machine_learner 0.0.2 → 0.0.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/Rakefile +0 -3
- data/lib/machine_learner/adaboost.rb +9 -5
- data/lib/machine_learner/bayes.rb +18 -10
- data/lib/machine_learner/dataset.rb +4 -1
- data/lib/machine_learner/version.rb +1 -1
- data/machine_learner.gemspec +0 -1
- metadata +2 -17
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: bf87164a6191ea911d85afaa076ad0469fd906eb
|
4
|
+
data.tar.gz: 36ae6f7878759fd3454664dc198869bb48c52c92
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e3febd94592309785e96681d892321ada9889731efe76c9bfad206679a9a1ef2756b2ecf8006849cd3f9279a18a04bb11d44652bcb90f8db5787ef16052b854b
|
7
|
+
data.tar.gz: 65acb7e1618cade8704b918a777c5d79d957cb03328dd70c62ee5007e61e9a0b94cf4884370fe6826be1f0b31750b18ac2b5d9e4c764efe430ff171eb8441ad8
|
data/Rakefile
CHANGED
@@ -95,17 +95,21 @@ module MachineLearner
|
|
95
95
|
end
|
96
96
|
end
|
97
97
|
|
98
|
+
# 識別結果の生の値を返す
|
99
|
+
# @param x 特徴空間
|
100
|
+
# @return [Float] 識別結果の生の値(-1..1)
|
101
|
+
def classify_raw(x)
|
102
|
+
[@learners, @alphas].transpose.reduce(0) { |score, (l, a)| score += l.classify(x) * a }
|
103
|
+
end
|
104
|
+
|
98
105
|
# 識別を行う
|
99
106
|
# @param x 特徴空間
|
100
107
|
# @return [Fixnum] 識別結果
|
101
108
|
def classify(x)
|
102
|
-
|
103
|
-
score += l.classify(x) * a
|
104
|
-
}
|
105
|
-
score > 0 ? 1 : -1
|
109
|
+
classify_raw(x) > 0 ? 1 : -1
|
106
110
|
end
|
107
111
|
|
108
|
-
# Learner
|
112
|
+
# Learnerを表す文字列
|
109
113
|
def to_s
|
110
114
|
[@learners, @alphas].transpose.map {|l, a| "(#{a.round(3)} * #{l})" }.join(" + ");
|
111
115
|
end
|
@@ -8,13 +8,17 @@ module MachineLearner
|
|
8
8
|
# ナイブベイズ学習器
|
9
9
|
class BayesLearner < Learner
|
10
10
|
|
11
|
+
# コンストラクタ
|
12
|
+
def initialize
|
13
|
+
end
|
14
|
+
|
11
15
|
# データを元に学習を行う
|
12
16
|
# @param datas [Array<DataSet>] トレーニングデータの配列
|
13
17
|
# @return [Array<Boolean>] 識別結果の配列
|
14
18
|
def learn(datas, ds = nil)
|
15
19
|
@training = datas
|
16
20
|
@ys = @training.map{|data| data.y }
|
17
|
-
@
|
21
|
+
@candidate_x = []
|
18
22
|
end
|
19
23
|
|
20
24
|
# 識別を行う
|
@@ -22,24 +26,24 @@ module MachineLearner
|
|
22
26
|
# @return [Fixnum] 識別結果
|
23
27
|
def classify(xs)
|
24
28
|
# 最も尤度の高い候補 y を探す
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
return max_y
|
29
|
+
classify_raw(xs).max{ |x, y| x[1] <=> y[1] }[0]
|
30
|
+
end
|
31
|
+
|
32
|
+
def classify_raw(xs)
|
33
|
+
candidate_y.map{|y| [y, p_y_x(y, xs)]}.to_h
|
31
34
|
end
|
32
35
|
|
33
36
|
private
|
34
37
|
|
35
38
|
# P(Y | X) を計算
|
36
39
|
def p_y_x(y, xs)
|
40
|
+
# P(Y | X) = P(Y) * product(P(Xi | Y))
|
37
41
|
p = Math.log(p_y(y))
|
38
42
|
xs.each_with_index do |xi, i|
|
39
43
|
next if xi.nil?
|
40
44
|
p += Math.log(p_xi_y(xi, i, y))
|
41
45
|
end
|
42
|
-
return p
|
46
|
+
return Math.exp(p)
|
43
47
|
end
|
44
48
|
|
45
49
|
# P(Xi | Y) を計算
|
@@ -56,14 +60,18 @@ module MachineLearner
|
|
56
60
|
# P(Y) を計算
|
57
61
|
def p_y(y)
|
58
62
|
count = @ys.count(y)
|
59
|
-
return (count + 1).to_f / (@ys.size +
|
63
|
+
return (count + 1).to_f / (@ys.size + candidate_y.size + 1).to_f
|
60
64
|
end
|
61
65
|
|
62
66
|
# xの候補を列挙
|
63
67
|
def candidate_x(field)
|
64
|
-
@candidate_x ||= []
|
65
68
|
@candidate_x[field] ||= @training.map{|data| data.x[field]}.uniq.compact
|
66
69
|
end
|
70
|
+
|
71
|
+
# yの候補を列挙
|
72
|
+
def candidate_y
|
73
|
+
@candidate_y ||= @ys.uniq.compact
|
74
|
+
end
|
67
75
|
end
|
68
76
|
|
69
77
|
end
|
@@ -5,12 +5,14 @@ module MachineLearner
|
|
5
5
|
# 特徴空間xと識別結果yを持つ
|
6
6
|
class DataSet
|
7
7
|
attr_reader :x, :y
|
8
|
+
attr_accessor :id
|
8
9
|
|
9
10
|
# コンストラクタ
|
10
11
|
# @param x 特徴空間
|
11
12
|
# @param y 識別結果
|
12
|
-
def initialize(x, y)
|
13
|
+
def initialize(x, y, id = nil)
|
13
14
|
@x, @y = x, y
|
15
|
+
@id = id
|
14
16
|
end
|
15
17
|
|
16
18
|
# @return データセットを表現する文字列
|
@@ -22,3 +24,4 @@ module MachineLearner
|
|
22
24
|
end
|
23
25
|
|
24
26
|
# vim: set et ts=2 sts=2 sw=2:
|
27
|
+
|
data/machine_learner.gemspec
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: machine_learner
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- YutaTanaka
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2014-
|
11
|
+
date: 2014-12-09 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -38,20 +38,6 @@ dependencies:
|
|
38
38
|
- - "~>"
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '10.0'
|
41
|
-
- !ruby/object:Gem::Dependency
|
42
|
-
name: rspec
|
43
|
-
requirement: !ruby/object:Gem::Requirement
|
44
|
-
requirements:
|
45
|
-
- - "~>"
|
46
|
-
- !ruby/object:Gem::Version
|
47
|
-
version: '0'
|
48
|
-
type: :development
|
49
|
-
prerelease: false
|
50
|
-
version_requirements: !ruby/object:Gem::Requirement
|
51
|
-
requirements:
|
52
|
-
- - "~>"
|
53
|
-
- !ruby/object:Gem::Version
|
54
|
-
version: '0'
|
55
41
|
description: |
|
56
42
|
This is a library for machine learning.
|
57
43
|
You can use AdaBoost and Naive Bayes easily.
|
@@ -104,4 +90,3 @@ summary: Library for machine learning.
|
|
104
90
|
test_files:
|
105
91
|
- spec/machine_learner_spec.rb
|
106
92
|
- spec/spec_helper.rb
|
107
|
-
has_rdoc:
|