multinomial_naive_bayes 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/lib/multinomial_naive_bayes.rb +2 -0
- data/lib/multinomial_naive_bayes/classifier.rb +34 -0
- data/lib/multinomial_naive_bayes/learner.rb +47 -0
- metadata +46 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: e8ddc006ffc53986e48eae80b26a28bb4463328c
|
4
|
+
data.tar.gz: 096b99930d2f1fcbed9f599a3e7703b23791eea0
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: cb56810f0793160629bf2475e67b9aab4c5def427274a99bf1c65dc445a98dedd78008c02f3345ae2e9f1cd8a300f128185917c08fe894f661478c52f2997429
|
7
|
+
data.tar.gz: 1771a1e833359cf10aacc333ef1999daf8763311c7a784cbf8ca50db36bb1dfaccb648e4da625b94b9bb4c3c475054258bb9e70b8a87e2ef7235425c464b99a7
|
@@ -0,0 +1,34 @@
|
|
1
|
+
module MultinomialNaiveBayes
|
2
|
+
class Classifier
|
3
|
+
def initialize(categories_summaries, categories_probabilities)
|
4
|
+
@categories_summaries = categories_summaries
|
5
|
+
@categories_probabilities = categories_probabilities
|
6
|
+
end
|
7
|
+
|
8
|
+
def classify(vector)
|
9
|
+
max_ln_category_probability(vector)[0]
|
10
|
+
end
|
11
|
+
|
12
|
+
def max_ln_category_probability(vector)
|
13
|
+
all_ln_categories_probabilities(vector).
|
14
|
+
to_a.
|
15
|
+
sort_by{|ln_category_probability| -ln_category_probability[1]}.
|
16
|
+
first
|
17
|
+
end
|
18
|
+
|
19
|
+
def all_ln_categories_probabilities(vector)
|
20
|
+
@categories_summaries.keys.inject({}) do |map, category|
|
21
|
+
map[category] = ln_category_probability(vector, category)
|
22
|
+
map
|
23
|
+
end
|
24
|
+
end
|
25
|
+
|
26
|
+
def ln_category_probability(vector, category)
|
27
|
+
sum = 0
|
28
|
+
vector.each_with_index do |feature_value, feature|
|
29
|
+
sum += Math.log(@categories_summaries[category][feature]**feature_value)
|
30
|
+
end
|
31
|
+
sum + Math.log(@categories_probabilities[category])
|
32
|
+
end
|
33
|
+
end
|
34
|
+
end
|
@@ -0,0 +1,47 @@
|
|
1
|
+
module MultinomialNaiveBayes
|
2
|
+
class Learner
|
3
|
+
def initialize(alpha = 1.0)
|
4
|
+
@alpha = alpha
|
5
|
+
end
|
6
|
+
|
7
|
+
def train(vector, category)
|
8
|
+
@category_to_feature_group ||= {}
|
9
|
+
@category_to_feature_group[category] ||= {}
|
10
|
+
vector.each_with_index do |feature_value, feature|
|
11
|
+
@category_to_feature_group[category][feature] ||= []
|
12
|
+
@category_to_feature_group[category][feature] << feature_value
|
13
|
+
end
|
14
|
+
@number_of_features ||= vector.length
|
15
|
+
@category_to_num_instances ||= Hash.new(0)
|
16
|
+
@category_to_num_instances[category] += 1
|
17
|
+
end
|
18
|
+
|
19
|
+
def classifier
|
20
|
+
Classifier.new(categories_summaries, categories_probabilities)
|
21
|
+
end
|
22
|
+
|
23
|
+
def categories_summaries
|
24
|
+
@category_to_feature_group.inject({}) do |map, (category, feature_group)|
|
25
|
+
map[category] = category_summary(feature_group)
|
26
|
+
map
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
def category_summary(feature_group)
|
31
|
+
total_count_of_all_features = feature_group.values.flatten.reduce(&:+)
|
32
|
+
feature_group.inject({}) do |map, (feature, feature_values)|
|
33
|
+
total_count_of_feature = feature_values.reduce(&:+)
|
34
|
+
map[feature] = (total_count_of_feature + @alpha).to_f/(total_count_of_all_features + @number_of_features)
|
35
|
+
map
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
def categories_probabilities
|
40
|
+
total_instances = @category_to_num_instances.values.reduce(&:+)
|
41
|
+
@category_to_num_instances.inject({}) do |map, (category, num_instances)|
|
42
|
+
map[category] = num_instances.to_f/total_instances
|
43
|
+
map
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
47
|
+
end
|
metadata
ADDED
@@ -0,0 +1,46 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: multinomial_naive_bayes
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- An Le
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2016-04-24 00:00:00.000000000 Z
|
12
|
+
dependencies: []
|
13
|
+
description:
|
14
|
+
email:
|
15
|
+
executables: []
|
16
|
+
extensions: []
|
17
|
+
extra_rdoc_files: []
|
18
|
+
files:
|
19
|
+
- lib/multinomial_naive_bayes.rb
|
20
|
+
- lib/multinomial_naive_bayes/classifier.rb
|
21
|
+
- lib/multinomial_naive_bayes/learner.rb
|
22
|
+
homepage: https://github.com/lntan/multinomial_naive_bayes
|
23
|
+
licenses:
|
24
|
+
- MIT
|
25
|
+
metadata: {}
|
26
|
+
post_install_message:
|
27
|
+
rdoc_options: []
|
28
|
+
require_paths:
|
29
|
+
- lib
|
30
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
31
|
+
requirements:
|
32
|
+
- - ">="
|
33
|
+
- !ruby/object:Gem::Version
|
34
|
+
version: '0'
|
35
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
36
|
+
requirements:
|
37
|
+
- - ">="
|
38
|
+
- !ruby/object:Gem::Version
|
39
|
+
version: '0'
|
40
|
+
requirements: []
|
41
|
+
rubyforge_project:
|
42
|
+
rubygems_version: 2.6.3
|
43
|
+
signing_key:
|
44
|
+
specification_version: 4
|
45
|
+
summary: Implement the naive Bayes algorithm for multinomially distributed data
|
46
|
+
test_files: []
|