num4normality 0.0.7-java → 0.0.8-java

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d445077e57757b20233ab78457bdd1b11a3b1851a8341ab7e28d778ef180d68d
4
- data.tar.gz: 1e7b9c47b46bffbc4ae6dafa164b6f2b6d3c0707b6ad4478267740248b098498
3
+ metadata.gz: 6bdb8267fad8c0c825bffbdc4ce48f03b5f7044b42c7b4575acd0c3bd1d24485
4
+ data.tar.gz: '0299ec982c1d8c30ee2613f2511d13125c95fb3113ccc48e630ad9496485f92b'
5
5
  SHA512:
6
- metadata.gz: 5bb019e46c2b0deae1b6f2e2e5776926621620fd787903a3fec119bece63b04e64b979f3c5b3de08883a487fb6ec503d49f43c7acc229b1ab33134c24e5d1179
7
- data.tar.gz: 8f60222acffc237d2961b909209182cdf9ef2e7fecad9248553be02853c9690cfeefef425f49a4ad5bdff5a0e733d3bd9a434b74b09ef934d94f2ac3f851345b
6
+ metadata.gz: f5d1bb2fb5de97f2480715cff1b0183ff22cf7f04f2d776050edf32f49377bd9dce4b6d48eacdbcde1fe1a67118dcc1e21b1232d84f582a9f65fa695528ca9f5
7
+ data.tar.gz: 15d6d2d3bbd2b18361064577273fdb66f43f906ebfa87f9671cc31e9a1a11e3203f16b3c828fe828c87aacfcb9be3663370e6249992bf222eb1265109ea6c038
data/CHANGELOG.md CHANGED
@@ -2,6 +2,11 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.8] - 2023-12-30
6
+
7
+ ### Fixed
8
+ - fix fuction of ppplot.
9
+
5
10
  ## [0.0.7] - 2023-12-26
6
11
 
7
12
  ### add
@@ -22,6 +22,7 @@ import java.io.File;
22
22
  import java.io.IOException;
23
23
 
24
24
  import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
25
+ import org.apache.commons.math3.stat.StatUtils;
25
26
  import org.apache.commons.math3.distribution.NormalDistribution;
26
27
  import org.apache.commons.math3.distribution.ChiSquaredDistribution;
27
28
  import org.apache.commons.math3.stat.regression.SimpleRegression;
@@ -237,15 +238,14 @@ public class Normality {
237
238
  int n = xi.length;
238
239
  Arrays.sort(xi);
239
240
  Arrays.stream(xi).forEach(stat::addValue);
240
- double m = stat.getMean(); // 平均
241
- double sd = stat.getStandardDeviation();// 標準偏差
242
241
  double sum = stat.getSum();
243
242
  double[][] data = new double[n][2];
244
243
  double p = 0.0;
244
+ double z[] = StatUtils.normalize(xi);
245
245
 
246
246
  for (int i = 0; i < n; i++) {
247
247
  p += xi[i] / sum;
248
- data[i][0] = (xi[i] - m) / sd;
248
+ data[i][0] = z[i];
249
249
  data[i][1] = p;
250
250
  }
251
251
  return data;
@@ -364,20 +364,17 @@ public class Normality {
364
364
  NormalDistribution ndist = new NormalDistribution(0, 1);
365
365
 
366
366
  int n = xi.length;
367
+ double[][] data = new double[n][2];
367
368
  Arrays.sort(xi);
368
369
  Arrays.stream(xi).forEach(stat::addValue);
369
- double m = stat.getMean(); // 平均
370
- double sd = stat.getStandardDeviation();// 標準偏差
371
370
  double sum = stat.getSum();
372
- double[][] data = new double[n][2];
373
371
  double p = 0.0;
372
+ double z[] = StatUtils.normalize(xi);
374
373
 
375
374
  for (int i = 0; i < n; i++) {
376
375
  p += xi[i] / sum;
377
- double x = (xi[i] - m) / sd;
378
376
 
379
- ndist.cumulativeProbability(x);
380
- data[i][0] = ndist.cumulativeProbability(x);
377
+ data[i][0] = ndist.cumulativeProbability(z[i]);
381
378
  data[i][1] = p;
382
379
  }
383
380
  return data;
@@ -485,19 +482,11 @@ public class Normality {
485
482
  // KS検定
486
483
  private static class KSTest {
487
484
  public boolean test(double[] xi) {
488
- double[] data = new double[xi.length];
489
485
  Arrays.sort(xi);
490
- DescriptiveStatistics stat = new DescriptiveStatistics();
491
- Arrays.stream(xi).forEach(stat::addValue);
492
- double m = stat.getMean(); // 平均
493
- double sd = stat.getStandardDeviation();// 標準偏差
494
486
  NormalDistribution ndist = new NormalDistribution(0, 1);
487
+ double data[] = StatUtils.normalize(xi);
495
488
 
496
- for (int i = 0; i < xi.length; i++) {
497
- data[i] = (xi[i] - m) / sd;
498
- }
499
- boolean ret = TestUtils.kolmogorovSmirnovTest(ndist, data, 0.05);
500
- return ret;
489
+ return TestUtils.kolmogorovSmirnovTest(ndist, data, 0.05);
501
490
  }
502
491
  }
503
492
  // タコスディーノ検定(歪度)
data/lib/num4normality.rb CHANGED
@@ -33,7 +33,7 @@ module Num4NormalityLib
33
33
  # @example
34
34
  # xi = [320, 240, 402, 325, 440, 286, 362, 281, 560, 212, 198, 209, 374]
35
35
  # Num4NormalityLib.ksplot("LDH", xi)
36
- # => kstest.jpeg
36
+ # => ksplot.jpeg
37
37
  # @note
38
38
  # グラフは、jfreechartを使用
39
39
  def ksplot(dname, xi)
@@ -74,7 +74,7 @@ module Num4NormalityLib
74
74
  # @overload ppksplot(dname, xi)
75
75
  # @param [String] dname データ名
76
76
  # @param [Array] xi データ(double[])
77
- # @return [void] ppplot.jpegファイルを出力
77
+ # @return [void] ppksplot.jpegファイルを出力
78
78
  # @example
79
79
  # xi = [320, 240, 402, 325, 440, 286, 362, 281, 560, 212, 198, 209, 374]
80
80
  # Num4NormalityLib.ppksplot("LDH", xi)
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4normality
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.7
4
+ version: 0.0.8
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-12-26 00:00:00.000000000 Z
11
+ date: 2023-12-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake