mhl 0.0.1 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Rakefile +8 -0
- data/lib/mhl.rb +2 -0
- data/lib/mhl/charged_swarm.rb +85 -0
- data/lib/mhl/generic_particle.rb +52 -0
- data/lib/mhl/generic_swarm.rb +41 -0
- data/lib/mhl/genetic_algorithm_solver.rb +64 -10
- data/lib/mhl/integer_genotype_space.rb +39 -11
- data/lib/mhl/multiswarm_qpso_solver.rb +140 -0
- data/lib/mhl/particle.rb +33 -0
- data/lib/mhl/particle_swarm_optimization_solver.rb +67 -69
- data/lib/mhl/pso_swarm.rb +52 -0
- data/lib/mhl/qpso_swarm.rb +45 -0
- data/lib/mhl/quantum_particle.rb +40 -0
- data/lib/mhl/quantum_particle_swarm_optimization_solver.rb +113 -0
- data/lib/mhl/version.rb +1 -1
- data/mhl.gemspec +2 -2
- data/test/mhl/genetic_algorithm_solver_test.rb +52 -0
- data/test/mhl/integer_genotype_space_test.rb +77 -0
- data/test/mhl/multiswarm_qpso_solver_test.rb +18 -0
- data/{spec/mhl/particle_swarm_optimization_solver_spec.rb → test/mhl/particle_swarm_optimization_solver_test.rb} +3 -2
- data/test/mhl/quantum_particle_swarm_optimization_solver_test.rb +16 -0
- data/test/test_helper.rb +6 -0
- metadata +49 -34
- data/spec/mhl/genetic_algorithm_spec.rb +0 -53
- data/spec/spec_helper.rb +0 -19
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 6451520f742d76561c0caf54cde03a7da4643898
|
4
|
+
data.tar.gz: f37fb25a97bb1b718c5ab2e7078f6853574b3749
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: aa0d5beb542b0889e042486421d8d878b427042c046d8c72b9cea1c4913d9bb01a5ec0f9d38bb34c6d48de49723346c2f9430d30a593bf1eb01d9786292270ea
|
7
|
+
data.tar.gz: a848727a22034af0a4a59bd58c3db415af71715e3e9fce35d17305312d4649cbecf93d2ee78eee157e3d5dcfc8b158a6ba7b85901e2236c87ce82d159878b7ad
|
data/Rakefile
CHANGED
data/lib/mhl.rb
CHANGED
@@ -0,0 +1,85 @@
|
|
1
|
+
require 'matrix'
|
2
|
+
|
3
|
+
require 'mhl/generic_swarm'
|
4
|
+
|
5
|
+
|
6
|
+
module MHL
|
7
|
+
class ChargedSwarm < GenericSwarmBehavior
|
8
|
+
|
9
|
+
# default composition is half charged, i.e., QPSO, and half neutral, i.e.,
|
10
|
+
# traditional PSO (with inertia), swarms
|
11
|
+
DEFAULT_CHARGED_TO_NEUTRAL_RATIO = 1.0
|
12
|
+
|
13
|
+
def initialize(size, initial_positions, initial_velocities, params={})
|
14
|
+
@size = size
|
15
|
+
|
16
|
+
# retrieve ratio between charged (QPSO) and neutral (PSO w/ inertia) particles
|
17
|
+
ratio = (params[:charged_to_neutral_ratio] || DEFAULT_CHARGED_TO_NEUTRAL_RATIO).to_f
|
18
|
+
unless ratio > 0.0
|
19
|
+
raise ArgumentError, 'Parameter :charged_to_neutral_ratio should be a real greater than zero!'
|
20
|
+
end
|
21
|
+
|
22
|
+
num_charged_particles = (@size * ratio).round
|
23
|
+
@num_neutral_particles = @size - num_charged_particles
|
24
|
+
|
25
|
+
# the particles are ordered, with neutral (PSO w/ inertia) particles
|
26
|
+
# first and charged (QPSO) particles later
|
27
|
+
@particles = Array.new(@size) do |index|
|
28
|
+
if index < @num_neutral_particles
|
29
|
+
Particle.new(initial_positions[index], initial_velocities[index])
|
30
|
+
else
|
31
|
+
QuantumParticle.new(initial_positions[index])
|
32
|
+
end
|
33
|
+
end
|
34
|
+
|
35
|
+
# find problem dimension
|
36
|
+
@dimension = initial_positions[0].size
|
37
|
+
|
38
|
+
@generation = 1
|
39
|
+
|
40
|
+
# define procedure to get dynamic value for alpha
|
41
|
+
@get_alpha = if params.has_key? :alpha and params[:alpha].respond_to? :call
|
42
|
+
params[:alpha]
|
43
|
+
else
|
44
|
+
->(gen) { (params[:alpha] || DEFAULT_ALPHA).to_f }
|
45
|
+
end
|
46
|
+
|
47
|
+
# get values for parameters C1 and C2
|
48
|
+
@c1 = (params[:c1] || DEFAULT_C1).to_f
|
49
|
+
@c2 = (params[:c1] || DEFAULT_C2).to_f
|
50
|
+
|
51
|
+
# define procedure to get dynamic value for omega
|
52
|
+
@get_omega = if params.has_key? :omega and params[:omega].respond_to? :call
|
53
|
+
params[:omega]
|
54
|
+
else
|
55
|
+
->(gen) { (params[:omega] || DEFAULT_OMEGA).to_f }
|
56
|
+
end
|
57
|
+
end
|
58
|
+
|
59
|
+
def mutate
|
60
|
+
# get alpha parameter
|
61
|
+
alpha = @get_alpha.call(@generation)
|
62
|
+
|
63
|
+
# get omega parameter
|
64
|
+
omega = @get_omega.call(@generation)
|
65
|
+
|
66
|
+
# this calculates the C_n parameter (basically, the centroid of particle
|
67
|
+
# attractors) as defined in [SUN11], formulae 4.81 and 4.82
|
68
|
+
#
|
69
|
+
# (note: the neutral particles influence the behavior of the charged ones
|
70
|
+
# not only by defining the swarm attractor, but also by forming this centroid)
|
71
|
+
c_n = @particles.inject(Vector[*[0]*@dimension]) {|s,p| s += p.attractor[:position] } / @size.to_f
|
72
|
+
|
73
|
+
@particles.each_with_index do |p,i|
|
74
|
+
# remember: the particles are kept in a PSO-first and QPSO-last order
|
75
|
+
if i < @num_neutral_particles
|
76
|
+
p.move(omega, @c1, @c2, @swarm_attractor)
|
77
|
+
else
|
78
|
+
p.move(alpha, c_n, @swarm_attractor)
|
79
|
+
end
|
80
|
+
end
|
81
|
+
|
82
|
+
@generation += 1
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
@@ -0,0 +1,52 @@
|
|
1
|
+
module MHL
|
2
|
+
|
3
|
+
class GenericParticle
|
4
|
+
|
5
|
+
attr_reader :attractor
|
6
|
+
|
7
|
+
def initialize(initial_position)
|
8
|
+
@position = initial_position
|
9
|
+
@attractor = nil
|
10
|
+
end
|
11
|
+
|
12
|
+
def evaluate(func)
|
13
|
+
# calculate particle height
|
14
|
+
@height = func.call(@position)
|
15
|
+
|
16
|
+
# update particle attractor (if needed)
|
17
|
+
if @attractor.nil? or @height > @attractor[:height]
|
18
|
+
@attractor = { height: @height, position: @position }
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
def remain_within(constraints)
|
23
|
+
new_pos = @position.map.with_index do |x,i|
|
24
|
+
puts "resetting #{x} within #{constraints[:min][i]} and #{constraints[:max][i]}"
|
25
|
+
d_max = constraints[:max][i]
|
26
|
+
d_min = constraints[:min][i]
|
27
|
+
d_size = d_max - d_min
|
28
|
+
if x > d_max
|
29
|
+
while x > d_max + d_size
|
30
|
+
x -= d_size
|
31
|
+
end
|
32
|
+
if x > d_max
|
33
|
+
x = 2 * d_max - x
|
34
|
+
end
|
35
|
+
elsif x < d_min
|
36
|
+
while x < d_min - d_size
|
37
|
+
x += d_size
|
38
|
+
end
|
39
|
+
if x < d_min
|
40
|
+
x = 2 * d_min - x
|
41
|
+
end
|
42
|
+
end
|
43
|
+
puts "now x is #{x}"
|
44
|
+
x
|
45
|
+
end
|
46
|
+
puts "new_pos: #{new_pos}"
|
47
|
+
@position = new_pos # Vector[new_pos]
|
48
|
+
end
|
49
|
+
|
50
|
+
end
|
51
|
+
|
52
|
+
end
|
@@ -0,0 +1,41 @@
|
|
1
|
+
require 'forwardable'
|
2
|
+
|
3
|
+
module MHL
|
4
|
+
class GenericSwarmBehavior
|
5
|
+
|
6
|
+
# The following values were taken from [BLACKWELLBRANKE04] Tim Blackwell,
|
7
|
+
# Jürgen Branke, "Multi-swarm Optimization in Dynamic Environments",
|
8
|
+
# Applications of Evolutionary Computing, pp. 489-500, Springer, 2004.
|
9
|
+
# DOI: 10.1007/978-3-540-24653-4_50
|
10
|
+
# C_1 is the cognitive acceleration coefficient
|
11
|
+
DEFAULT_C1 = 2.05
|
12
|
+
# C_2 is the social acceleration coefficient
|
13
|
+
DEFAULT_C2 = 2.05
|
14
|
+
PHI = DEFAULT_C1 + DEFAULT_C2
|
15
|
+
# \omega is the inertia weight
|
16
|
+
DEFAULT_OMEGA = 2.0 / (2 - PHI - Math.sqrt(PHI ** 2 - 4.0 * PHI)).abs
|
17
|
+
|
18
|
+
# \alpha is the inertia weight
|
19
|
+
# According to [SUN11], this looks like a sensible default parameter
|
20
|
+
DEFAULT_ALPHA = 0.75
|
21
|
+
|
22
|
+
extend Forwardable
|
23
|
+
def_delegators :@particles, :each
|
24
|
+
|
25
|
+
include Enumerable
|
26
|
+
|
27
|
+
def update_attractor
|
28
|
+
# get the particle attractors
|
29
|
+
particle_attractors = @particles.map { |p| p.attractor }
|
30
|
+
|
31
|
+
# update swarm attractor (if needed)
|
32
|
+
if @swarm_attractor.nil?
|
33
|
+
@swarm_attractor = particle_attractors.max_by {|p| p[:height] }
|
34
|
+
else
|
35
|
+
@swarm_attractor = [ @swarm_attractor, *particle_attractors ].max_by {|p| p[:height] }
|
36
|
+
end
|
37
|
+
|
38
|
+
@swarm_attractor
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
@@ -1,5 +1,7 @@
|
|
1
1
|
require 'concurrent'
|
2
2
|
require 'erv'
|
3
|
+
require 'facter'
|
4
|
+
require 'logger'
|
3
5
|
|
4
6
|
require 'mhl/bitstring_genotype_space'
|
5
7
|
require 'mhl/integer_genotype_space'
|
@@ -8,6 +10,9 @@ require 'mhl/integer_genotype_space'
|
|
8
10
|
module MHL
|
9
11
|
|
10
12
|
class GeneticAlgorithmSolver
|
13
|
+
# mutation_probability is the parameter that controls the intensity of mutation
|
14
|
+
attr_reader :mutation_probability
|
15
|
+
|
11
16
|
def initialize(opts)
|
12
17
|
@population_size = opts[:population_size].to_i
|
13
18
|
unless @population_size and @population_size.even?
|
@@ -20,10 +25,10 @@ module MHL
|
|
20
25
|
@genotype_space = IntegerVectorGenotypeSpace.new(opts[:genotype_space_conf])
|
21
26
|
|
22
27
|
begin
|
23
|
-
|
28
|
+
@mutation_probability = opts[:mutation_probability].to_f
|
24
29
|
@mutation_rv = \
|
25
30
|
ERV::RandomVariable.new(:distribution => :geometric,
|
26
|
-
:probability_of_success =>
|
31
|
+
:probability_of_success => @mutation_probability)
|
27
32
|
rescue
|
28
33
|
raise ArgumentError, 'Mutation probability configuration is wrong.'
|
29
34
|
end
|
@@ -49,8 +54,36 @@ module MHL
|
|
49
54
|
|
50
55
|
@exit_condition = opts[:exit_condition]
|
51
56
|
@start_population = opts[:genotype_space_conf][:start_population]
|
57
|
+
|
58
|
+
@controller = opts[:controller]
|
59
|
+
|
60
|
+
@pool = Concurrent::FixedThreadPool.new(Facter.value(:processorcount).to_i * 4)
|
61
|
+
|
62
|
+
case opts[:logger]
|
63
|
+
when :stdout
|
64
|
+
@logger = Logger.new(STDOUT)
|
65
|
+
when :stderr
|
66
|
+
@logger = Logger.new(STDERR)
|
67
|
+
else
|
68
|
+
@logger = opts[:logger]
|
69
|
+
end
|
70
|
+
|
71
|
+
@quiet = opts[:quiet]
|
72
|
+
|
73
|
+
if @logger
|
74
|
+
@logger.level = (opts[:log_level] or Logger::WARN)
|
75
|
+
end
|
52
76
|
end
|
53
77
|
|
78
|
+
def mutation_probability=(new_mp)
|
79
|
+
unless new_mp > 0.0 and new_mp < 1.0
|
80
|
+
raise ArgumentError, 'Mutation probability needs to be > 0 and < 1'
|
81
|
+
end
|
82
|
+
@mutation_probability = new_mp
|
83
|
+
@mutation_rv = \
|
84
|
+
ERV::RandomVariable.new(:distribution => :geometric,
|
85
|
+
:probability_of_success => @mutation_probability)
|
86
|
+
end
|
54
87
|
|
55
88
|
# This is the method that solves the optimization problem
|
56
89
|
#
|
@@ -74,24 +107,42 @@ module MHL
|
|
74
107
|
gen = 0
|
75
108
|
overall_best = nil
|
76
109
|
|
110
|
+
population_mutex = Mutex.new
|
111
|
+
|
77
112
|
# default behavior is to loop forever
|
78
113
|
begin
|
79
114
|
gen += 1
|
80
|
-
|
115
|
+
@logger.info("GA - Starting generation #{gen}") if @logger
|
116
|
+
|
117
|
+
# create latch to control program termination
|
118
|
+
latch = Concurrent::CountDownLatch.new(@population_size)
|
81
119
|
|
82
120
|
# assess fitness for every member of the population
|
83
121
|
population.each do |s|
|
84
|
-
|
122
|
+
@pool.post do
|
123
|
+
# do we need to syncronize this call through population_mutex?
|
124
|
+
# probably not.
|
125
|
+
ret = func.call(s[:genotype])
|
126
|
+
|
127
|
+
# protect write access to population struct using mutex
|
128
|
+
population_mutex.synchronize do
|
129
|
+
s[:fitness] = ret
|
130
|
+
end
|
131
|
+
|
132
|
+
# update latch
|
133
|
+
latch.count_down
|
134
|
+
end
|
85
135
|
end
|
86
136
|
|
87
|
-
# wait for all the
|
88
|
-
|
89
|
-
s[:fitness] = s[:task].value
|
90
|
-
end
|
137
|
+
# wait for all the threads to terminate
|
138
|
+
latch.wait
|
91
139
|
|
92
140
|
# find fittest member
|
93
141
|
population_best = population.max_by {|x| x[:fitness] }
|
94
142
|
|
143
|
+
# print results
|
144
|
+
puts "> gen #{gen}, best: #{population_best[:genotype]}, #{population_best[:fitness]}" unless @quiet
|
145
|
+
|
95
146
|
# calculate overall best
|
96
147
|
if overall_best.nil?
|
97
148
|
overall_best = population_best
|
@@ -99,8 +150,8 @@ module MHL
|
|
99
150
|
overall_best = [ overall_best, population_best ].max_by {|x| x[:fitness] }
|
100
151
|
end
|
101
152
|
|
102
|
-
#
|
103
|
-
|
153
|
+
# execute controller
|
154
|
+
@controller.call(self, overall_best) if @controller
|
104
155
|
|
105
156
|
# selection by binary tournament
|
106
157
|
children = new_generation(population)
|
@@ -108,6 +159,9 @@ module MHL
|
|
108
159
|
# update population and generation number
|
109
160
|
population = children
|
110
161
|
end while @exit_condition.nil? or !@exit_condition.call(gen, overall_best)
|
162
|
+
|
163
|
+
# return best sample
|
164
|
+
overall_best
|
111
165
|
end
|
112
166
|
|
113
167
|
|
@@ -19,13 +19,24 @@ module MHL
|
|
19
19
|
else
|
20
20
|
raise ArgumentError, 'Recombination function must be either line or intermediate!'
|
21
21
|
end
|
22
|
+
|
23
|
+
@constraints = opts[:constraints]
|
24
|
+
if @constraints and @constraints.size != @dimensions
|
25
|
+
raise ArgumentError, 'Constraints must be provided for every dimension!'
|
26
|
+
end
|
27
|
+
|
28
|
+
@logger = opts[:logger]
|
22
29
|
end
|
23
30
|
|
24
31
|
def get_random
|
25
32
|
if @random_func
|
26
33
|
@random_func.call
|
27
34
|
else
|
28
|
-
|
35
|
+
if @constraints
|
36
|
+
@constraints.map{|x| x[:from] + SecureRandom.random_number(x[:to] - x[:from]) }
|
37
|
+
else
|
38
|
+
raise 'Automated random genotype generation when no constraints are provided is not implemented yet!'
|
39
|
+
end
|
29
40
|
end
|
30
41
|
end
|
31
42
|
|
@@ -38,22 +49,25 @@ module MHL
|
|
38
49
|
c2 = { :genotype => p2[:genotype].dup }
|
39
50
|
|
40
51
|
# mutation comes first
|
41
|
-
|
42
|
-
|
52
|
+
random_delta_mutation(c1[:genotype], mutation_rv)
|
53
|
+
random_delta_mutation(c2[:genotype], mutation_rv)
|
43
54
|
|
44
55
|
# and then recombination
|
45
56
|
send(@recombination_func, c1[:genotype], c2[:genotype], recombination_rv)
|
46
57
|
|
58
|
+
if @constraints
|
59
|
+
repair_chromosome(c1[:genotype])
|
60
|
+
repair_chromosome(c2[:genotype])
|
61
|
+
end
|
62
|
+
|
47
63
|
return c1, c2
|
48
64
|
end
|
49
65
|
|
50
66
|
|
51
67
|
private
|
52
68
|
|
53
|
-
def
|
69
|
+
def random_delta_mutation(g, mutation_rv)
|
54
70
|
g.each_index do |i|
|
55
|
-
# being sampled from a geometric distribution, delta will always
|
56
|
-
# be a non-negative integer (that is, 0 or greater)
|
57
71
|
delta = mutation_rv.next
|
58
72
|
|
59
73
|
if rand() >= 0.5
|
@@ -77,7 +91,7 @@ module MHL
|
|
77
91
|
beta = recombination_rv.next
|
78
92
|
t = (alpha * g1[i] + (1.0 - alpha) * g2[i] + 0.5).floor
|
79
93
|
s = ( beta * g2[i] + (1.0 - beta) * g1[i] + 0.5).floor
|
80
|
-
end
|
94
|
+
end
|
81
95
|
g1[i] = t
|
82
96
|
g2[i] = s
|
83
97
|
end
|
@@ -94,10 +108,24 @@ module MHL
|
|
94
108
|
g1.each_index do |i|
|
95
109
|
t = (alpha * g1[i] + (1.0 - alpha) * g2[i] + 0.5).floor
|
96
110
|
s = ( beta * g2[i] + (1.0 - beta) * g1[i] + 0.5).floor
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
111
|
+
g1[i] = t
|
112
|
+
g2[i] = s
|
113
|
+
end
|
114
|
+
end
|
115
|
+
|
116
|
+
def repair_chromosome(g)
|
117
|
+
g.each_index do |i|
|
118
|
+
if g[i] < @constraints[i][:from]
|
119
|
+
range = "[#{@constraints[i][:from]},#{@constraints[i][:to]}]"
|
120
|
+
@logger.debug "repairing g[#{i}] #{g[i]} to fit within #{range}" if @logger
|
121
|
+
g[i] = @constraints[i][:from]
|
122
|
+
@logger.debug "g[#{i}] repaired as: #{g[i]}" if @logger
|
123
|
+
elsif g[i] > @constraints[i][:to]
|
124
|
+
range = "[#{@constraints[i][:from]},#{@constraints[i][:to]}]"
|
125
|
+
@logger.debug "repairing g[#{i}] #{g[i]} to fit within #{range}" if @logger
|
126
|
+
g[i] = @constraints[i][:to]
|
127
|
+
@logger.debug "g[#{i}] repaired as: #{g[i]}" if @logger
|
128
|
+
end
|
101
129
|
end
|
102
130
|
end
|
103
131
|
|
@@ -0,0 +1,140 @@
|
|
1
|
+
require 'concurrent'
|
2
|
+
require 'facter'
|
3
|
+
require 'logger'
|
4
|
+
require 'matrix'
|
5
|
+
|
6
|
+
require 'mhl/charged_swarm'
|
7
|
+
|
8
|
+
|
9
|
+
module MHL
|
10
|
+
# This solver implements the multiswarm QPSO algorithm, based on a number of
|
11
|
+
# charged (QPSO Type 2) and neutral (PSO) swarms.
|
12
|
+
#
|
13
|
+
# For more information, refer to:
|
14
|
+
# [BLACKWELLBRANKE04] Tim Blackwell, Jürgen Branke, "Multi-swarm Optimization
|
15
|
+
# in Dynamic Environments", Applications of Evolutionary Computing, pp.
|
16
|
+
# 489-500, Springer, 2004. DOI: 10.1007/978-3-540-24653-4_50
|
17
|
+
class MultiSwarmQPSOSolver
|
18
|
+
|
19
|
+
def initialize(opts={})
|
20
|
+
@swarm_size = opts[:swarm_size].to_i
|
21
|
+
unless @swarm_size
|
22
|
+
raise ArgumentError, 'Swarm size is a required parameter!'
|
23
|
+
end
|
24
|
+
|
25
|
+
@num_swarms = opts[:num_swarms].to_i
|
26
|
+
unless @num_swarms
|
27
|
+
raise ArgumentError, 'Number of swarms is a required parameter!'
|
28
|
+
end
|
29
|
+
|
30
|
+
@random_position_func = opts[:random_position_func]
|
31
|
+
@random_velocity_func = opts[:random_velocity_func]
|
32
|
+
|
33
|
+
@start_positions = opts[:start_positions]
|
34
|
+
@exit_condition = opts[:exit_condition]
|
35
|
+
|
36
|
+
@pool = Concurrent::FixedThreadPool.new(Facter.value(:processorcount).to_i * 4)
|
37
|
+
|
38
|
+
case opts[:logger]
|
39
|
+
when :stdout
|
40
|
+
@logger = Logger.new(STDOUT)
|
41
|
+
when :stderr
|
42
|
+
@logger = Logger.new(STDERR)
|
43
|
+
else
|
44
|
+
@logger = opts[:logger]
|
45
|
+
end
|
46
|
+
|
47
|
+
@quiet = opts[:quiet]
|
48
|
+
|
49
|
+
if @logger
|
50
|
+
@logger.level = opts[:log_level] or Logger::WARN
|
51
|
+
end
|
52
|
+
end
|
53
|
+
|
54
|
+
# This is the method that solves the optimization problem
|
55
|
+
#
|
56
|
+
# Parameter func is supposed to be a method (or a Proc, a lambda, or any callable
|
57
|
+
# object) that accepts the genotype as argument (that is, the set of
|
58
|
+
# parameters) and returns the phenotype (that is, the function result)
|
59
|
+
def solve(func, params={})
|
60
|
+
|
61
|
+
# setup particles
|
62
|
+
if @start_positions.nil?
|
63
|
+
swarms = Array.new(@num_swarms) do |index|
|
64
|
+
ChargedSwarm.new(@swarm_size,
|
65
|
+
Array.new(@swarm_size) { Vector[*@random_position_func.call] },
|
66
|
+
Array.new(@swarm_size / 2) { Vector[*@random_velocity_func.call] },
|
67
|
+
params)
|
68
|
+
end
|
69
|
+
else
|
70
|
+
raise 'Unimplemented yet!'
|
71
|
+
# particles = @start_positions.each_slice(2).map do |pos,vel|
|
72
|
+
# { position: Vector[*pos] }
|
73
|
+
# end
|
74
|
+
end
|
75
|
+
|
76
|
+
# initialize variables
|
77
|
+
gen = 0
|
78
|
+
overall_best = nil
|
79
|
+
|
80
|
+
# default behavior is to loop forever
|
81
|
+
begin
|
82
|
+
gen += 1
|
83
|
+
@logger.info "MSQPSO - Starting generation #{gen}" if @logger
|
84
|
+
|
85
|
+
# create latch to control program termination
|
86
|
+
latch = Concurrent::CountDownLatch.new(@num_swarms * @swarm_size)
|
87
|
+
|
88
|
+
# assess height for every particle
|
89
|
+
swarms.each do |s|
|
90
|
+
s.each do |particle|
|
91
|
+
@pool.post do
|
92
|
+
# evaluate target function
|
93
|
+
particle.evaluate(func)
|
94
|
+
# update latch
|
95
|
+
latch.count_down
|
96
|
+
end
|
97
|
+
end
|
98
|
+
end
|
99
|
+
|
100
|
+
# wait for all the evaluations to end
|
101
|
+
latch.wait
|
102
|
+
|
103
|
+
# update attractors (the highest particle in each swarm)
|
104
|
+
swarm_attractors = swarms.map {|s| s.update_attractor }
|
105
|
+
|
106
|
+
best_attractor = swarm_attractors.max_by {|x| x[:height] }
|
107
|
+
|
108
|
+
# print results
|
109
|
+
puts "> gen #{gen}, best: #{best_attractor[:position]}, #{best_attractor[:height]}" unless @quiet
|
110
|
+
|
111
|
+
# calculate overall best
|
112
|
+
if overall_best.nil?
|
113
|
+
overall_best = best_attractor
|
114
|
+
else
|
115
|
+
overall_best = [ overall_best, best_attractor ].max_by {|x| x[:height] }
|
116
|
+
end
|
117
|
+
|
118
|
+
# exclusion phase
|
119
|
+
# this phase is necessary to preserve diversity between swarms. we need
|
120
|
+
# to ensure that swarm attractors are distant at least r_{excl} units
|
121
|
+
# from each other. if the attractors of two swarms are closer than
|
122
|
+
# r_{excl}, we randomly reinitialize the worst of those swarms.
|
123
|
+
# TODO: IMPLEMENT
|
124
|
+
|
125
|
+
# anti-convergence phase
|
126
|
+
# this phase is necessary to ensure that a swarm is "spread" enough to
|
127
|
+
# effectively follow the movements of a "peak" in the solution space.
|
128
|
+
# TODO: IMPLEMENT
|
129
|
+
|
130
|
+
# mutate swarms
|
131
|
+
swarms.each {|s| s.mutate }
|
132
|
+
|
133
|
+
end while @exit_condition.nil? or !@exit_condition.call(gen, overall_best)
|
134
|
+
|
135
|
+
overall_best
|
136
|
+
end
|
137
|
+
|
138
|
+
end
|
139
|
+
|
140
|
+
end
|