nn 2.0.0 → 2.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/document.txt +0 -10
- data/nn.gemspec +1 -1
- data/sample/cifar10_program.rb +1 -1
- metadata +1 -2
- data/nn.rb +0 -441
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 5fd7f6dd2b015169de254f1fc68d8566a5ffa7e14bfc8bd9581239c96a6f6965
|
4
|
+
data.tar.gz: 232ee0dbbd7a16fce35e56e58ea40b79dc76b066a2c93dff576d48a34958ab66
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6323e2716a4ef835665b8955ce699ee5843649dfbaa469257d4b164c2702f39a508f2034510c001785e671dd781e36b4afc863f16d1305865114925876aa807a
|
7
|
+
data.tar.gz: da603d96fc83ab378cd34233624487b39fbd137037af5e4ca2d306a5c63cafc2193585d94405fb3f624ab7f9749e8587e86fc842a7cb5845e37001c70476f122
|
data/document.txt
CHANGED
@@ -13,11 +13,6 @@ class NN
|
|
13
13
|
|
14
14
|
<クラスメソッド>
|
15
15
|
load(file_name) : NN
|
16
|
-
Marshal形式で保存された学習結果を読み込みます。
|
17
|
-
String file_name 読み込むMarshalファイル名
|
18
|
-
戻り値 NNのインスタンス
|
19
|
-
|
20
|
-
load_json(file_name) : NN
|
21
16
|
JSON形式で保存された学習結果を読み込みます。
|
22
17
|
String file_name 読み込むJSONファイル名
|
23
18
|
戻り値 NNのインスタンス
|
@@ -114,10 +109,6 @@ run(x) : SFloat
|
|
114
109
|
戻り値 出力ノードの値
|
115
110
|
|
116
111
|
save(file_name) : void
|
117
|
-
学習結果をMarshal形式で保存します。
|
118
|
-
String file_name 書き込むMarshalファイル名
|
119
|
-
|
120
|
-
save_json(file_name) : void
|
121
112
|
学習結果をJSON形式で保存します。
|
122
113
|
String file_name 書き込むJSONファイル名
|
123
114
|
|
@@ -151,4 +142,3 @@ http://d.hatena.ne.jp/n_shuyo/20090913/mnist
|
|
151
142
|
2018/5/4 バージョン1.8公開
|
152
143
|
2018/5/16 バージョン2.0公開
|
153
144
|
2018/6/10 バージョン2.0.1公開
|
154
|
-
2018/6/10 バージョン2.1.0公開
|
data/nn.gemspec
CHANGED
data/sample/cifar10_program.rb
CHANGED
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: nn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 2.0.
|
4
|
+
version: 2.0.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
@@ -70,7 +70,6 @@ files:
|
|
70
70
|
- lib/nn/cifar10.rb
|
71
71
|
- lib/nn/mnist.rb
|
72
72
|
- nn.gemspec
|
73
|
-
- nn.rb
|
74
73
|
- sample/cifar10_program.rb
|
75
74
|
- sample/mnist_program.rb
|
76
75
|
- sample/xor.rb
|
data/nn.rb
DELETED
@@ -1,441 +0,0 @@
|
|
1
|
-
require "numo/narray"
|
2
|
-
require "json"
|
3
|
-
|
4
|
-
class NN
|
5
|
-
VERSION = "2.1"
|
6
|
-
|
7
|
-
include Numo
|
8
|
-
|
9
|
-
attr_accessor :weights
|
10
|
-
attr_accessor :biases
|
11
|
-
attr_accessor :gammas
|
12
|
-
attr_accessor :betas
|
13
|
-
attr_accessor :learning_rate
|
14
|
-
attr_accessor :batch_size
|
15
|
-
attr_accessor :activation
|
16
|
-
attr_accessor :momentum
|
17
|
-
attr_accessor :weight_decay
|
18
|
-
attr_accessor :dropout_ratio
|
19
|
-
attr_reader :training
|
20
|
-
|
21
|
-
def initialize(num_nodes,
|
22
|
-
learning_rate: 0.01,
|
23
|
-
batch_size: 1,
|
24
|
-
activation: %i(relu identity),
|
25
|
-
momentum: 0,
|
26
|
-
weight_decay: 0,
|
27
|
-
use_dropout: false,
|
28
|
-
dropout_ratio: 0.5,
|
29
|
-
use_batch_norm: false)
|
30
|
-
SFloat.srand(rand(2 ** 64))
|
31
|
-
@num_nodes = num_nodes
|
32
|
-
@learning_rate = learning_rate
|
33
|
-
@batch_size = batch_size
|
34
|
-
@activation = activation
|
35
|
-
@momentum = momentum
|
36
|
-
@weight_decay = weight_decay
|
37
|
-
@use_dropout = use_dropout
|
38
|
-
@dropout_ratio = dropout_ratio
|
39
|
-
@use_batch_norm = use_batch_norm
|
40
|
-
init_weight_and_bias
|
41
|
-
init_gamma_and_beta if @use_batch_norm
|
42
|
-
@training = true
|
43
|
-
init_layers
|
44
|
-
end
|
45
|
-
|
46
|
-
def self.load(file_name)
|
47
|
-
Marshal.load(File.binread(file_name))
|
48
|
-
end
|
49
|
-
|
50
|
-
def self.load_json(file_name)
|
51
|
-
json = JSON.parse(File.read(file_name))
|
52
|
-
nn = self.new(json["num_nodes"],
|
53
|
-
learning_rate: json["learning_rate"],
|
54
|
-
batch_size: json["batch_size"],
|
55
|
-
activation: json["activation"].map(&:to_sym),
|
56
|
-
momentum: json["momentum"],
|
57
|
-
weight_decay: json["weight_decay"],
|
58
|
-
use_dropout: json["use_dropout"],
|
59
|
-
dropout_ratio: json["dropout_ratio"],
|
60
|
-
use_batch_norm: json["use_batch_norm"],
|
61
|
-
)
|
62
|
-
nn.weights = json["weights"].map{|weight| SFloat.cast(weight)}
|
63
|
-
nn.biases = json["biases"].map{|bias| SFloat.cast(bias)}
|
64
|
-
if json["use_batch_norm"]
|
65
|
-
nn.gammas = json["gammas"].map{|gamma| SFloat.cast(gamma)}
|
66
|
-
nn.betas = json["betas"].map{|beta| SFloat.cast(beta)}
|
67
|
-
end
|
68
|
-
nn
|
69
|
-
end
|
70
|
-
|
71
|
-
def train(x_train, y_train, epochs, func = nil, &block)
|
72
|
-
num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length
|
73
|
-
(1..epochs).each do |epoch|
|
74
|
-
loss = nil
|
75
|
-
(num_train_data.to_f / @batch_size).ceil.times do
|
76
|
-
loss = learn(x_train, y_train, &func)
|
77
|
-
if loss.nan?
|
78
|
-
puts "loss is nan"
|
79
|
-
return
|
80
|
-
end
|
81
|
-
end
|
82
|
-
puts "epoch #{epoch}/#{epochs} loss: #{loss}"
|
83
|
-
block.call(epoch) if block
|
84
|
-
end
|
85
|
-
end
|
86
|
-
|
87
|
-
def test(x_test, y_test, tolerance = 0.5, &block)
|
88
|
-
acc = accurate(x_test, y_test, tolerance, &block)
|
89
|
-
puts "accurate: #{acc}"
|
90
|
-
acc
|
91
|
-
end
|
92
|
-
|
93
|
-
def accurate(x_test, y_test, tolerance = 0.5, &block)
|
94
|
-
correct = 0
|
95
|
-
num_test_data = x_test.is_a?(SFloat) ? x_test.shape[0] : x_test.length
|
96
|
-
(num_test_data.to_f / @batch_size).ceil.times do |i|
|
97
|
-
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
98
|
-
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
99
|
-
@batch_size.times do |j|
|
100
|
-
k = i * @batch_size + j
|
101
|
-
break if k >= num_test_data
|
102
|
-
if x_test.is_a?(SFloat)
|
103
|
-
x[j, true] = x_test[k, true]
|
104
|
-
y[j, true] = y_test[k, true]
|
105
|
-
else
|
106
|
-
x[j, true] = SFloat.cast(x_test[k])
|
107
|
-
y[j, true] = SFloat.cast(y_test[k])
|
108
|
-
end
|
109
|
-
end
|
110
|
-
x, y = block.call(x, y) if block
|
111
|
-
out = forward(x, false)
|
112
|
-
@batch_size.times do |j|
|
113
|
-
vout = out[j, true]
|
114
|
-
vy = y[j, true]
|
115
|
-
case @activation[1]
|
116
|
-
when :identity
|
117
|
-
correct += 1 unless (NMath.sqrt((vout - vy) ** 2) < tolerance).to_a.include?(0)
|
118
|
-
when :softmax
|
119
|
-
correct += 1 if vout.max_index == vy.max_index
|
120
|
-
end
|
121
|
-
end
|
122
|
-
end
|
123
|
-
correct.to_f / num_test_data
|
124
|
-
end
|
125
|
-
|
126
|
-
def learn(x_train, y_train, &block)
|
127
|
-
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
128
|
-
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
129
|
-
@batch_size.times do |i|
|
130
|
-
if x_train.is_a?(SFloat)
|
131
|
-
r = rand(x_train.shape[0])
|
132
|
-
x[i, true] = x_train[r, true]
|
133
|
-
y[i, true] = y_train[r, true]
|
134
|
-
else
|
135
|
-
r = rand(x_train.length)
|
136
|
-
x[i, true] = SFloat.cast(x_train[r])
|
137
|
-
y[i, true] = SFloat.cast(y_train[r])
|
138
|
-
end
|
139
|
-
end
|
140
|
-
x, y = block.call(x, y) if block
|
141
|
-
forward(x)
|
142
|
-
backward(y)
|
143
|
-
update_weight_and_bias
|
144
|
-
update_gamma_and_beta if @use_batch_norm
|
145
|
-
@layers[-1].loss(y)
|
146
|
-
end
|
147
|
-
|
148
|
-
def run(x)
|
149
|
-
if x.is_a?(Array)
|
150
|
-
forward(SFloat.cast(x), false).to_a
|
151
|
-
else
|
152
|
-
forward(x, false)
|
153
|
-
end
|
154
|
-
end
|
155
|
-
|
156
|
-
def save(file_name)
|
157
|
-
File.binwrite(file_name, Marshal.dump(self))
|
158
|
-
end
|
159
|
-
|
160
|
-
def save_json(file_name)
|
161
|
-
json = {
|
162
|
-
"version" => VERSION,
|
163
|
-
"num_nodes" => @num_nodes,
|
164
|
-
"learning_rate" => @learning_rate,
|
165
|
-
"batch_size" => @batch_size,
|
166
|
-
"activation" => @activation,
|
167
|
-
"momentum" => @momentum,
|
168
|
-
"weight_decay" => @weight_decay,
|
169
|
-
"use_dropout" => @use_dropout,
|
170
|
-
"dropout_ratio" => @dropout_ratio,
|
171
|
-
"use_batch_norm" => @use_batch_norm,
|
172
|
-
"weights" => @weights.map(&:to_a),
|
173
|
-
"biases" => @biases.map(&:to_a),
|
174
|
-
}
|
175
|
-
if @use_batch_norm
|
176
|
-
json_batch_norm = {
|
177
|
-
"gammas" => @gammas,
|
178
|
-
"betas" => @betas
|
179
|
-
}
|
180
|
-
json.merge!(json_batch_norm)
|
181
|
-
end
|
182
|
-
File.write(file_name, JSON.dump(json))
|
183
|
-
end
|
184
|
-
|
185
|
-
private
|
186
|
-
|
187
|
-
def init_weight_and_bias
|
188
|
-
@weights = Array.new(@num_nodes.length - 1)
|
189
|
-
@biases = Array.new(@num_nodes.length - 1)
|
190
|
-
@weight_amounts = Array.new(@num_nodes.length - 1, 0)
|
191
|
-
@bias_amounts = Array.new(@num_nodes.length - 1, 0)
|
192
|
-
@num_nodes[0...-1].each_index do |i|
|
193
|
-
weight = SFloat.new(@num_nodes[i], @num_nodes[i + 1]).rand_norm
|
194
|
-
bias = SFloat.new(@num_nodes[i + 1]).rand_norm
|
195
|
-
if @activation[0] == :relu
|
196
|
-
@weights[i] = weight / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
197
|
-
@biases[i] = bias / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
198
|
-
else
|
199
|
-
@weights[i] = weight / Math.sqrt(@num_nodes[i])
|
200
|
-
@biases[i] = bias / Math.sqrt(@num_nodes[i])
|
201
|
-
end
|
202
|
-
end
|
203
|
-
end
|
204
|
-
|
205
|
-
def init_gamma_and_beta
|
206
|
-
@gammas = Array.new(@num_nodes.length - 2, 1)
|
207
|
-
@betas = Array.new(@num_nodes.length - 2, 0)
|
208
|
-
@gamma_amounts = Array.new(@num_nodes.length - 2, 0)
|
209
|
-
@beta_amounts = Array.new(@num_nodes.length - 2, 0)
|
210
|
-
end
|
211
|
-
|
212
|
-
def init_layers
|
213
|
-
@layers = []
|
214
|
-
@num_nodes[0...-2].each_index do |i|
|
215
|
-
@layers << Affine.new(self, i)
|
216
|
-
@layers << BatchNorm.new(self, i) if @use_batch_norm
|
217
|
-
@layers << case @activation[0]
|
218
|
-
when :sigmoid
|
219
|
-
Sigmoid.new
|
220
|
-
when :relu
|
221
|
-
ReLU.new
|
222
|
-
end
|
223
|
-
@layers << Dropout.new(self) if @use_dropout
|
224
|
-
end
|
225
|
-
@layers << Affine.new(self, -1)
|
226
|
-
@layers << case @activation[1]
|
227
|
-
when :identity
|
228
|
-
Identity.new(self)
|
229
|
-
when :softmax
|
230
|
-
Softmax.new(self)
|
231
|
-
end
|
232
|
-
end
|
233
|
-
|
234
|
-
def forward(x, training = true)
|
235
|
-
@training = training
|
236
|
-
@layers.each do |layer|
|
237
|
-
x = layer.forward(x)
|
238
|
-
end
|
239
|
-
x
|
240
|
-
end
|
241
|
-
|
242
|
-
def backward(y)
|
243
|
-
dout = @layers[-1].backward(y)
|
244
|
-
@layers[0...-1].reverse.each do |layer|
|
245
|
-
dout = layer.backward(dout)
|
246
|
-
end
|
247
|
-
end
|
248
|
-
|
249
|
-
def update_weight_and_bias
|
250
|
-
@layers.select{|layer| layer.is_a?(Affine)}.each.with_index do |layer, i|
|
251
|
-
weight_amount = layer.d_weight * @learning_rate
|
252
|
-
bias_amount = layer.d_bias * @learning_rate
|
253
|
-
if @momentum > 0
|
254
|
-
weight_amount += @momentum * @weight_amounts[i]
|
255
|
-
@weight_amounts[i] = weight_amount
|
256
|
-
bias_amount += @momentum * @bias_amounts[i]
|
257
|
-
@bias_amounts[i] = bias_amount
|
258
|
-
end
|
259
|
-
@weights[i] -= weight_amount
|
260
|
-
@biases[i] -= bias_amount
|
261
|
-
end
|
262
|
-
end
|
263
|
-
|
264
|
-
def update_gamma_and_beta
|
265
|
-
@layers.select{|layer| layer.is_a?(BatchNorm)}.each.with_index do |layer, i|
|
266
|
-
gamma_amount = layer.d_gamma * @learning_rate
|
267
|
-
beta_amount = layer.d_beta * @learning_rate
|
268
|
-
if @momentum > 0
|
269
|
-
gamma_amount += @momentum * @gamma_amounts[i]
|
270
|
-
@gamma_amounts[i] = gamma_amount
|
271
|
-
beta_amount += @momentum * @beta_amounts[i]
|
272
|
-
@beta_amounts[i] = beta_amount
|
273
|
-
end
|
274
|
-
@gammas[i] -= gamma_amount
|
275
|
-
@betas[i] -= gamma_amount
|
276
|
-
end
|
277
|
-
end
|
278
|
-
end
|
279
|
-
|
280
|
-
|
281
|
-
class NN::Affine
|
282
|
-
include Numo
|
283
|
-
|
284
|
-
attr_reader :d_weight
|
285
|
-
attr_reader :d_bias
|
286
|
-
|
287
|
-
def initialize(nn, index)
|
288
|
-
@nn = nn
|
289
|
-
@index = index
|
290
|
-
@d_weight = nil
|
291
|
-
@d_bias = nil
|
292
|
-
end
|
293
|
-
|
294
|
-
def forward(x)
|
295
|
-
@x = x
|
296
|
-
@x.dot(@nn.weights[@index]) + @nn.biases[@index]
|
297
|
-
end
|
298
|
-
|
299
|
-
def backward(dout)
|
300
|
-
x = @x.reshape(*@x.shape, 1)
|
301
|
-
@d_weight = x.dot(dout.reshape(dout.shape[0], 1, dout.shape[1])).mean(0)
|
302
|
-
if @nn.weight_decay > 0
|
303
|
-
dridge = @nn.weight_decay * @nn.weights[@index]
|
304
|
-
@d_weight += dridge
|
305
|
-
end
|
306
|
-
@d_bias = dout.mean
|
307
|
-
dout.dot(@nn.weights[@index].transpose)
|
308
|
-
end
|
309
|
-
end
|
310
|
-
|
311
|
-
|
312
|
-
class NN::Sigmoid
|
313
|
-
include Numo
|
314
|
-
|
315
|
-
def forward(x)
|
316
|
-
@out = 1.0 / (1 + NMath.exp(-x))
|
317
|
-
end
|
318
|
-
|
319
|
-
def backward(dout)
|
320
|
-
dout * (1.0 - @out) * @out
|
321
|
-
end
|
322
|
-
end
|
323
|
-
|
324
|
-
|
325
|
-
class NN::ReLU
|
326
|
-
def forward(x)
|
327
|
-
@x = x.clone
|
328
|
-
x[x < 0] = 0
|
329
|
-
x
|
330
|
-
end
|
331
|
-
|
332
|
-
def backward(dout)
|
333
|
-
@x[@x > 0] = 1.0
|
334
|
-
@x[@x <= 0] = 0.0
|
335
|
-
dout * @x
|
336
|
-
end
|
337
|
-
end
|
338
|
-
|
339
|
-
|
340
|
-
class NN::Identity
|
341
|
-
def initialize(nn)
|
342
|
-
@nn = nn
|
343
|
-
end
|
344
|
-
|
345
|
-
def forward(x)
|
346
|
-
@out = x
|
347
|
-
end
|
348
|
-
|
349
|
-
def backward(y)
|
350
|
-
@out - y
|
351
|
-
end
|
352
|
-
|
353
|
-
def loss(y)
|
354
|
-
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
355
|
-
0.5 * ((@out - y) ** 2).sum / @nn.batch_size + ridge
|
356
|
-
end
|
357
|
-
end
|
358
|
-
|
359
|
-
|
360
|
-
class NN::Softmax
|
361
|
-
include Numo
|
362
|
-
|
363
|
-
def initialize(nn)
|
364
|
-
@nn = nn
|
365
|
-
end
|
366
|
-
|
367
|
-
def forward(x)
|
368
|
-
@out = NMath.exp(x) / NMath.exp(x).sum(1).reshape(x.shape[0], 1)
|
369
|
-
end
|
370
|
-
|
371
|
-
def backward(y)
|
372
|
-
@out - y
|
373
|
-
end
|
374
|
-
|
375
|
-
def loss(y)
|
376
|
-
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
377
|
-
-(y * NMath.log(@out + 1e-7)).sum / @nn.batch_size + ridge
|
378
|
-
end
|
379
|
-
end
|
380
|
-
|
381
|
-
|
382
|
-
class NN::Dropout
|
383
|
-
include Numo
|
384
|
-
|
385
|
-
def initialize(nn)
|
386
|
-
@nn = nn
|
387
|
-
@mask = nil
|
388
|
-
end
|
389
|
-
|
390
|
-
def forward(x)
|
391
|
-
if @nn.training
|
392
|
-
@mask = SFloat.ones(*x.shape).rand < @nn.dropout_ratio
|
393
|
-
x[@mask] = 0
|
394
|
-
else
|
395
|
-
x *= (1 - @nn.dropout_ratio)
|
396
|
-
end
|
397
|
-
x
|
398
|
-
end
|
399
|
-
|
400
|
-
def backward(dout)
|
401
|
-
dout[@mask] = 0 if @nn.training
|
402
|
-
dout
|
403
|
-
end
|
404
|
-
end
|
405
|
-
|
406
|
-
|
407
|
-
class NN::BatchNorm
|
408
|
-
include Numo
|
409
|
-
|
410
|
-
attr_reader :d_gamma
|
411
|
-
attr_reader :d_beta
|
412
|
-
|
413
|
-
def initialize(nn, index)
|
414
|
-
@nn = nn
|
415
|
-
@index = index
|
416
|
-
end
|
417
|
-
|
418
|
-
def forward(x)
|
419
|
-
@x = x
|
420
|
-
@mean = x.mean(0)
|
421
|
-
@xc = x - @mean
|
422
|
-
@var = (@xc ** 2).mean(0)
|
423
|
-
@std = NMath.sqrt(@var + 1e-7)
|
424
|
-
@xn = @xc / @std
|
425
|
-
out = @nn.gammas[@index] * @xn + @nn.betas[@index]
|
426
|
-
out.reshape(*@x.shape)
|
427
|
-
end
|
428
|
-
|
429
|
-
def backward(dout)
|
430
|
-
@d_beta = dout.sum(0).mean
|
431
|
-
@d_gamma = (@xn * dout).sum(0).mean
|
432
|
-
dxn = @nn.gammas[@index] * dout
|
433
|
-
dxc = dxn / @std
|
434
|
-
dstd = -((dxn * @xc) / (@std ** 2)).sum(0)
|
435
|
-
dvar = 0.5 * dstd / @std
|
436
|
-
dxc += (2.0 / @nn.batch_size) * @xc * dvar
|
437
|
-
dmean = dxc.sum(0)
|
438
|
-
dx = dxc - dmean / @nn.batch_size
|
439
|
-
dx.reshape(*@x.shape)
|
440
|
-
end
|
441
|
-
end
|