llama_cpp 0.0.4 → 0.0.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +3 -2
- data/ext/llama_cpp/extconf.rb +12 -0
- data/ext/llama_cpp/llama_cpp.cpp +60 -0
- data/ext/llama_cpp/src/ggml.c +1108 -508
- data/ext/llama_cpp/src/ggml.h +10 -0
- data/ext/llama_cpp/src/llama.cpp +317 -47
- data/ext/llama_cpp/src/llama.h +12 -0
- data/ext/llama_cpp/src/llama_util.h +22 -15
- data/lib/llama_cpp/version.rb +2 -2
- data/lib/llama_cpp.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2df0c858faac117b7317683fb7b9a52fc0eb4f7329f728ac6a209085af487142
|
4
|
+
data.tar.gz: 6b5c5d5d5d4e9020b92c7d76c12086fd77089ecc9c2181fb9d8157df5267da96
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8e9d3ccdb8cdc9d4cb7b60f32a709c874953c357fdaccc057502e5761efdec62a0fc0b39929448203ffc4210dbf0ca2f6019dc13f88cf0db84b754f44fd77bea
|
7
|
+
data.tar.gz: 75fc1d6674c8d509ae0557308277d6d3d7e05f5a6fbea512c2472c46bea1de6e2541a67ec3dda43f874d7f64e6981b720aa1c722d3ec7ea3b96ae9084a4d201b
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,23 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [[0.0.5](https://github.com/yoshoku/llama_cpp.rb/compare/v0.0.4...v0.0.5)] - 2023-04-20
|
4
|
+
|
5
|
+
- Bump bundled llama.cpp from master-c85e03d to master-315a95a.
|
6
|
+
- Add `apply_lora_from_file` method to LLaMACpp::Context.
|
7
|
+
- Add `mlock_supported?` module function to LLaMACpp.
|
8
|
+
- Add `mmap_supported?` module function to LLaMACpp.
|
9
|
+
- Fix to not destroy original prompt in `LLaMACpp.generate` module function.
|
10
|
+
- Add check for context initialization.
|
11
|
+
- Add blas config options:
|
12
|
+
```
|
13
|
+
$ gem install llama_cpp -- --with-openblas
|
14
|
+
```
|
15
|
+
macOS:
|
16
|
+
```
|
17
|
+
$ gem install llama_cpp -- --with-openblas --with-opt-dir=/opt/homebrew/opt/openblas
|
18
|
+
$ gem install llama_cpp -- --with-accelerate
|
19
|
+
```
|
20
|
+
|
3
21
|
## [[0.0.4](https://github.com/yoshoku/llama_cpp.rb/compare/v0.0.3...v0.0.4)] - 2023-04-15
|
4
22
|
|
5
23
|
- Bump bundled llama.cpp from master-698f7b5 to master-c85e03d.
|
data/README.md
CHANGED
@@ -20,7 +20,8 @@ If bundler is not being used to manage dependencies, install the gem by executin
|
|
20
20
|
|
21
21
|
## Usage
|
22
22
|
|
23
|
-
Prepare
|
23
|
+
Prepare the quantized model by refering to [the usage section on the llama.cpp README](https://github.com/ggerganov/llama.cpp#usage) or
|
24
|
+
download the qunatized model, for example [ggml-vicuna-7b-4bit](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5541351), from Hugging Face.
|
24
25
|
|
25
26
|
```ruby
|
26
27
|
require 'llama_cpp'
|
@@ -28,7 +29,7 @@ require 'llama_cpp'
|
|
28
29
|
params = LLaMACpp::ContextParams.new
|
29
30
|
params.seed = 12
|
30
31
|
|
31
|
-
context = LLaMACpp::Context.new(model_path: '/path/to/
|
32
|
+
context = LLaMACpp::Context.new(model_path: '/path/to/quantized-model.bin', params: params)
|
32
33
|
|
33
34
|
puts LLaMACpp.generate(context, 'Please tell me the largest city in Japan.', n_threads: 4)
|
34
35
|
# => "There are two major cities in Japan, Tokyo and Osaka, which have about 30 million populations."
|
data/ext/llama_cpp/extconf.rb
CHANGED
@@ -15,6 +15,18 @@ if RUBY_PLATFORM.match?(/darwin|linux|bsd/) && try_compile('#include <stdio.h>',
|
|
15
15
|
$CXXFLAGS << ' -pthread'
|
16
16
|
end
|
17
17
|
|
18
|
+
if with_config('openblas')
|
19
|
+
abort 'libopenblas is not found.' unless have_library('openblas')
|
20
|
+
abort 'cblas.h is not found.' unless have_header('cblas.h')
|
21
|
+
|
22
|
+
$CFLAGS << ' -DGGML_USE_OPENBLAS'
|
23
|
+
end
|
24
|
+
|
25
|
+
if with_config('accelerate')
|
26
|
+
$CFLAGS << ' -DGGML_USE_ACCELERATE'
|
27
|
+
$LDFLAGS << ' -framework Accelerate'
|
28
|
+
end
|
29
|
+
|
18
30
|
UNAME_M = RbConfig::CONFIG['build_cpu'] || RbConfig::CONFIG['host_cpu'] || RbConfig::CONFIG['target_cpu']
|
19
31
|
|
20
32
|
# rubocop:disable Layout/LineLength
|
data/ext/llama_cpp/llama_cpp.cpp
CHANGED
@@ -228,6 +228,7 @@ public:
|
|
228
228
|
rb_define_method(rb_cLLaMAContext, "reset_timings", RUBY_METHOD_FUNC(_llama_context_reset_timings), 0);
|
229
229
|
rb_define_method(rb_cLLaMAContext, "free", RUBY_METHOD_FUNC(_llama_context_free), 0);
|
230
230
|
rb_define_method(rb_cLLaMAContext, "load", RUBY_METHOD_FUNC(_llama_context_load), -1);
|
231
|
+
rb_define_method(rb_cLLaMAContext, "apply_lora_from_file", RUBY_METHOD_FUNC(_llama_context_apply_lora_from_file), -1);
|
231
232
|
};
|
232
233
|
|
233
234
|
private:
|
@@ -311,6 +312,10 @@ private:
|
|
311
312
|
const int n_threads = kw_values[3] == Qundef ? 1 : NUM2INT(kw_values[3]);
|
312
313
|
|
313
314
|
LLaMAContextWrapper* ptr = get_llama_context(self);
|
315
|
+
if (ptr->ctx == NULL) {
|
316
|
+
rb_raise(rb_eRuntimeError, "LLaMA context is not initialized");
|
317
|
+
return Qnil;
|
318
|
+
}
|
314
319
|
if (llama_eval(ptr->ctx, embd.data(), n_tokens, n_past, n_threads) != 0) {
|
315
320
|
rb_raise(rb_eRuntimeError, "Failed to evaluate");
|
316
321
|
return Qnil;
|
@@ -349,6 +354,10 @@ private:
|
|
349
354
|
|
350
355
|
std::vector<llama_token> tokens(n_max_tokens);
|
351
356
|
LLaMAContextWrapper* ptr = get_llama_context(self);
|
357
|
+
if (ptr->ctx == NULL) {
|
358
|
+
rb_raise(rb_eRuntimeError, "LLaMA context is not initialized");
|
359
|
+
return Qnil;
|
360
|
+
}
|
352
361
|
const int n = llama_tokenize(ptr->ctx, text.c_str(), tokens.data(), n_max_tokens, add_bos);
|
353
362
|
if (n < 0) {
|
354
363
|
rb_raise(rb_eRuntimeError, "Failed to tokenize");
|
@@ -449,6 +458,10 @@ private:
|
|
449
458
|
}
|
450
459
|
|
451
460
|
LLaMAContextWrapper* ptr = get_llama_context(self);
|
461
|
+
if (ptr->ctx == NULL) {
|
462
|
+
rb_raise(rb_eRuntimeError, "LLaMA context is not initialized");
|
463
|
+
return Qnil;
|
464
|
+
}
|
452
465
|
llama_token token = llama_sample_top_p_top_k(ptr->ctx, last_n_tokens_data.data(), last_n_tokens_size, top_k, top_p, temp, penalty);
|
453
466
|
|
454
467
|
return INT2NUM(token);
|
@@ -548,6 +561,43 @@ private:
|
|
548
561
|
RB_GC_GUARD(filename);
|
549
562
|
return Qnil;
|
550
563
|
};
|
564
|
+
|
565
|
+
static VALUE _llama_context_apply_lora_from_file(int argc, VALUE* argv, VALUE self) {
|
566
|
+
VALUE kw_args = Qnil;
|
567
|
+
ID kw_table[3] = { rb_intern("lora_path"), rb_intern("base_model_path"), rb_intern("n_threads") };
|
568
|
+
VALUE kw_values[3] = { Qundef, Qundef, Qundef };
|
569
|
+
rb_scan_args(argc, argv, ":", &kw_args);
|
570
|
+
rb_get_kwargs(kw_args, kw_table, 1, 2, kw_values);
|
571
|
+
|
572
|
+
if (!RB_TYPE_P(kw_values[0], T_STRING)) {
|
573
|
+
rb_raise(rb_eArgError, "lora_path must be a string");
|
574
|
+
return Qnil;
|
575
|
+
}
|
576
|
+
if (kw_values[1] != Qundef && !RB_TYPE_P(kw_values[1], T_STRING)) {
|
577
|
+
rb_raise(rb_eArgError, "base_model_path must be a string");
|
578
|
+
return Qnil;
|
579
|
+
}
|
580
|
+
if (kw_values[2] != Qundef && !RB_INTEGER_TYPE_P(kw_values[2])) {
|
581
|
+
rb_raise(rb_eArgError, "n_threads must be an integer");
|
582
|
+
return Qnil;
|
583
|
+
}
|
584
|
+
|
585
|
+
const char* lora_path = StringValueCStr(kw_values[0]);
|
586
|
+
const char* base_model_path = kw_values[1] == Qundef ? NULL : StringValueCStr(kw_values[1]);
|
587
|
+
const int n_threads = kw_values[2] == Qundef ? 1 : NUM2INT(kw_values[2]);
|
588
|
+
|
589
|
+
LLaMAContextWrapper* ptr = get_llama_context(self);
|
590
|
+
if (ptr->ctx != NULL) {
|
591
|
+
rb_raise(rb_eRuntimeError, "LLaMA context is already loaded");
|
592
|
+
return Qnil;
|
593
|
+
}
|
594
|
+
|
595
|
+
if (llama_apply_lora_from_file(ptr->ctx, lora_path, base_model_path, n_threads) != 0) {
|
596
|
+
rb_raise(rb_eRuntimeError, "Failed to apply LoRA");
|
597
|
+
return Qnil;
|
598
|
+
}
|
599
|
+
return Qnil;
|
600
|
+
};
|
551
601
|
};
|
552
602
|
|
553
603
|
const rb_data_type_t RbLLaMAContext::llama_context_type = {
|
@@ -575,6 +625,14 @@ static VALUE rb_llama_print_system_info(VALUE self) {
|
|
575
625
|
return rb_utf8_str_new_cstr(result);
|
576
626
|
}
|
577
627
|
|
628
|
+
static VALUE rb_llama_mmap_supported(VALUE self) {
|
629
|
+
return llama_mmap_supported() ? Qtrue : Qfalse;
|
630
|
+
}
|
631
|
+
|
632
|
+
static VALUE rb_llama_mlock_supported(VALUE self) {
|
633
|
+
return llama_mlock_supported() ? Qtrue : Qfalse;
|
634
|
+
}
|
635
|
+
|
578
636
|
extern "C" void Init_llama_cpp(void) {
|
579
637
|
rb_mLLaMACpp = rb_define_module("LLaMACpp");
|
580
638
|
RbLLaMAContext::define_class(rb_mLLaMACpp);
|
@@ -583,6 +641,8 @@ extern "C" void Init_llama_cpp(void) {
|
|
583
641
|
rb_define_module_function(rb_mLLaMACpp, "token_bos", rb_llama_token_bos, 0);
|
584
642
|
rb_define_module_function(rb_mLLaMACpp, "token_eos", rb_llama_token_eos, 0);
|
585
643
|
rb_define_module_function(rb_mLLaMACpp, "print_system_info", rb_llama_print_system_info, 0);
|
644
|
+
rb_define_module_function(rb_mLLaMACpp, "mmap_supported?", rb_llama_mmap_supported, 0);
|
645
|
+
rb_define_module_function(rb_mLLaMACpp, "mlock_supported?", rb_llama_mlock_supported, 0);
|
586
646
|
|
587
647
|
rb_define_const(rb_mLLaMACpp, "LLAMA_FILE_VERSION", rb_str_new2(std::to_string(LLAMA_FILE_VERSION).c_str()));
|
588
648
|
std::stringstream ss_magic;
|