Hash] regcoe 回帰係数(intercept:定数項 slope:回帰係数)
156
156
  # @param [Array] xij xの値(double[][])
157
- # @return double AIC
157
+ # @return double BIC
158
158
  # @example
159
159
  # reg = {
160
160
  # :intercept=>0.4341885635221602, # 定数項
data/lib/num4hbmregana.rb CHANGED
@@ -4,6 +4,7 @@ require 'commons-math3-3.6.1.jar'
4
4
 
5
5
  java_import 'PoissonHierBayesRegAna'
6
6
  # 階層ベイズモデル
7
+ # (Apache commoms math3使用)
7
8
  module Num4HBMRegAnaLib
8
9
  # 階層ベイズポアソン回帰分析
9
10
  class PoissonHierBayesRegAnaLib
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4regana
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.5
4
+ version: 0.0.6
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-09-27 00:00:00.000000000 Z
11
+ date: 2024-10-04 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake