num4anova 0.0.5-java → 0.0.6-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/ext/num4anova/TwoWayLayout.java +120 -20
- data/lib/num4anova.rb +23 -0
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 4dd60df363d899af7ca69bca4cb1da1689548f083abaacfd6441d5a589bf3501
|
4
|
+
data.tar.gz: 84469385e378cde1eddc3521582aefd2f5b2adce84e76d0c8a4c23bdd40d9374
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 7a036fe08363781f31b3583d7c7a454131680413e9c3aaeb0ebe135eec930912807e3f84be688d8bf70e1e56eafdefef0a3425f07eb18d6d042549dc2f7dd893
|
7
|
+
data.tar.gz: 7d7c136e1e457c08ac341fc542be1590888c233c161034eeff0f67d3d1466b4879ccd49c5f2a83e2f42f18f28a0279d66909d768d616afabf24b59be36a7e4e4
|
data/CHANGELOG.md
CHANGED
@@ -12,6 +12,12 @@ public class TwoWayLayout {
|
|
12
12
|
double[] statistic = twoway.calcTestStatistic(xij);
|
13
13
|
return twoway.execute_test(statistic, a);
|
14
14
|
}
|
15
|
+
public boolean[] twoway2Anova(double[][] xij, double a) {
|
16
|
+
TwoWay2AnovaTest twoway = new TwoWay2Anova();
|
17
|
+
|
18
|
+
double[] statistic = twoway.calcTestStatistic(xij);
|
19
|
+
return twoway.execute_test(statistic, a);
|
20
|
+
}
|
15
21
|
/*********************************/
|
16
22
|
/* interface define */
|
17
23
|
/*********************************/
|
@@ -19,9 +25,14 @@ public class TwoWayLayout {
|
|
19
25
|
double[] calcTestStatistic(double[][][] xij);
|
20
26
|
boolean[] execute_test(double statistic[], double a);
|
21
27
|
}
|
28
|
+
private interface TwoWay2AnovaTest {
|
29
|
+
double[] calcTestStatistic(double[][] xij);
|
30
|
+
boolean[] execute_test(double statistic[], double a);
|
31
|
+
}
|
22
32
|
/*********************************/
|
23
33
|
/* class define */
|
24
34
|
/*********************************/
|
35
|
+
// 二元配置の分散分析(繰り返し数が等しい時)
|
25
36
|
private class TwoWayAnova implements TwoWayAnovaTest {
|
26
37
|
private int a = 0;
|
27
38
|
private int b = 0;
|
@@ -32,6 +43,7 @@ public class TwoWayLayout {
|
|
32
43
|
private int en = 0;
|
33
44
|
public double[] calcTestStatistic(double[][][] xij) {
|
34
45
|
double statistic[] = new double[3];
|
46
|
+
|
35
47
|
a = xij.length;
|
36
48
|
b = xij[0].length;
|
37
49
|
n = xij[0][0].length;
|
@@ -45,7 +57,6 @@ public class TwoWayLayout {
|
|
45
57
|
double[] meanBn = calcMeanBn(meanXij);
|
46
58
|
double meanABn = calcMeanABn(meanAn);
|
47
59
|
|
48
|
-
double allDrift = calcAllDrift(xij, meanABn); // 全変動
|
49
60
|
double anDrift = calcAnDrift(meanAn, meanABn); // 水準Ai間変動
|
50
61
|
double bnDrift = calcBnDrift(meanBn, meanABn); // 水準Bj間変動
|
51
62
|
// 交互作用の変動
|
@@ -76,20 +87,17 @@ public class TwoWayLayout {
|
|
76
87
|
}
|
77
88
|
private double[] calcMeanAn(double[][] meanXij) {
|
78
89
|
double[] an = new double[a];
|
79
|
-
DescriptiveStatistics stat = new DescriptiveStatistics();
|
80
90
|
|
81
91
|
for(int i = 0; i < a; i++) {
|
82
92
|
double sumSa = 0.0;
|
83
93
|
for(int j = 0; j < b; j++) {
|
84
|
-
|
94
|
+
an[i] += meanXij[i][j] / b;
|
85
95
|
}
|
86
|
-
an[i] = sumSa / b;
|
87
96
|
}
|
88
97
|
return an;
|
89
98
|
}
|
90
99
|
private double[] calcMeanBn(double[][] meanXij) {
|
91
100
|
double[] bn = new double[b];
|
92
|
-
double[] sumA = new double[b];
|
93
101
|
|
94
102
|
for(int i = 0; i < a; i++) {
|
95
103
|
for(int j = 0; j < b; j++) {
|
@@ -104,20 +112,6 @@ public class TwoWayLayout {
|
|
104
112
|
Arrays.stream(meanAn).forEach(stat::addValue);
|
105
113
|
return stat.getMean();
|
106
114
|
}
|
107
|
-
// 全変動
|
108
|
-
private double calcAllDrift(double[][][] xij, double meanABn) {
|
109
|
-
double sumDrift = 0.0;
|
110
|
-
|
111
|
-
for(int i = 0; i < a; i++) {
|
112
|
-
for(int j = 0; j < b; j++) {
|
113
|
-
for(int k = 0; k < xij[i][j].length; k++) {
|
114
|
-
double diffXijk = xij[i][j][k] - meanABn;
|
115
|
-
sumDrift += diffXijk * diffXijk;
|
116
|
-
}
|
117
|
-
}
|
118
|
-
}
|
119
|
-
return sumDrift;
|
120
|
-
}
|
121
115
|
// 水準Ai間変動
|
122
116
|
private double calcAnDrift(double[] meanAn, double meanABn) {
|
123
117
|
double sumDrift = 0.0;
|
@@ -179,7 +173,113 @@ public class TwoWayLayout {
|
|
179
173
|
private boolean evaluation(FDistribution fDist, double statistic, double a) {
|
180
174
|
double r_val = fDist.inverseCumulativeProbability(1.0 - a);
|
181
175
|
|
182
|
-
return (statistic
|
176
|
+
return (statistic >= r_val) ? true : false;
|
177
|
+
}
|
178
|
+
}
|
179
|
+
// 二元配置の分散分析(繰り返しのない時)
|
180
|
+
private class TwoWay2Anova implements TwoWay2AnovaTest {
|
181
|
+
private int a = 0;
|
182
|
+
private int b = 0;
|
183
|
+
private int an = 0;
|
184
|
+
private int bn = 0;
|
185
|
+
private int en = 0;
|
186
|
+
public double[] calcTestStatistic(double[][] xij) {
|
187
|
+
double statistic[] = new double[2];
|
188
|
+
|
189
|
+
a = xij.length;
|
190
|
+
b = xij[0].length;
|
191
|
+
an = a- 1;
|
192
|
+
bn = b - 1;
|
193
|
+
en = (a- 1) * (b - 1);
|
194
|
+
|
195
|
+
double[] meanAn = calcMeanAn(xij);
|
196
|
+
double[] meanBn = calcMeanBn(xij);
|
197
|
+
double meanAB = calcMeanAB(meanAn);
|
198
|
+
|
199
|
+
double anDrift = calcAnDrift(meanAn, meanAB); // 水準Ai間変動
|
200
|
+
double bnDrift = calcBnDrift(meanBn, meanAB); // 水準Bj間変動
|
201
|
+
double benchDrift = calcBenchDrift(xij, meanAn, meanBn, meanAB); // 水準内変動
|
202
|
+
double va = anDrift / an;
|
203
|
+
double vb = bnDrift / bn;
|
204
|
+
double ve = benchDrift / en;
|
205
|
+
|
206
|
+
statistic[0] = va / ve;
|
207
|
+
statistic[1] = vb / ve;
|
208
|
+
return statistic;
|
209
|
+
}
|
210
|
+
private double[] calcMeanAn(double[][] xij) {
|
211
|
+
double[] an = new double[a];
|
212
|
+
|
213
|
+
for(int i = 0; i < a; i++) {
|
214
|
+
for(int j = 0; j < b; j++) {
|
215
|
+
an[i] += xij[i][j] / b;
|
216
|
+
}
|
217
|
+
}
|
218
|
+
return an;
|
219
|
+
}
|
220
|
+
private double[] calcMeanBn(double[][] xij) {
|
221
|
+
double[] bn = new double[b];
|
222
|
+
|
223
|
+
for(int i = 0; i < a; i++) {
|
224
|
+
for(int j = 0; j < b; j++) {
|
225
|
+
bn[j] += xij[i][j] / a;
|
226
|
+
}
|
227
|
+
}
|
228
|
+
return bn;
|
229
|
+
}
|
230
|
+
private double calcMeanAB(double[] meanAn) {
|
231
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
232
|
+
|
233
|
+
Arrays.stream(meanAn).forEach(stat::addValue);
|
234
|
+
return stat.getMean();
|
235
|
+
}
|
236
|
+
// 水準Ai間変動
|
237
|
+
private double calcAnDrift(double[] meanAn, double meanAB) {
|
238
|
+
double sumDrift = 0.0;
|
239
|
+
|
240
|
+
for(int i =0; i < meanAn.length; i++) {
|
241
|
+
double diffXi = meanAn[i] - meanAB;
|
242
|
+
|
243
|
+
sumDrift += diffXi * diffXi;
|
244
|
+
}
|
245
|
+
return b * sumDrift;
|
246
|
+
}
|
247
|
+
// 水準Bj間変動
|
248
|
+
private double calcBnDrift(double[] meanBn, double meanAB) {
|
249
|
+
double sumDrift = 0.0;
|
250
|
+
|
251
|
+
for(int j = 0; j < meanBn.length; j++) {
|
252
|
+
double diffXj = meanBn[j] - meanAB;
|
253
|
+
|
254
|
+
sumDrift += diffXj * diffXj;
|
255
|
+
}
|
256
|
+
return a * sumDrift;
|
257
|
+
}
|
258
|
+
// 水準内変動
|
259
|
+
private double calcBenchDrift(double[][] xij, double[] meanAn, double[] meanBn, double meanAB) {
|
260
|
+
double sumDrift = 0.0;
|
261
|
+
|
262
|
+
for(int i = 0; i < a; i++) {
|
263
|
+
for(int j = 0; j < b; j++) {
|
264
|
+
double diffXj = xij[i][j] - meanAn[i] - meanBn[j] + meanAB;
|
265
|
+
|
266
|
+
sumDrift += diffXj * diffXj;
|
267
|
+
}
|
268
|
+
}
|
269
|
+
return sumDrift;
|
270
|
+
}
|
271
|
+
|
272
|
+
public boolean[] execute_test(double statistic[], double a) {
|
273
|
+
boolean[] ret = new boolean[2];
|
274
|
+
|
275
|
+
ret[0] = evaluation(new FDistribution(an, en), statistic[0], a);
|
276
|
+
ret[1] = evaluation(new FDistribution(bn, en), statistic[1], a);
|
277
|
+
return ret;
|
278
|
+
}
|
279
|
+
private boolean evaluation(FDistribution fDist, double statistic, double a) {
|
280
|
+
double r_val = fDist.inverseCumulativeProbability(1.0 - a);
|
281
|
+
|
282
|
+
return (statistic >= r_val) ? true : false;
|
183
283
|
}
|
184
284
|
}
|
185
285
|
}
|
data/lib/num4anova.rb
CHANGED
@@ -158,6 +158,7 @@ module Num4AnovaLib
|
|
158
158
|
@twoWay = TwoWayLayout.getInstance()
|
159
159
|
end
|
160
160
|
# 二元配置の分散分析
|
161
|
+
# (繰り返し数が等しい時)
|
161
162
|
#
|
162
163
|
# @overload twoway_anova(xij, a)
|
163
164
|
# @param [array] xij データ(double[][][])
|
@@ -194,6 +195,28 @@ module Num4AnovaLib
|
|
194
195
|
ret = @twoWay.twowayAnova(xij.to_java(Java::double[][]), a)
|
195
196
|
return ret.to_a
|
196
197
|
end
|
198
|
+
# 二元配置の分散分析
|
199
|
+
# (繰り返しのない時)
|
200
|
+
#
|
201
|
+
# @overload twoway2_anova(xij, a)
|
202
|
+
# @param [array] xij データ(double[][])
|
203
|
+
# @param [double] a 有意水準
|
204
|
+
# @return [Array] 検定結果(boolean[] true:棄却域内 false:棄却域外)
|
205
|
+
# @example
|
206
|
+
# xij = [
|
207
|
+
# [13.6, 15.6, 9.2],
|
208
|
+
# [22.3, 23.3, 13.3],
|
209
|
+
# [26.7, 28.8, 15.0],
|
210
|
+
# [28.0, 31.2, 15.8],
|
211
|
+
# ]
|
212
|
+
# twoWay = Num4AnovaLib::TwoWayLayoutLib.new
|
213
|
+
# twoWay.twoway2_anova(xij, 0.05)
|
214
|
+
# =>
|
215
|
+
# [true, true]
|
216
|
+
def twoway2_anova(xij, a)
|
217
|
+
ret = @twoWay.twoway2Anova(xij.to_java(Java::double[]), a)
|
218
|
+
return ret.to_a
|
219
|
+
end
|
197
220
|
end
|
198
221
|
end
|
199
222
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.6
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-02-
|
11
|
+
date: 2024-02-04 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|